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Abstract
Feature selection, as a preprocessing step to
machine learning, has been effective in reduc-
ing dimensionality, removing irrelevant data,
increasing learning accuracy, and improving
comprehensibility. However, the recent in-
crease of dimensionality of data poses a se-
vere challenge to many existing feature se-
lection methods with respect to efficiency
and effectiveness. In this work, we intro-
duce a novel concept, predominant correla-
tion, and propose a fast filter method which
can identify relevant features as well as re-
dundancy among relevant features without
pairwise correlation analysis. The efficiency
and effectiveness of our method is demon-
strated through extensive comparisons with
other methods using real-world data of high
dimensionality.

1. Introduction

Feature selection is frequently used as a preprocessing
step to machine learning. It is a process of choosing
a subset of original features so that the feature space
is optimally reduced according to a certain evaluation
criterion. Feature selection has been a fertile field of
research and development since 1970’s and shown very
effective in removing irrelevant and redundant fea-
tures, increasing efficiency in learning tasks, improv-
ing learning performance like predictive accuracy, and
enhancing comprehensibility of learned results (Blum
& Langley, 1997; Dash & Liu, 1997; Kohavi & John,
1997). In recent years, data has become increasingly
larger in both rows (i.e., number of instances) and
columns (i.e., number of features) in many applica-
tions such as genome projects (Xing et al., 2001), text
categorization (Yang & Pederson, 1997), image re-
trieval (Rui et al., 1999), and customer relationship

management (Ng & Liu, 2000). This enormity may
cause serious problems to many machine learning al-
gorithms with respect to scalability and learning per-
formance. For example, high dimensional data (i.e.,
data sets with hundreds or thousands of features), can
contain high degree of irrelevant and redundant infor-
mation which may greatly degrade the performance of
learning algorithms. Therefore, feature selection be-
comes very necessary for machine learning tasks when
facing high dimensional data nowadays. However, this
trend of enormity on both size and dimensionality also
poses severe challenges to feature selection algorithms.
Some of the recent research efforts in feature selection
have been focused on these challenges from handling a
huge number of instances (Liu et al., 2002b) to deal-
ing with high dimensional data (Das, 2001; Xing et al.,
2001). This work is concerned about feature selection
for high dimensional data. In the following, we first
review models of feature selection and explain why a
filter solution is suitable for high dimensional data, and
then review some recent efforts in feature selection for
high dimensional data.

Feature selection algorithms can broadly fall into the
filter model or the wrapper model (Das, 2001; Kohavi
& John, 1997). The filter model relies on general char-
acteristics of the training data to select some features
without involving any learning algorithm, therefore it
does not inherit any bias of a learning algorithm. The
wrapper model requires one predetermined learning al-
gorithm in feature selection and uses its performance
to evaluate and determine which features are selected.
As for each new subset of features, the wrapper model
needs to learn a hypothesis (or a classifier). It tends
to give superior performance as it finds features better
suited to the predetermined learning algorithm, but it
also tends to be more computationally expensive (Lan-
gley, 1994). When the number of features becomes
very large, the filter model is usually a choice due to
its computational efficiency.
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To combine the advantages of both models, algorithms
in a hybrid model have recently been proposed to deal
with high dimensional data (Das, 2001; Ng, 1998; Xing
et al., 2001). In these algorithms, first, a goodness
measure of feature subsets based on data characteris-
tics is used to choose best subsets for a given cardinal-
ity, and then, cross validation is exploited to decide a
final best subset across different cardinalities. These
algorithms mainly focus on combining filter and wrap-
per algorithms to achieve best possible performance
with a particular learning algorithm at the same time
complexity of filter algorithms. In this work, we focus
on the filter model and aim to develop a new feature
selection algorithm which can effectively remove both
irrelevant and redundant features and is less costly in
computation than the current available algorithms.

In section 2, we review current algorithms within the
filter model and point out their problems in the context
of high dimensionality. In section 3, we describe corre-
lation measures which form the base of our method in
evaluating feature relevance and redundancy. In sec-
tion 4, we first propose our method which selects good
features for classification based on a novel concept,
predominant correlation, and then present a fast
algorithm with less than quadratic time complexity. In
section 5, we evaluate the efficiency and effectiveness
of this algorithm via extensive experiments on various
real-world data sets comparing with other representa-
tive feature selection algorithms, and discuss the im-
plications of the findings. In section 6, we conclude
our work with some possible extensions.

2. Related Work

Within the filter model, different feature selection al-
gorithms can be further categorized into two groups,
namely feature weighting algorithms and subset search
algorithms, based on whether they evaluate the good-
ness of features individually or through feature sub-
sets. Below, we discuss the advantages and shortcom-
ings of representative algorithms in each group.

Feature weighting algorithms assign weights to fea-
tures individually and rank them based on their rel-
evance to the target concept. There are a number of
different definitions on feature relevance in machine
learning literature (Blum & Langley, 1997; Kohavi &
John, 1997). A feature is good and thus will be se-
lected if its weight of relevance is greater than a thresh-
old value. A well known algorithm that relies on rele-
vance evaluation is Relief (Kira & Rendell, 1992). The
key idea of Relief is to estimate the relevance of fea-
tures according to how well their values distinguish be-
tween the instances of the same and different classes

that are near each other. Relief randomly samples a
number (m) of instances from the training set and up-
dates the relevance estimation of each feature based
on the difference between the selected instance and
the two nearest instances of the same and opposite
classes. Time complexity of Relief for a data set with
M instances and N features is O(mMN). With m be-
ing a constant, the time complexity becomes O(MN),
which makes it very scalable to data sets with both a
huge number of instances and a very high dimension-
ality. However, Relief does not help with removing
redundant features. As long as features are deemed
relevant to the class concept, they will all be selected
even though many of them are highly correlated to
each other (Kira & Rendell, 1992). Many other algo-
rithms in this group have similar problems as Relief
does. They can only capture the relevance of features
to the target concept, but cannot discover redundancy
among features. However, empirical evidence from fea-
ture selection literature shows that, along with irrele-
vant features, redundant features also affect the speed
and accuracy of learning algorithms and thus should be
eliminated as well (Hall, 2000; Kohavi & John, 1997).
Therefore, in the context of feature selection for high
dimensional data where there may exist many redun-
dant features, pure relevance-based feature weighting
algorithms do not meet the need of feature selection
very well.

Subset search algorithms search through candidate
feature subsets guided by a certain evaluation mea-
sure (Liu & Motoda, 1998) which captures the good-
ness of each subset. An optimal (or near optimal) sub-
set is selected when the search stops. Some existing
evaluation measures that have been shown effective in
removing both irrelevant and redundant features in-
clude the consistency measure (Dash et al., 2000) and
the correlation measure (Hall, 1999; Hall, 2000). Con-
sistency measure attempts to find a minimum num-
ber of features that separate classes as consistently as
the full set of features can. An inconsistency is de-
fined as two instances having the same feature values
but different class labels. In Dash et al. (2000), dif-
ferent search strategies, namely, exhaustive, heuristic,
and random search, are combined with this evalua-
tion measure to form different algorithms. The time
complexity is exponential in terms of data dimension-
ality for exhaustive search and quadratic for heuristic
search. The complexity can be linear to the number of
iterations in a random search, but experiments show
that in order to find best feature subset, the number of
iterations required is mostly at least quadratic to the
number of features (Dash et al., 2000). In Hall (2000),
a correlation measure is applied to evaluate the good-



ness of feature subsets based on the hypothesis that a
good feature subset is one that contains features highly
correlated with the class, yet uncorrelated with each
other. The underlying algorithm, named CFS, also
exploits heuristic search. Therefore, with quadratic
or higher time complexity in terms of dimensionality,
existing subset search algorithms do not have strong
scalability to deal with high dimensional data.

To overcome the problems of algorithms in both groups
and meet the demand for feature selection for high
dimensional data, we develop a novel algorithm which
can effectively identify both irrelevant and redundant
features with less time complexity than subset search
algorithms.

3. Correlation-Based Measures

In this section, we discuss how to evaluate the good-
ness of features for classification. In general, a feature
is good if it is relevant to the class concept but is not
redundant to any of the other relevant features. If we
adopt the correlation between two variables as a good-
ness measure, the above definition becomes that a fea-
ture is good if it is highly correlated with the class but
not highly correlated with any of the other features.
In other words, if the correlation between a feature
and the class is high enough to make it relevant to (or
predictive of) the class and the correlation between it
and any other relevant features does not reach a level
so that it can be predicted by any of the other relevant
features, it will be regarded as a good feature for the
classification task. In this sense, the problem of fea-
ture selection boils down to find a suitable measure of
correlations between features and a sound procedure
to select features based on this measure.

There exist broadly two approaches to measure the
correlation between two random variables. One is
based on classical linear correlation and the other is
based on information theory. Under the first approach,
the most well known measure is linear correlation co-
efficient. For a pair of variables (X, Y ), the linear
correlation coefficient r is given by the formula

r =

∑
i

(xi − xi)(yi − yi)√∑
i

(xi − xi)2
√∑

i

(yi − yi)2
(1)

where xi is the mean of X, and yi is the mean of Y .
The value of r lies between -1 and 1, inclusive. If X
and Y are completely correlated, r takes the value of
1 or -1; if X and Y are totally independent, r is zero.
It is a symmetrical measure for two variables. Other
measures in this category are basically variations of

the above formula, such as least square regression er-
ror and maximal information compression index (Mi-
tra et al., 2002). There are several benefits of choos-
ing linear correlation as a feature goodness measure
for classification. First, it helps remove features with
near zero linear correlation to the class. Second, it
helps to reduce redundancy among selected features.
It is known that if data is linearly separable in the
original representation, it is still linearly separable if
all but one of a group of linearly dependent features are
removed (Das, 1971). However, it is not safe to always
assume linear correlation between features in the real
world. Linear correlation measures may not be able
to capture correlations that are not linear in nature.
Another limitation is that the calculation requires all
features contain numerical values.

To overcome these shortcomings, in our solution we
adopt the other approach and choose a correlation
measure based on the information-theoretical concept
of entropy, a measure of the uncertainty of a random
variable. The entropy of a variable X is defined as

H(X) = −
∑

i

P (xi) log2(P (xi)), (2)

and the entropy of X after observing values of another
variable Y is defined as

H(X|Y ) = −
∑

j

P (yj)
∑

i

P (xi|yj) log2(P (xi|yj)),

(3)
where P (xi) is the prior probabilities for all values
of X, and P (xi|yi) is the posterior probabilities of X
given the values of Y . The amount by which the en-
tropy of X decreases reflects additional information
about X provided by Y and is called information
gain (Quinlan, 1993), given by

IG(X|Y ) = H(X)−H(X|Y ). (4)

According to this measure, a feature Y is regarded
more correlated to feature X than to feature Z, if
IG(X|Y ) > IG(Z|Y ). About information gain mea-
sure, we have the following theorem.

Theorem Information gain is symmetrical for two
random variables X and Y.

Proof Sketch: To prove IG(X|Y ) = IG(Y |X), we
need to prove H(X) − H(X|Y ) = H(Y ) − H(Y |X).
This can be easily derived from H(X, Y ) = H(X) +
H(Y |X) = H(Y ) + H(X|Y ). �

Symmetry is a desired property for a measure of cor-
relations between features. However, information gain
is biased in favor of features with more values. Fur-
thermore, the values have to be normalized to ensure



they are comparable and have the same affect. There-
fore, we choose symmetrical uncertainty (Press et al.,
1988), defined as follows.

SU(X, Y ) = 2
[

IG(X|Y )
H(X) + H(Y )

]
(5)

It compensates for information gain’s bias toward fea-
tures with more values and normalizes its values to the
range [0, 1] with the value 1 indicating that knowledge
of the value of either one completely predicts the value
of the other and the value 0 indicating that X and
Y are independent. In addition, it still treats a pair
of features symmetrically. These entropy-based mea-
sures require nominal features, but they can be applied
to measure correlations between continuous features
as well, if the values are discretized properly in ad-
vance (Fayyad & Irani, 1993; Liu et al., 2002a). There-
fore, we use symmetrical uncertainty in this work.

4. A Correlation-Based Filter Approach

4.1. Methodology

Using symmetrical uncertainty (SU) as the goodness
measure, we are now ready to develop a procedure to
select good features for classification based on corre-
lation analysis of features (including the class). This
involves two aspects: (1) how to decide whether a fea-
ture is relevant to the class or not; and (2) how to
decide whether such a relevant feature is redundant or
not when considering it with other relevant features.

The answer to the first question can be using a thresh-
old SU value decided by the user, as the method used
by many other feature weighting algorithms (e.g., Re-
lief). More specifically, suppose a data set S contains
N features and a class C. Let SUi,c denote the SU
value that measures the correlation between a feature
fi and the class C (named c-correlation), then a subset
S′ of relevant features can be decided by a threshold
SU value δ, such that ∀fi ∈ S′, 1 ≤ i ≤ N , SUi,c ≥ δ.

The answer to the second question is more complicated
because it may involve analysis of pairwise correlations
between all features (named f -correlation), which re-
sults in a time complexity of O(N2) associated with
the number of features N for most existing algorithms.
To solve this problem, we propose our method below.

Since f -correlations are also captured by SU values,
in order to decide whether a relevant feature is redun-
dant or not, we need to find a reasonable way to decide
the threshold level for f -correlations as well. In other
words, we need to decide whether the level of correla-
tion between two features in S′ is high enough to cause
redundancy so that one of them may be removed from

S′. For a feature fi in S′, the value of SUi,c quantifies
the extent to which fi is correlated to (or predictive
of) the class C. If we examine the value of SUj,i for
∀fj ∈ S′ (j 6= i), we will also obtain quantified es-
timations about the extent to which fi is correlated
to (or predicted by) the rest relevant features in S′.
Therefore, it is possible to identify highly correlated
features to fi in the same straightforward manner as
we decide S′, using a threshold SU value equal or sim-
ilar to δ. We can do this for all features in S′. How-
ever, this method only sounds reasonable when we try
to determine highly correlated features to one concept
while not considering another concept. In the con-
text of a set of relevant features S′ already identified
for the class concept, when we try to determine the
highly correlated features for a given feature fi within
S′, it is more reasonable to use the c-correlation level
between fi and the class concept, SUi,c, as a refer-
ence. The reason lies on the common phenomenon -
a feature that is correlated with one concept (e.g., the
class) at a certain level may also be correlated with
some other concepts (features) at the same or an even
higher level. Therefore, even the correlation between
this feature and the class concept is larger than some
threshold δ and thereof making this feature relevant to
the class concept, this correlation is by no means pre-
dominant. To be more precise, we define the concept
of predominant correlation as follows.

Definition 1 (Predominant correlation). The corre-
lation between a feature fi (fi ∈ S) and the class C is
predominant iff SUi,c ≥ δ, and ∀fj ∈ S′ (j 6= i), there
exists no fj such that SUj,i ≥ SUi,c.

If there exists such fj to a feature fi, we call it a
redundant peer to fi and use SPi to denote the set
of all redundant peers for fi. Given fi ∈ S′ and SPi

(SPi
6= ∅), we divide SPi

into two parts, SPi

+ and
SPi

−, where SPi

+ = {fj |fj ∈ SPi
, SUj,c > SUi,c} and

SPi

− = {fj |fj ∈ SPi
, SUj,c ≤ SUi,c}.

Definition 2 (Predominant feature). A feature is pre-
dominant to the class, iff its correlation to the class is
predominant or can become predominant after remov-
ing its redundant peers.

According to the above definitions, a feature is good
if it is predominant in predicting the class concept,
and feature selection for classification is a process that
identifies all predominant features to the class concept
and removes the rest. We now propose three heuristics
that together can effectively identify predominant fea-
tures and remove redundant ones among all relevant
features, without having to identify all the redundant
peers for every feature in S′, and thus avoids pairwise
analysis of f -correlations between all relevant features.



Our assumption in developing these heuristics is that
if two features are found to be redundant to each other
and one of them needs to be removed, removing the
one that is less relevant to the class concept keeps more
information to predict the class while reducing redun-
dancy in the data.

Heuristic 1 (if SPi

+ = ∅). Treat fi as a predom-
inant feature, remove all features in SPi

−, and skip
identifying redundant peers for them.

Heuristic 2 (if SPi

+ 6= ∅). Process all features in
SPi

+ before deciding whether or not to remove fi. If
none of them becomes predominant, follow Heuristic 1;
otherwise only remove fi and decide whether or not to
remove features in SPi

− based on other features in S′.

Heuristic 3 (starting point). The feature with the
largest SUi,c value is always a predominant feature and
can be a starting point to remove other features.

4.2. Algorithm and Analysis

Based on the methodology presented before, we de-
velop an algorithm, named FCBF (Fast Correlation-
Based Filter). As in Figure 1, given a data set with

input: S(f1, f2, ..., fN , C) // a training data set
δ // a predefined threshold

output: Sbest // an optimal subset

1 begin
2 for i = 1 to N do begin
3 calculate SUi,c for fi;
4 if (SUi,c ≥ δ)
5 append fi to S′

list;
6 end;
7 order S′

list in descending SUi,c value;
8 fp = getF irstElement(S′

list);
9 do begin
10 fq = getNextElement(S′

list, fp);
11 if (fq <> NULL)
12 do begin
13 f ′q = fq;
14 if (SUp,q ≥ SUq,c)
15 remove fq from S′

list;
16 fq = getNextElement(S′

list, f
′
q);

17 else fq = getNextElement(S′
list, fq);

18 end until (fq == NULL);
19 fp = getNextElement(S′

list, fp);
20 end until (fp == NULL);
21 Sbest = S′

list;
22 end;

Figure 1. FCBF Algorithm

N features and a class C, the algorithm finds a set
of predominant features Sbest for the class concept. It
consists of two major parts. In the first part (line 2-7),
it calculates the SU value for each feature, selects rele-
vant features into S′

list based on the predefined thresh-
old δ, and orders them in descending order according
to their SU values. In the second part (line 8-20),
it further processes the ordered list S′

list to remove
redundant features and only keeps predominant ones
among all the selected relevant features. According to
Heuristic 1, a feature fp that has already been deter-
mined to be a predominant feature can always be used
to filter out other features that are ranked lower than
fp and have fp as one of its redundant peers. The
iteration starts from the first element (Heuristic 3) in
S′

list (line 8) and continues as follows. For all the re-
maining features (from the one right next to fp to the
last one in S′

list), if fp happens to be a redundant peer
to a feature fq, fq will be removed from S′

list (Heuris-
tic 2). After one round of filtering features based on
fp, the algorithm will take the currently remaining fea-
ture right next to fp as the new reference (line 19) to
repeat the filtering process. The algorithm stops until
there is no more feature to be removed from S′

list.

The first part of the above algorithm has a linear time
complexity in terms of the number of features N . As
to the second part, in each iteration, using the pre-
dominant feature fp identified in the previous round,
FCBF can remove a large number of features that are
redundant peers to fp in the current iteration. The
best case could be that all of the remaining features
following fp in the ranked list will be removed; the
worst case could be none of them. On average, we
can assume that half of the remaining features will be
removed in each iteration. Therefore, the time com-
plexity for the second part is O(N log N) in terms of
N . Since the calculation of SU for a pair of features is
linear in term of the number of instances M in a data
set, the overall complexity of FCBF is O(MN log N).

5. Empirical Study

The objective of this section is to evaluate our pro-
posed algorithm in terms of speed, number of selected
features, and learning accuracy on selected features.

5.1. Experiment Setup

In our experiments, we choose three representative fea-
ture selection algorithms in comparison with FCBF.
One is a feature weighting algorithm, ReliefF (an ex-
tension to Relief) which searches for several nearest
neighbors to be robust to noise and handles multi-
ple classes (Kononenko, 1994); the other two are sub-



set search algorithms which exploit sequential forward
search and utilizes correlation measure or consistency
measure to guide the search, denoted as CorrSF and
ConsSF respectively. CorrSF is a variation of the
CFS algorithm mentioned in section 2. The reason
why we prefer CorrSF to CFS is because both ex-
periments in Hall (1999) and our initial experiments
show that CFS only produces slightly better results
than CorrSF, but CorrSF based on sequential forward
search runs faster than CFS based on best first search
with 5 nodes expansion and therefore is more suitable
for high dimensional data. In addition to feature se-
lection algorithms, we also select two different learning
algorithms, C4.5 (Quinlan, 1993) and NBC (Witten &
Frank, 2000), to evaluate the accuracy on selected fea-
tures for each feature selection algorithm.

Table 1. Summary of bench-mark data sets.

Title Features Instances Classes

Lung-cancer 57 32 3
Promoters 59 106 2
Splice 62 3190 3
USCensus90 68 9338 3
CoIL2000 86 5822 2
Chemical 151 936 3
Musk2 169 6598 2
Arrhythmia 280 452 16
Isolet 618 1560 26
Multi-features 650 2000 10

The experiments are conducted using Weka’s imple-
mentation of all these algorithms and FCBF is also
implemented in Weka environment (Witten & Frank,
2000). All together 10 data sets are selected from
the UCI Machine Learning Repository (Blake & Merz,
1998) and UCI KDD Archive (Bay, 1999). A summary
of data sets is presented in Table 1.

For each data set, we run all four feature selection
algorithms, FCBF, ReliefF, CorrSF, ConsSF, respec-
tively, and record the running time and the number
of selected features for each algorithm. We then ap-
ply C4.5 and NBC on the original data set as well as
each newly obtained data set containing only the se-
lected features from each algorithm and record overall
accuracy by 10-fold cross-validation.

5.2. Results and Discussions

Table 2 records the running time and the number of
selected features for each feature selection algorithm.
For ReliefF, the parameter k is set to 5 (neighbors) and
m is set to 30 (instances) throughout the experiments.

From Table 2, we can observe that for each algorithm
the running times over different data sets are consis-
tent with our previous time complexity analysis. From
the averaged values in the last row of Table 2, it is clear
that FCBF runs significantly faster (in degrees) than
the other three algorithms, which verifies FCBF’s su-
perior computational efficiency. What is interesting
is that ReliefF is unexpectedly slow even though its
time complexity becomes O(MN) with a fixed sample
size m. The reason lies on that searching for nearest
neighbors involves distance calculation which is more
time consuming than the calculation of symmetrical
uncertainty value.

From Table 2, it is also clear that FCBF achieves the
highest level of dimensionality reduction by selecting
the least number of features (with only one exception
in USCensus90), which is consistent with our theoret-
ical analysis about FCBF’s ability to identify redun-
dant features.

Tables 3 and 4 show the learning accuracy of C4.5 and
NBC respectively on different feature sets. From the
averaged accuracy over all data sets, we observe that,
in general, (1) FCBF improves the accuracy of both
C4.5 and NBC; and (2) of the other three algorithms,
only CorrSF can enhance the accuracy of C4.5 to the
same level as FCBF does. From individual accuracy
values, we also observe that for most of the data sets,
FCBF can maintain or even increase the accuracy.

The above experimental results suggest that FCBF is
practical for feature selection for classification of high
dimensional data. It can efficiently achieve high degree
of dimensionality reduction and enhance classification
accuracy with predominant features.

6. Conclusions

In this paper, we propose a novel concept of predomi-
nant correlation, introduce an efficient way of analyz-
ing feature redundancy, and design a fast correlation-
based filter approach. A new feature selection algo-
rithm FCBF is implemented and evaluated through
extensive experiments comparing with related feature
selection algorithms. The feature selection results are
further verified by applying two different classification
algorithms to data with and without feature selec-
tion. Our approach demonstrates its efficiency and
effectiveness in dealing with high dimensional data for
classification. Our further work will extend FCBF to
work on data with higher dimensionality (thousands
of features). We will study in more detail redun-
dant features and their role in classification, and com-
bine FCBF with feature discretization algorithms to
smoothly handle data of different feature types.



Table 2. Running time (in ms) and number of selected features for each feature selection algorithm.

Title Running Time # Selected Features

FCBF CorrSF ReliefF ConsSF FCBF CorrSF ReliefF ConsSF

Lung-cancer 20 50 50 110 5 8 5 4
Promoters 20 50 100 190 4 4 4 4
Splice 200 961 2343 34920 6 6 11 10
USCensus90 541 932 7601 161121 2 1 2 13
CoIL2000 470 3756 7751 341231 3 10 12 29
Chemical 121 450 2234 14000 4 7 7 11
Musk2 971 8903 18066 175453 2 10 2 11
Arrhythmia 151 2002 2233 31235 6 25 25 24
Isolet 3174 177986 17025 203973 23 137 23 11
Multi-Features 4286 125190 21711 133932 14 87 14 7

Average 995 32028 7911 109617 7 30 11 12

Table 3. Accuracy of C4.5 on selected features for each feature selection algorithm.

Title Full Set FCBF CorrSF ReliefF ConsSF

Lung-cancer 80.83 ±22.92 87.50 ±16.32 84.17 ±16.87 80.83 ±22.92 84.17 ±16.87
Promoters 86.91 ±6.45 87.73 ±6.55 87.73 ±6.55 89.64 ±5.47 84.00 ±6.15
Splice 94.14 ±1.57 93.48 ±2.20 93.48 ±2.20 89.25 ±1.94 93.92 ±1.53
USCensus90 98.27 ±0.19 98.08 ±0.22 97.95 ±0.15 98.08 ±0.22 98.22 ±0.30
CoIL2000 93.97 ±0.21 94.02 ±0.07 94.02 ±0.07 94.02 ±0.07 93.99 ±0.20
Chemical 94.65 ±2.03 95.51 ±2.31 96.47 ±2.15 93.48 ±1.79 95.72 ±2.09
Musk2 96.79 ±0.81 91.33 ±0.51 95.56 ±0.73 94.62 ±0.92 95.38 ±0.75
Arrhythmia 67.25 ±3.68 72.79 ±6.30 68.58 ±7.41 65.90 ±8.23 67.48 ±4.49
Isolet 79.10 ±2.79 75.77 ±4.07 80.70 ±4.94 52.44 ±3.61 69.23 ±4.53
Multi-Features 94.30 ±1.49 95.06 ±0.86 94.95 ±0.96 80.45 ±2.41 90.80 ±1.75

Average 88.62 ±9.99 89.13 ±8.52 89.36 ±9.24 83.87 ±14.56 87.29 ±11.04
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