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Abstract Historically, anatomical CT and MR images were
used to delineate the gross tumour volumes (GTVs) for
radiotherapy treatment planning. The capabilities offered by
modern radiation therapy units and the widespread avail-
ability of combined PET/CT scanners stimulated the
development of biological PET imaging-guided radiation
therapy treatment planning with the aim to produce highly
conformal radiation dose distribution to the tumour. One of
the most difficult issues facing PET-based treatment
planning is the accurate delineation of target regions from
typical blurred and noisy functional images. The major
problems encountered are image segmentation and imper-
fect system response function. Image segmentation is
defined as the process of classifying the voxels of an image
into a set of distinct classes. The difficulty in PET image
segmentation is compounded by the low spatial resolution
and high noise characteristics of PET images. Despite the
difficulties and known limitations, several image segmen-
tation approaches have been proposed and used in the
clinical setting including thresholding, edge detection,
region growing, clustering, stochastic models, deformable
models, classifiers and several other approaches. A detailed
description of the various approaches proposed in the

literature is reviewed. Moreover, we also briefly discuss
some important considerations and limitations of the widely
used techniques to guide practitioners in the field of
radiation oncology. The strategies followed for validation
and comparative assessment of various PET segmentation
approaches are described. Future opportunities and the
current challenges facing the adoption of PET-guided
delineation of target volumes and its role in basic and
clinical research are also addressed.
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Introduction

The foundation of molecular imaging-guided radiation
therapy (MIGRT) lies in the use of advanced multimodality
imaging technology for improved delineation of tumour
target volumes, thus relating the absorbed dose information
to image-based patient representations. This was made
possible by the introduction and clinical acceptance of dual-
modality single photon emission computed tomography
(SPECT)/computed tomography (CT) and positron eEmis-
sion tomography (PET)/CT systems in the clinical setting in
the late 1990s which has revolutionized the practice of
diagnostic imaging [1, 2]. Combined PET/CT systems have
been operational for almost a decade since their commercial
introduction. The complementarity between the intrinsically
aligned anatomical (CT) and functional or metabolic (PET)
information provided in a “one-stop shop” and the
opportunity to reduce scanning time through the use of
CT images for attenuation correction of the PET data
contributed to the success of this technology and its wide
adoption by the medical imaging community.
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On the other hand, radiation therapy has gone through a
series of revolutions in the last century [3] advocating today
the opportunity to generate highly conformal radiation dose
distributions through the use of advanced techniques such
as intensity-modulated radiation therapy (IMRT) using
tomotherapy [4] and volumetric-modulated arc therapy [5]
and many other techniques including CyberKnife, heavy
ion therapy [6] and many other radiation therapy devices
for dose conformity. The improved dose conformity and
steep dose gradients have necessitated enhanced patient
localization and beam targeting techniques for radiotherapy
treatments.

The most critical component of radiation therapy
treatment planning is the delineation of the gross tumour
volume (GTV) [7]. Historically, anatomical cross-sectional
images (mainly CT and in some instances MR) are used to
delineate the treatment volumes [8, 9], and radiation
treatment beams are planned to completely cover the
treatment volume with the aim to deliver a uniform dose
distribution to it. CT can provide useful anatomical
information and the electronic density required for dosim-
etry calculations for radiation therapy treatment planning.
However, it has poor soft tissue contrast, which might be
insufficient for target and critical organ delineation. MRI
provides different signatures of the human body and
presents better soft tissue contrast compared to CT. Many
investigators reported significant differences in terms of
target volume delineation when using MRI compared to CT
[10, 11]. It has been argued that coregistered CT/MRI data
can be used with confidence for accurate delineation of
target volumes and critical organs (using MRI) and dose
computation (using CT). However, MRI suffers from
spatial distortions, intensity inhomogeneity and does not
provide electronic tissue density information required for
dose calculation in radiation therapy. Moreover, the criteria
followed to delineate the GTV are not standardized leading
to high inter- and intra-observer variability [12].

The above-discussed limitations together with the en-
hanced capabilities offered by advanced treatment units to
deliver nonuniform dose patterns by design stimulated the
emergence of the biological target volume (BTV) concept
[13] made possible by the commercial availability of
multimodality molecular imaging platforms [14]. It has
therefore been argued that molecular PET/CT imaging may
be of additional value and even allow a more correct
delineation of the BTV [15–20]. The most interesting
aspect related to the use of PET for BTV delineation is
mainly the depiction of functional or metabolic rather than
morphological information provided by CT or MRI.
However, the application of PET for this purpose is not
trivial and has many drawbacks. Among the concerns
associated with PET-guided radiation therapy treatment
planning is the complexity of the procedures that need to be

developed for accurate delineation of target regions from
typical blurred and noisy functional images suffering from
many instrumentation- and physics-related factors [16, 21].
The most important challenges are image segmentation and
imperfect system response function. Image segmentation is
defined as the process of classifying the voxels of an image
into a set of distinct classes. Medical image segmentation
has been identified as the key problem of medical image
analysis and remains a popular and challenging area of
research [22–25]. The difficulty in PET image segmentation
is compounded by the low spatial resolution and high noise
characteristics of PET images. Despite the difficulties and
known limitations, several image segmentation approaches
have been proposed and used in the clinical setting
including thresholding, region growing, classifiers, clus-
tering, edge detection, Markov random field models,
deformable models and many other approaches [26–29].
The number of scientific contributions related to this
subject has been increasing steadily, which motivated the
writing of this survey as a snapshot of the dynamically
changing field of PET image segmentation. A detailed
description of the various approaches proposed in the
literature is given. We also briefly discuss some important
considerations and limitations of widely used techniques.
The strategies followed for validation and comparative
assessment of various PET segmentation approaches are
outlined. Future opportunities and the challenges facing
the adoption of PET-guided delineation of target volumes
and its role in basic and clinical research will also be
addressed.

Molecular PET/CT imaging-guided radiation therapy
treatment planning

Early attempts to use nuclear medicine imaging and
particularly PET for radiation therapy treatment planning
date back to the late 1990s [30–37]. An important
contribution came from Ling et al. [13] who established
the concept of “biological imaging” and moved forward the
role of PET in radiation therapy thus allowing it to enter the
clinical arena. Since that time, the technical aspects of PET/
CT-guided radiation therapy have been described more
thoroughly in the scientific literature [15, 21, 38–45]. The
success of these initial studies prompted significant interest
from the major medical imaging equipment manufacturers
who now all have introduced commercial PET/CT scanners
equipped with the required accessories (flat couch insert,
positioning system, respiratory gating, ...) and software
tools (e.g. virtual simulation, visualization and segmenta-
tion tools, support of DICOM RT object definition, ...) for
clinical use. The typical workflow for PET/CT-guided
radiation therapy treatment planning usually involves (with
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few exceptions) strong collaboration between two clinical
departments (nuclear medicine and radiation oncology) [21,
46]. With the growing availability of large bore dual-
modality PET/CT scanners of the last generation equipped
with fixed radiation therapy positioning laser systems in the
scanner room, a “one-stop shop” providing diagnostic PET/
CT and radiation therapy planning CT scan in only one
session has become possible. It should however be noted
that the 80-cm bore required for stereotactic body radio-
therapy planning and to accommodate various other
positioning aids is available only from one scanner
manufacturer at the present time.

The main motivation stimulating the use of PET/CT in
radiation therapy is the efficacy of 18F-fluorodeoxyglucose
(FDG) PET imaging in a wide variety of malignant tumours
with sensitivities, specificities and accuracy often in the
high 90th percentile range [47]. In that sense, it might
provide superior visualization compared to CT simulation,
which in some cases might miss some areas that light up on
the PET study including the detection of distant metastases,
or shed light on the actual lesion volume, which might in
reality be smaller on the PET study than on the CT alone.
Moreover, discrepancies between anatomical (CT/MRI) and
metabolic (PET) findings are very often reported in the
literature where the addition of PET significantly impacted
patient management and changed the treatment plans in 25–
50% of the cases [16, 20, 27, 38, 39, 48–53]. Last and not
least, inter- and intra-observer variability was considerably
reduced when PET information was available for target
volume delineation [54–58]. Both state-of-the-art FDG PET
and novel PET probes’ applications in the process of
radiation therapy treatment planning can be found elsewhere
[21, 44, 45, 59] and are beyond the scope of this review,
which is solely focused on FDG PET.

Current indications for 18F-FDG PET/CT-guided radi-
ation therapy treatment planning fall under two classes:
established and experimental. Well-established indications
include head and neck cancer, lung cancer, gynaecological
and oesophageal cancer whereas experimental indications
comprise colorectal cancer, breast cancer, lymphoma and
malignant melanoma and many other malignancies.

A technical discussion of issues related to margin set-up
and link between GTV, clinical treatment volume (CTV),
planning treatment volume (PTV) and the BTV is beyond
the scope of this review. Interested readers could consult the
International Commission on Radiation Units and Measure-
ments (ICRU) report defining the relationship between the
above-mentioned quantities for use with conventional
imaging modalities [7] and updates by other groups
following incorporation of PET information [13, 52]. We
emphasize that the discussed PET image segmentation
algorithms tend to capture the BTV while CTV margins are
related to micro-disease extensions. Moreover, due to the

varying biodistribution and contrast of the various probes
(see “Challenges and future directions”), different segmen-
tation methods might have to be used in the era of
multitracer multimodality imaging [60].

Among the many physical degrading factors impacting
image quality and quantitative accuracy, partial volume
effect is recognized as one of the most important factors
impacting tumour imaging [61]. Owing to the limited
spatial resolution of clinical PET systems, the resulting
images will be blurred by the system response and as a
consequence smaller lesions will appear larger. Although
the total number of counts is preserved, they are distributed
over a larger volume. Partial volume is usually addressed in
the context of “small” objects, i.e. with dimensions smaller
than around 2–3 times the full-width at half-maximum of
the scanner’s point spread function [62]. Several techniques
and corrective measures have been developed to address
this problem in the context of molecular PET imaging
which operate either directly on reconstructed images or are
incorporated within the image reconstruction framework
with many of them relying on an adjunct coregistered
anatomical image (CT or MRI). It should be noted that their
availability and implementation in clinical packages for use
in the clinical setting are still lacking. Respiratory motion is
another challenging issue for lesions located in the thorax
and upper abdomen that has been addressed in many
different ways [63, 64]. The most successful approaches
attempt to overcome the limitations of the traditional
approach, which allows obtaining individually reconstructed
noisy images through respiratory gating by incorporating
motion estimation and correction within the image recon-
struction process to obtain images of enhanced quality
[65–70].

Survey of PET image segmentation techniques

Over the past few years, several methods have been
proposed for target volume definition in radiotherapy
treatment planning based on incorporating PET physiolog-
ical information. In particular, FDG PET, a glucose
analogue, is currently used in many cancer centres around
the world to improve BTV definition, which is traditionally
identified on CT simulation images in radiotherapy clinical
routine. Accurate volume definition is particularly impor-
tant in radiotherapy because it constitutes the target of the
radiation beam; under-dosing of tumour may lead to
recurrence while over-dosing of surrounding normal tissues
might lead to severe and possibly lethal side effects to the
patient such as brain or lung injury [71]. There are several
ways to categorize PET segmentation approaches such as
the cancer site, the injected radiotracer or the image
processing technique. It is noted that there could be
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differences and overlaps between the sites, the tracers or the
techniques. Nevertheless, in this survey, we find that it
would be pedagogically convenient to categorize PET
segmentation based on the techniques used and refer to
differences in sites or tracer-specific variations as appropriate.
There is a plethora of segmentation methods that could be
applied to nuclear medicine imaging, particularly in
cardiovascular imaging; the interested reader is referred
to [24]. According to our literature survey of existing
methods, we identified four broad categories of PET
segmentation methodologies: (1) image thresholding methods,
(2) variational approaches, (3) learning methods and
(4) stochastic modelling-based techniques. The main charac-
teristics and limitations of these categories are summarized in
Table 1.

Thresholding methods

This is by far the most widely used PET segmentation
approach in clinical practice for BTV delineation for
radiotherapy planning. The only competing approach with
thresholding is possibly visual interpretation of PET scans
and identification of lesion boundary by consensus reading
of an experienced nuclear medicine physician and radiation
oncologist [33]. However, visual inspection is susceptible
to the window level settings and suffers from inter-observer
variability (Fig. 1). Therefore, several segmentation meth-
ods based on thresholding have emerged to reduce this
subjectivity. In the thresholding approach, a threshold value
(T) is selected to make a hard decision of separating the
lesion foreground from the noise background within the

whole image or a selected region of interest (ROI) within
the image I(x), thus:

Lesion ¼ T I xð Þ½ � ¼ 1; I xð Þ � T
0; I xð Þ < T

�
ð1Þ

where I is the intensity image and x is the spatial coordinate
(x, y, z). Various methods have been proposed in the
literature to determine the “optimal” threshold value [72–
75]. However, almost uniformly across all PET thresh-
olding applications, the PET image voxels are converted
into standardized uptake values (SUVs) prior to threshold
selection. SUV is a decay-corrected measurement of
activity per unit mass of tissue adjusted for administered
activity per unit of body weight [76]:

SUV ¼ Mean ROI concentration MBq=gð Þ
Injected dose MBqð Þ=Body weightðgÞ �

1

decay factor

ð2Þ

Several technical and patient-related factors can affect the
reliability of SUV [77]. These include but are not limited to
(1) time interval between injection and PET scanning, (2)
degree of infiltration of administered tracer at the site of
injection, (3) the often neglected residual activity in the
syringe, (4) correction for radioactive decay of the injected
tracer and (5) partial volume effects due to limited spatial
resolution of the PET scanner [78, 79]. The interested
reader is referred to Table 1 in both above-referenced
reviews.

Table 1 Summary of main pros/cons of the various categories of PET image segmentation techniques

Category Characteristics Limitations

Manual
techniques

Visual interpretation and manual delineation of contours.
Very simple to use. Tools to transfer RT objects to
treatment planning systems available from most vendors

Time consuming. Susceptibility to window level settings.
Suffer from intra- and inter-observer variability. Consensus
reading by nuclear medicine physician and radiation
oncologist hardly practical in busy clinical departments

Thresholding
techniques

Most frequently used due to their simple implementation
and high efficiency

Hard decision making. Too sensitive to PVE, tumour
heterogeneity and motion artefacts. Some methods focus on
volume, others focus on intensity differences. Combination
of both seems to provide best results [95]

Variational
approaches

Subpixel accuracy, boundary continuity and relatively
efficient. They are mathematically well developed and
allow for incorporation of priors such as shape

Sensitive to image noise. As a PDE, stability and convergence
could be subject to numerical fluctuations, especially if the
parameters are not properly selected

Learning
methods

Utilize pattern recognition power. Two main types:
supervised (classification) and unsupervised
(clustering)

Computational complexity especially in supervised methods,
which require time-consuming training. Feature selection
besides commonly used intensity is a flexibility but can also be
a challenge

Stochastic
models

Exploit statistical differences between tumour uptake
and surrounding tissues. Most natural to deal with the
noisy nature of PET

Effect of initialization and convergence to local optimal
solutions are concerns, especially when compromises are made
to improve efficiency
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Among the earliest thresholding methods used is thresh-
olding by percentage of 40–50% of the maximum SUV
based on phantom studies of stationary spheres with FDG
[80]. Subsequently, a value of 40% was adopted by several
groups for BTV delineation of non-small cell lung cancer
(NSCLC) [48], cervical cancer [81] and head and neck
cancer (HNC) [40], for instance. However, later studies
have shown that the optimal fraction selection for accurate
quantification is dependent on the tumour volume [82, 83].
Furthermore, Biehl et al. have shown a logarithmic
relationship between the tumour volume and the optimal
selected threshold using manually delineated CT simulation
data as gold standard in a cohort of NSCLC patients
(Fig. 2):

%Threshold ¼ 59:1� 18:5� log 10 tumour volumeð Þ ð3Þ

This inverse relationship between threshold and volume
confirms the observations seen in phantom studies [84, 85].
An alternative method based on the absolute 2.5 SUV
isocontour was proposed by Paulino et al. [86]. Proponents
of this threshold argue that this is a value that distinguishes
between benign and malignant tumours. However, tumour
inhomogeneity and motion artefacts may hinder the
application of this approach. The choice of an empirical
SUV threshold-based cut-off to differentiate malignant
lesions is controversial and an isocontour of a 2.5 SUV
has been shown to fail to provide successful delineation in a
large number of cases (45% for FDG PET [87] and 78% for
FET PET [88]), particularly when using tracers presenting
with low uptake in the target. Among the problems

associated with the use of fixed thresholding techniques is
that they do not take the background into consideration. In
addition, the threshold required for accurate edge location is
a function of the source size. Inhomogeneity of tumours is a
further confounding factor for the optimal percentage
thresholding [89]. In order to avoid the controversies
associated with fixed thresholds, some authors suggested
adapting the threshold value to the signal to background
ratio (SBR) [90, 91]. This technique requires calibration
data that are applicable for quantification of tumour
volumes in clinical oncology. This is usually carried out using
a body phantom consisting of an elliptical water-filled cavity

Fig. 1 Illustration of the
operator dependence of manual
delineation of the contours on
the window level settings (SUV
thresholding) used for display of
PET images. The images show a
representative slice of a NSCLC
patient. a Anatomical CT image.
b Fused PET/CT image and
example PET images displayed
using two different percentages
of the maximum threshold
(SUVmax) (c, d). Note the
differences in the maximum
diameters estimated on the
horizontal axis of the transaxial
images: 5.36 cm on the CT (a)
vs 3.47 and 5.48 cm on the two
PET images displayed using
different window level settings
(c, d)

Fig. 2 Optimal percentage maximum SUV threshold selection in
NSCLC. Reprinted with permission from [82]

Eur J Nucl Med Mol Imaging



with spherical inserts suspended by plastic rods of various
inner diameters filled with activity concentrations in the range
of SBR observed in clinical conditions to derive the
parameters required for implementation of the adaptive
thresholding algorithm based on SBR estimates. The mea-
sured SBR and the resultant threshold are then fitted using an
inverse function Threshold ¼ aþ b� 1=SBRð Þ to yield the
best regression parameters for the equation which allows
estimation of the optimal threshold independent of any a
priori knowledge of the lesion characteristics and tumour
location.

Black et al. proposed using the following function to
define the optimal threshold [90]:

Threshold ¼ 0:307�mean � target � SUVþ 0:588ð Þ ð4Þ

According to this function, the threshold value is dependent
on the mean target SUV and is not related to the
background concentration or the target volume. This is in
contrast to the multivariate analysis results by Brambilla et
al. [92] and the discussion above. A different function that
depends on each slice-specific image contrast defined as
the difference between maximum voxel intensity within the
target (ITmax) and effective mean voxel intensity of the
background region (IBmean) was also reported by Drever et
al. [93]:

Threshold ¼ Contrast level � ITmax � IBmeanð Þ þ IBmeanð Þ
ð5Þ

Nestle et al. [94] used the following formulation:

Threshold ¼ b Imean þ Ibkg ð6Þ
where β=0.15, Imean is computed as the mean intensity of
all pixels surrounded by the 70% Imax isocontour within the
tumour and Ibkg is the mean intensity in a neighbouring
organ sufficiently far from the target and having the highest
tracer uptake. The above formulation was slightly revised
more recently and optimized using specially designed
phantoms containing spheres of different diameters [95]:

Threshold ¼ a� SUVmean 70%ð Þ þ b� BKG
� �

=SUVmax

ð7Þ

where a and b are sphere size and PET scanner-dependent
parameters reported in this paper as a=b=0.50 for large
spheres (diameter ≥3 cm) and with a=0.67 and b=0.60 for
small spheres (diameter <3 cm) for the ECAT ART system
(Siemens Medical Solutions, Knoxville, TN, USA). An
iterative thresholding scheme to the SBR approach was

introduced by Jentzen et al. [96], in which the authors
suggested the following initialization:

%Threshold ¼ 7:8%=V mlð Þ þ 61:7%� B=S þ 31:6%

ð8Þ
An alternative iterative technique based on a mathematical

fit derived from Monte Carlo simulation studies to estimate
the thresholds uses the following formulation [97]:

%Threshold ¼ a0 þ exp aþ b=Vð Þþc log V½ � ð9Þ

where the parameters resulting from the least-squares fit
describing the correlation between the lesion volume (V) and
the corresponding optimum threshold are a0=5, a=3.568,
b=0.197 and c=−0.1069.

Despite their limitations, thresholding approaches have
an intuitive basis that the other methods lack. Specific
review of thresholding applications for target definition in
HNC could be found in [87, 98] and for NSCLC in [94].

Variational approaches

These methods attempt to exploit information provided by
intensity variation (gradient differences between the fore-
ground lesion and the background) for the segmentation
task. Several methods fall under this category [99–101].
This includes simple edge or ridge detectors such as the
Sobel operator and the Watershed transform (WT) evaluated
in [102]. However, their results did not show improvements
compared with thresholding methods. This is in contrast with
the results obtained by Geets et al. [103], in which the WT
was applied in conjunction with cluster analysis on pre-
processed images using a bilateral denoising filter and a
Landweber’s deblurring filter with a Gaussian kernel. This
pre-processing reduced the known sensitivity of the WT to
noise amplitude in PET images.

More recently, there has been more focus on applying
deformable active contour models to PET segmentation
[104–106]. These models are geometric representations for
curves (in 2D) or surfaces (in 3D) and are defined explicitly
or implicitly in the imaging domain. The active models
move (deform) under the influence of so-called internal
force-like equations, which represent the curve or the
surface bending characteristics, or so-called external forces,
which are computed from the image data, typically as
directional gradients [107, 108]. The idea is that contours
are characterized by sharp variations in the image intensity.
Hence, the objective is to match deformed and reference
contours by means of energy minimization (or dynamic
force equilibrium). Mathematically, if the deformable
contour/surface is represented by CðsÞ ¼ xðsÞ; yðsÞ;f
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zðsÞg; s 2 0; 1½ �, then its movement is governed by the
following function:

J CðtÞð Þ ¼
Z1

0

aðsÞ @C s; tð Þ
@s

����
����
2

þbðsÞ @2C s; tð Þ
@s2

����
����
2

dsþg
Z1

0

P C s; tð Þð Þds

ð10Þ

where the first term corresponds to internal energy and
controls the tension and rigidity of the contour.1 The second
term corresponds to the external energy, where P represents
the potential energy given as g(|∇I|), and g is selected to be
a monotonically decreasing function of the image intensity
(I) gradient. Using calculus of variation techniques, the
solution to Eq. 10 is obtained by solving the associated
Euler-Lagrange partial differential equation (PDE). This
type of parametric active contours is known in the literature
as “snakes” [109–111]. In order to improve the capture
range of the snake-based algorithms, Xu and Prince
proposed the gradient vector flow (GVF) snake [112]. This
is achieved by replacing the external forces component
(rP) by GVF, which is computed as a diffusion of the
gradient vectors in the image. Hsu et al. applied this
concept to segment liver PET images. However, in their
approach they estimated the external forces by solving a
Poisson PDE instead and the algorithm was initialized by a
Canny edge detection method [105]. To further overcome
the limitations encountered in the snake-based parametric
deformable models such as initialization requirement and
topological adaptation (splitting or merging of model parts
as encountered in necrotic tumours), a family of geometric
deformable models known as the level set methods were
developed [113]. These techniques are based on using the
geometric concept of evolving level sets by solving
iteratively the following evolutionary PDE:

@f
@t

¼ V ðkÞ rfj j ð11Þ

where f is an implicit function (e.g. a signed distance) that
represents the evolving level set, where at the contour
f(C) = 0. V is a velocity function proportional to the
curvature and inversely proportional to the image gradient.
The algorithm starts by some initial contour, then the curve
evolves under the influence of the internal (contour
curvature) and external forces (image gradient) until it
reaches the boundary of the object where balance between
the internal and the external forces is achieved as governed
by the solution of Eq. 11. Efficient solutions are developed

by using the marching method [107]. This method was
applied to segmentation of PET images in NSCLC [104]
and HNC [106]. El Naqa et al. [104] applied an iterative
deblurring algorithm while Li et al. [106] used RG as pre-
processing steps to improve the active contour robustness.
Sample results illustrating application of the level set
approach are shown in Fig. 3.

Learning methods

These are techniques developed in pattern recognition to
estimate dependencies from data [114]. In the case of lesion
segmentation in PET, the learning task becomes to
discriminate uptakes in the lesion voxels from surrounding
normal tissue voxels based on a set of extracted features
from these images. There are two common types of
statistical learning: supervised and unsupervised [114,
115]. Supervised learning is used to estimate an unknown
(input, output) mapping from known labelled samples
called the training set (e.g. classification of lesions given
a certain number of example images). In unsupervised
learning, only input samples are given to the learning
system (e.g. clustering or dimensionality reduction).

Commonly used classifiers include k-nearest neighbour
(KNN), artificial neural network (ANN) and support vector
machine (SVM). These methods have seen limited appli-
cation in PET; however, they are widely applied in
segmentation of anatomical MR images [116–118] and
X-ray images [119]. This is partly due to the high
heterogeneity of PET images that complicates the identifi-
cation of proper stable patterns for training purposes from a
finite number of observations [89]. On the other hand,
clustering methods have shown more promise for PET
segmentation of tumours [89, 120–123] in addition to many
other applications in nuclear medicine [124, 125]. There are
several clustering methods in the literature [126, 127].
Among the frequently used ones are the k-means algorithm,
the fuzzy C-means (FCM) algorithm and the expectation
maximization (EM) algorithm. The k-means is the most
widely used due to its simplicity. The algorithm is first
initialized to K-initial cluster centres, which are selected
either manually or randomly. Then, the cluster member-
ships are updated iteratively by applying a hard decision
distance metric (e.g. Euclidean distance). This is achieved
by minimizing the following objective function:

J x; cð Þ ¼
XN
i¼1

XK
k¼1

xi � ckk k
2

ð12Þ

where N is the number of voxels, K is the number of tissue
classes, xi is a feature vector at the ith location and c is the
kth class cluster centre. However, such a technique is quite

1 The first-order derivative suppresses stretching and makes the
contour behave like an elastic string. The second-order derivative
suppresses bending and makes the model behave like a rigid rod.
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sensitive to initial cluster selection and is not robust to
noise and spatial inhomogeneities. Several modifications
have been proposed in the literature to alleviate these
problems. One approach is to replace the hard decision
approach in the k-means by a soft decision approach by
applying the fuzzy set theory [128]. The algorithm proceeds
in a similar fashion to k-means, but a voxel would belong
to more than one class, and cluster association is built in the
algorithm by using fuzzy membership functions [129, 130].
The membership function represents the amount of sto-
chastic overlap “fuzziness” between the tumour region and
surrounding regions. In the FCM case, the fuzzy member
function at any iteration n is given by:

uðnÞik ¼
xi � cðnÞk

��� ����2

PK
k¼1 xi � cðnÞk

��� ����2 ð13Þ

and the update for cluster centres is:

c nþ1ð Þ
k ¼

PN
i¼1 uðnÞik

� �b
xi

PN
i¼1 uðnÞik

� �b ð14Þ

where xi again is the feature vector at the ith location, cðnÞk is
the kth centroid at the nth iteration and b is an exponent >1.
A variation of this method was applied in [124], in which
the algorithm starts with an oversized number of clusters to
avoid misidentification of conflicting regions. Then, this is

followed by a merging process to reach the desired or
natural number of clusters according to a priori anatomical
knowledge. Similar clustering techniques were also used
for unsupervised lesion segmentation operating on dynamic
PET images based on time-activity curve (TAC) shape
differences between malignant and healthy tissues [131].
For lesion segmentation, the TAC slope values were k-means
clustered into two clusters.

To overcome the above-described limitations of the FCM
algorithm, a new fuzzy segmentation technique based on the
standard FCM algorithm and adapted to typical oncological
PET data was proposed by Belhassen and Zaidi [123]. PET
images are first smoothed using a nonlinear anisotropic
diffusion filter [132] and are then added as a second input to
the proposed FCM algorithm to conduct the objective
function optimization with knowledge about spatial con-
straint, thus incorporating spatial information (FCM-S). In
addition, a methodology was developed to integrate the à trous
wavelet transform [133] into the standard FCM algorithm
(FCM-SW) to allow handling of heterogeneous lesions’
uptake. This is achieved by adding a regularization term to
the FCM objective function using the transformation result
of the PET image by the à trous wavelet transform with the
aim to incorporate information about lesion heterogeneity.

Stochastic modelling

Methods belonging to this category aim to exploit the
statistical differences in intensity distribution between

Fig. 3 a Fused PET/CT with a
necrotic lesion area magnified
before and after deblurring. b
Auto-segmentation using level
set method. Left initial contour,
middle evolved contour after 40
iterations and right the estimated
contour (red). The algorithm
converged in 100 iterations
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tumour PET uptake and its tissue surroundings. Aristopha-
nous et al. proposed a Gaussian mixture model (GMM) for
segmenting NSCLC PET images. In this approach, it was
assumed that the image intensities are independent and
identically distributed with a Gaussian probability density
function that could be divided into three regions: back-
ground, the uncertain and the target regions [134]. Hence,
the likelihood function is written as:

L p;m; sð Þ ¼
YN
i¼1

f xi=p;m; sð Þ ¼
YN
i¼1

XK
k¼1

pkffiffiffiffiffiffiffiffiffiffi
2ps2

k

q e
� xi�mkð Þ2

2s2
k

ð15Þ

where N is the number of voxels, K is the number of
classes, p are the mixing parameters and μ, σ are the
Gaussian parameters. The maximum likelihood estimates of
the unknown parameters are obtained using the EM
algorithm and the probability of voxel xi belonging to class
k is given by:

pik ¼ pk fk xi=mk ; skð Þ
PK
m¼1

pmfm xi=mm; smð Þ
ð16Þ

It should be noted that EM is a general approach for
maximum likelihood estimation. The most widely used
approach for image segmentation uses a two-step EM
algorithm where the E-step is dedicated to the computation
of the probabilities and the M-step estimates the cluster
parameters assuming that the intensity distribution of each
class may not be Gaussian and assigns belonging probabil-
ities according to non-Gaussian distributions, e.g. [135,
136].

On the other hand, the spatial independence assumption
could be relaxed by using hidden Markov models [133,
137]:

pik ¼ exp �H g xið Þð ; kð Þ
PK
m¼1

exp �H g xið Þð ;mð Þ
ð17Þ

where H is a Gibbs potential function and g is a
neighbourhood partition (clique). Hatt et al. utilized a fuzzy
membership of the voxels [138] into the Markov chain
model in their implementation [137] referred to as FHMC,
whereas Montgomery et al. used a multiscale decomposi-
tion based on the wavelet transform to improve perfor-
mance [133]. More recently, Hatt et al. modified their
FHMC algorithm into fuzzy locally adaptive Bayesian
(FLAB) to improve segmentation of small objects [89].
This Bayesian approach uses adaptive estimation of priors
using a family of distributions from the Pearson’s system.

Contrasting of techniques

There is a large variability in terms of computational
complexity and amount of user interaction required by the
various image segmentation techniques. Despite their
limitations, visual delineation performed by experts is still
the most widely used technique [58]. However, manual
techniques are labour intensive and suffer from intra-
observer variability whereas thresholding techniques are
simple to put into practice although scanner-specific
calibration might be required for implementation of the
adaptive thresholding method. The high computational
burden associated with supervised methods which require
time-consuming training is also worth emphasizing. In a
clinical setting, the balance between algorithmic complexity
and the validity of results obtained is an important criterion
when selecting a PET image segmentation technique. Even
though the techniques which make a large number of
assumptions can frequently be undemanding, it is not
necessarily true that complex algorithms will always
perform better. The extra complexity must be used
judiciously and justified for the particular application at
hand. In many cases, extra complexity can just as easily
result in unreliability as in improved results.

Although thresholding methods are the most frequently
used techniques, possibly this is driven by their simplicity
to implement and their efficiency for clinical practice.
However, application of the proper threshold technique
could be a challenging task due to limited resolution of PET
images, blurriness due to partial volume effect or motion
artefacts and limited statistical noise fluctuations due to
limited photon count. In addition, a threshold technique
does not take into account variations in tumour heteroge-
neity or possible overlap in intensity between the tumour
and surrounding normal tissues resulting in under- or over-
estimation of the tumour extent depending on the selected
threshold value. The comparison study conducted by Nestle
et al. indicated the presence of up to 41% variability
between the visualization definition of BTV and four
different thresholding methods that were attributed to maxi-
mum SUV, tumour homogeneity and lesion size [94]. The
results of this study and similar ones have motivated the
investigation of other segmentation techniques for defining
BTVs in PET images for radiotherapy treatment planning
purposes. However, such methods need to be carefully
applied, otherwise inferior performances could be obtained
as revealed in [102], where the authors have noticed that the
direct application of the Sobel edge detector or the WT have
failed to correctly identify the correct size of experimental
volumes compared to thresholding segmentation.

To overcome these difficulties, several authors have
explored active deformable models, learning methods and
stochastic approaches, which seemed to provide better
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results when compared with threshold segmentation meth-
ods. For instance, active deformable models allow the
incorporation of smoothness and other prior information
into the segmentation algorithm, which would make it more
robust to boundary gaps in addition to enjoying inherent
subpixel accuracy due to its continuum nature. However,
variational methods, especially gradient-based methods,
suffer from sensitivity to image noise [139]. Therefore,
proper pre-processing techniques such as denoising or
deblurring could be required. Another approach is to
replace gradient-based methods by region-based approaches
such as the Mumford-Shah model to improve robustness to
noise [140]. Moreover, most deformable models may
require the selection of proper parameters to achieve
satisfactory results in clinical practice.

Learning methods based on classification require train-
ing of the method on data with known labels (ground truth
known). However, this could be a challenging task due to
variability of PET tracer uptakes and biodistribution
depending on the biomarker concentration in the blood
(e.g. glucose concentration for FDG), tracer dose, interval
between tracer injection and scanning and scanning time. In
addition, the PET images need to be labelled properly to
identify the ground truth for training purposes (e.g. the
structures contoured by a panel of experienced radiologists).
Therefore, application of these methods would require
extraction of robust features to these effects in addition to a
ground truth. The issue of ground truth is partially resolved
using unsupervised methods such as clustering techniques;
however, these methods may still need incorporation of prior
knowledge to estimate the right number of clusters and their
connectiveness. Issues related to spatial correlation are
mitigated through incorporation of additional neighbourhood
constraints.

Stochastic models allow the incorporation of voxel’s
intensity uncertainty directly into the model; however, these
models require the use of a proper noise model. In many
cases, the Gaussian assumption is used because it simplifies
the computational burden and speeds up convergence.
Spatial constraints could be incorporated by using the
Markov property; however, these models may require
additional constraints to achieve the smoothness observed
in the deformable models.

The introduction of integrated PET/CT scanners has
provided new opportunities to develop new methods for
defining BTV in radiotherapy treatment planning by
combining coregistered physiological information from
PET images with anatomical information from CT images
[1]. Bradley et al. have shown that a significant reduction in
observer variability could be achieved by combining PET
and CT for lung cancer target definition [42]. This was also
shown in several HNC studies [29, 141]. The feasibility of
this approach has been also demonstrated for different

cancer sites [142]. Hence, it could be conjectured that the
combination of PET with CT will provide an improvement
over CT alone for targeting in future radiation therapy
treatment planning. Consequently, a framework based on
the generalized level set approach and a soft-AND model
for concurrent segmentation of multimodality images (e.g.
PET/CT) has recently been developed. Measurement of the
overlap index (Dice similarity metric), discussed below,
showed significant improvement in target definition by
using combined imaging information [143].

Validation and comparison of PET image segmentation
techniques

Validation of accuracy (fidelity to the truth) and precision
(reproducibility) are very crucial steps for any clinical use
of a computer algorithm [144]. However, a rather challeng-
ing, even a problematic issue for validation of segmentation
algorithms, is the identification of a gold standard (i.e. the
benchmark) [25, 144]. Segmentation methods yield binary
classification results (a voxel belongs to the object or does
not). There are basically four different strategies allowing
the assessment of the accuracy of PET image segmentation
techniques. Table 2 summarizes these strategies and
provides a concise summary of their advantages, drawbacks
and limitations. These include manual segmentation by
experts in the field, the use of simulated or experimental
phantom studies where the ground truth (tumour volume) is
known a priori, the comparison with correlated anatomical
GTVs defined on CT or MRI and the comparison of tumour
volumes delineated on clinical PET data with actual tumour
volumes measured on the macroscopic specimen derived
from histology, in case a PET scan was undertaken before
surgery. It should be emphasized that such correlative
analysis relies on a high degree of registration accuracy
between multimodality images which is still challenging to
perform in a clinical setting [145].

Contouring by experts has often been labelled as the
“truth”. However, such an approach suffers from intra- and
inter-observer variability [58, 146, 147] besides being time-
consuming and exhaustive to carry out. In the second
approach, one would rely on constructing phantoms, either
physically or digitally. Evaluation and validation of
quantitative analysis procedures using simulated or exper-
imental phantom studies is very popular in medical imaging
physics research. Physical phantoms are typically con-
structed for a specific standardization task (e.g. NEMA
phantoms). Such physical phantoms have been widely used
for testing and evaluating PET segmentation algorithms
with static [80, 148] or dynamic constructions [149, 150].
For testing PET image segmentation methods, a realistic
anthropomorphic thorax phantom (Radiology Support
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Devices Inc., Long Beach, CA, USA) that is depicted in
Fig. 4 could be used. This phantom was thoroughly used by
Montgomery et al. [133] for assessment and characteriza-
tion of their novel segmentation algorithm. This phantom
consists of lungs, cardiac insert and a liver compartment
that can be filled independently. In addition, there is a
plastic vial placed in the pelvis to simulate the bladder and
thus take into account out of field of view activity.
Techniques similar to those suggested by Turkington et al.
[151] were used to fabricate a set of tumours of different
size that can be used to produce wall-less small radioactive

lesions using moulted wax. This design has many advan-
tages compared to using commercial plastic or glass spheres
that have an inactive wall as they do not reflect the real
situation in the patient and lead to quantification errors in
the presence of background activity [152]. The lesions can
be mixed with 18F activity and embedded in the various
compartments/organs provided (e.g. left and right lungs to
mimic lung cancer studies) within the physical anthropomor-
phic thorax phantom. This arrangement provides properties
similar to the human thorax suitable for mimicking whole-
body oncological FDG PET studies.

Table 2 Outlined strategies for validation and comparison of PET image segmentation techniques and their main advantages/disadvantages

Category Key advantages Limitations/drawbacks Representative
references

Manual contouring
by experts

Current gold standard Time-consuming, subjective, large intra-
and inter-observer variability

[53–58, 212, 216]

Simulation studies Controlled study with known conditions
and segmentation ground truth, flexibility
in adjusting experimental parameters

Simulation conditions may not be
representative of complex real-life PET/CT
imaging conditions and varying patient
anatomy and physiology

[83, 89, 123]

Experimental
phantom studies

Better representation of scanner imaging
and physical conditions (e.g. PVE) than
could be simulated numerically with
known ground truth

Human anatomy is too complex and
cannot be represented by simple materials
or geometrical shapes, difficulty in designing
dynamic phantoms that mimic respiratory
motion

[51, 80, 83, 85, 90,
91, 95–97, 133,
148, 217–221]

Clinical studies
(without
macroscopic
specimen)

Real-life clinical images of patient
disease are used

Ground truth unknown [38, 48, 82, 87, 88,
98, 142, 182, 183,
207, 222–229]

Clinical studies
(with macroscopic
specimen)

Real-life clinical images of scanner
capability and patient disease are produced
with an independent ground truth

Need to carefully account for specimen
shrinkage artefacts in vitro in order to match
the in vivo conditions

[50, 57, 103, 123,
170–178, 186]

Fig. 4 Photograph of the
anthropomorphic thorax
phantom (a), rendered CT image
of the phantom (b) and wall-less
small radioactive lesions of
different shape and size
fabricated using moulted wax
beeswax tumours (c) that can be
inserted into the lungs of the
phantom to simulate typical
lesions in lung cancer patients
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Simple and more sophisticated computational anthropo-
morphic anatomical and physiological models are also
widely used in the literature [153, 154]. Among the most
popular models for functional imaging is the 4D nonuni-
form rational B-splines (NURBS)-based cardiac-torso
(NCAT)—now known as the 4D extended cardiac-torso
(XCAT)—phantom [155]. This computational model was
developed to realistically model human anatomy based on
the “Visible Human” data. Dynamic cardiac and respiratory
models are incorporated into the phantom to mimic real
heart and breathing motion. The organ shapes are formed
using NURBS [156] and now include more realistic
modelling of normal and abnormal variations in anatomy
and in the respiratory motion [157]. Typical strategies used
in simulation-based generation of realistic oncological PET
data to assess the performance of image segmentation
techniques showing a simulated tumour in the right lung at
end of exhalation with a hypothetical average SUV=6.5, a
typical average SUV in NSCLC, are shown in Fig. 5.
Accurate simulation techniques combining Monte Carlo
modelling techniques and clinical data are now becoming

available and being exploited for comprehensive assess-
ment of segmentation algorithms [158–160]. Modelling
combined PET/CT systems using dedicated PET [161–163]
and X-ray CT [164–166] simulators as performed by Ay and
Zaidi [167] might offer some additional advantages, partic-
ularly when respiratory motion is addressed. Recent develop-
ments describing more realistic dynamic 4D anatomical
models incorporating accurate modelling of respiratory and
cardiac motions might help to achieve this goal [153, 154].

Notwithstanding the advantages offered by phantom
studies, some solutions to the problem of PET segmentation
are less suitable for routine clinical applications than they
are in phantom simulations. The accuracy reached in
phantom studies is unlikely to be reached in clinical
investigations. The true clinical feasibility of the methods
described in the previous section has yet to be fully
investigated. The results reported in the literature about
the accuracy of PET segmentation very much depend on the
type of phantoms, lesion size, noise, type of scanner, etc.

The application of PET image segmentation in the
clinical setting requires a rigorous assessment in order to

Fig. 5 Principle of simulation-based validation of PET image
segmentation techniques showing the 4D NCAT anatomical model
representing typical tracer distribution in the body to which a lesion of
known characteristics was added. The 3D rendered simulated FDG

PET image with a lesion in the right lung at end of exhalation with an
SUV=6.5 is also shown. For lung cancer studies, motion could be
simulated using a respiratory cycle of 5 s and diaphragm extent of
2 cm
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define the most appropriate algorithm for a specific
combination of a probe and targeted application and give
an estimate of expected accuracy. There is no single figure
of merit that summarizes algorithm performance, since
performance ultimately depends on the diagnostic task
being performed. Well-established figures of merit known
to have a large influence on many types of task perfor-
mance are generally used to assess the performance of
image segmentation procedures [168, 169].

It has been argued that when using clinical data where
the ground truth is not known a priori, it is generally
unacceptable to use an imaging modality as gold standard
against which results from another imaging modality are
compared. However, comparisons of GTVs delineated on
structural imaging (CT or MRI) with BTVs obtained using
various strategies for functional PET-based image segmenta-
tion techniques might provide some useful hints. One such
example is shown in Fig. 6 which illustrates a patient study
presented with a glioblastoma exemplifying differences in
target volume definition obtained by using various segmen-
tation methods as compared to GTV defined manually on
MRI [88]. PET image segmentation techniques included
manual delineation of contours, a 2.5 SUV cut-off, a fixed
threshold of 40 and 50% of the maximum signal intensity,
SBR-based adaptive thresholding (BTVSBR), gradient find
(BTVGF) and RG (BTVRG). For this particular patient, all
PET-based techniques define almost similar contours on this
plane, but overall the estimated lesion volume is different.

Yet another attractive approach would be to use registered
histological specimens [170]. Only very few studies reported
on the use of macroscopic surgical specimens for validation

of PET-based BTV delineation techniques [50, 57, 103, 171–
177]. The only studies where the 3D volumetric macroscopic
specimen (in contrast to lesion volume or size defined on the
one to three major axes) was available clearly demonstrated
the superiority of PET compared to other structural modal-
ities for pharyngolaryngeal squamous cell carcinoma [171].
More studies are still required before claiming superiority of
PET for other tumour types and localizations. However, one
needs to be cautious about ex vivo tumour shrinkage in such
cases where timing between imaging and surgery play a
significant role. In the study by Daisne et al., a special
procedure was developed to allow a three-dimensional
coregistration of the macroscopic specimen with the imaging
modalities [171]. Fresh surgical specimens were placed in a
polystyrene cast containing three longitudinally placed
wood rods that were equally spaced in the transverse
plane of the specimen and the cast was filled with a 16%
gelatin solution and kept at −20°C for 48 h and thereafter at
−80°C for at least 72 h. The authors suggest that such
fixation and freezing procedures resulted in no retraction
compared to other methods as evident by their animal data.
Radiology-pathology correlation is even more challenging in
the lung. A limited number of NSCLC patients (5) were
investigated in a feasibility study that highlighted that
ignoring deformations of the lung might result in under-
estimation of the microscopic spread [50]. Dahele et al.
developed an original framework allowing the 3D recon-
struction of resected NSCLC specimens [178]. The proce-
dure incorporates a number of distinctive features, including
agar embedding of the specimen and whole-mount digital
histopathology.

Fig. 6 Gadolinium-enhanced
T1-weighted MRI (a),
corresponding 18F-FET PET (b)
and fused PET/MR (c) transaxial
slices of a clinical study with a
glioblastoma showing differences
in target volume definition.
Indicated are d the GTV delin-
eated on MRI (GTVMRI) and e
enhanced details of PET-based
BTVs obtained by manual
delineation of contours (BTVman;
magenta), an isocontour of a
SUV of 2.5 (BTV2.5; purple), a
fixed threshold of 40% (BTV40%;
green) and 50% (BTV50%; cyan)
of the maximum signal intensity,
SBR-based adaptive thresholding
(BTVSBR; yellow), gradient find
(BTVGF; blue) and RG (BTVRG;
red) segmentation algorithms.
Note that GTVMRI overestimates
the tumour extension relative to
BTVman. Reprinted with
permission from [88]
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The inherent difficulty of the procedure related to
shrinkage of the specimen outside after surgical excision
restricted the use of this methodology in clinical research.
As a result, only few studies were published so far covering
pharyngolaryngeal squamous cell carcinoma [171], NSCLC
[50] and oropharyngeal and oral cavity cancer [175]. Such
deformations need to be accounted for properly before use
in comparison studies [178]. Moreover, some preclinical
studies reported discrepancies between PET images and the
underlying microscopic reality derived from autoradiography
owing to the finite resolution of PET scanners [179].

A limited number of studies reported the comparative
evaluation of PET image segmentation techniques using
clinical data [57, 86–88, 94, 102, 148, 171, 174, 176, 177,
180–184]. The main difference between the segmentation
methods is the underlying empirical derivation or mathe-
matical model used to differentiate between the tumour and
background. Comparison studies underlined the importance
of the PET segmentation technique without definitively
suggesting a particular procedure for clinical use [87, 88];
however, it has clearly been shown that PET segmentation
using the adaptive thresholding technique outperformed
structural imaging procedures (CT and MRI) for GTV
delineation where macroscopic surgical specimen derived
from histology served as gold standard for assessment
[171]. Thus, it can be argued that at present PET image
segmentation is still an open research area that requires
further research and development efforts where users are
applying the most reliable technique available to them,
although ultimately it may become clear which method is
best for a particular application.

To provide better insight into the performance of the
different categories of PET image segmentation techniques
described in the preceding sections, we show qualitative
and quantitative results using clinical data. It should be
noted that none of the methods proposed so far is well
enough developed or understood to allow it to be used
clinically without a careful knowledgeable check. A recent
study compared nine segmentation techniques [148].
Representative segmentation results of an FDG PET/CT
image of a patient presenting with histologically proven
NSCLC are shown in Fig. 7. The GTV/BTVs defined on
the irregularly shaped non-homogeneous lesion using nine
segmentation techniques are depicted on both the CT and
FDG PET transaxial slices. These include manual delineation
performed by an experienced radiation oncologist on both the
CT (CTman) and PET (PETman) images, four semi-automated
methods comprising the SBR-based adaptive thresholding
technique [91], RG [28], Black et al. technique [90], Nestle
et al. technique [94] and three fully automated methods:
standard FCM [120], the FCM-S which incorporates
nonlinear anisotropic diffusion filtering thus allowing the
integration of spatial contextual information and the FCM-

SW algorithm which also considers inhomogeneity of tracer
uptake through the use of the à trou wavelet transform [123].
Table 3 summarizes the results obtained using the various
PET image segmentation techniques for the clinical study
shown in Fig. 7 (maximum diameter determined by
histology is 7 cm). The overlap fraction used to assess
geographic mismatch between the BTVs delineated using the
different techniques with respect to the BTVSBR is also
shown. The overlap volume of BTVX (X refers to one of the
above-referenced segmentation techniques) and BTVSBR is
expressed as the overlap volume of BTVX and BTVSBR

relative to BTVSBR.
For extraction of quantitative metrics of segmentation

accuracy, besides the comparison of spatially independent
volume changes that is commonly practiced, several
spatially dependent statistical metrics could be used. The
following metrics recommended for general segmentation
analysis [185] could be further adopted to better assess the
accuracy of the different PET segmentation methods with
respect to a predefined benchmark.

The two most common techniques currently used to
assess the performance of image segmentation techniques
are linear regression and Bland-Altman analysis. The first
consists in performing paired correlation between two
segmentation algorithms by computing the slope, intercept
and the correlation coefficient for the regression plot using
lesion volume [103, 175] or maximum lesion diameter
along one of the three axes as a figure of merit [57, 148,
186]. A large correlation coefficient (which actually reflects
the spread of the data points around the regression line) is
always associated with strong agreement. On the other
hand, Bland-Altman analysis attempts to quantify the level
of agreement between the estimates resulting from the use
of two algorithms using a statistical method consisting in
depicting the difference between the estimates against the
average of the estimates [187]. The two estimation methods
are assumed to “agree” if the differences lie within the 95%
confidence interval (limits of agreement) defined as mean ±
1.96×SD In such case, one technique could, in theory,
replace another with confidence for estimation of the same
parameter. Despite their popularity, such approaches have
many shortcomings and caution should be observed for
interpretation of the results.

Receiver-operating characteristics (ROC) curve This is a
plot of the sensitivity (true classification fraction) versus
specificity (false-positive fraction) for a continuum of
threshold values. The overall accuracy is summarized by
the area under the ROC curve (AUC). An extension of this
metric called localization ROC (LROC) is used to resolve
the spatial localization issue [188].

The ROC technique could be used as a metric to
evaluate the performance of a “continuous classifier” and
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is a popular visual method for assessing the overall
classification accuracy. Numerous ROC techniques were
developed including non-parametric, semi-parametric and
parametric transformation models for estimating and com-
paring ROC curves derived from continuous data as
described in [185, 189]. A significant advance in ROC
analysis in the absence of a gold standard (i.e. without
knowing the ground truth) was reported by Henkelman et
al. who demonstrated that ROC parameters could be
assessed by using additional tests on the same patients
[190]. The statistical basis of this approach was verified and
its relevance further confirmed in subsequent studies [191].
More recently, a more sophisticated technique using the
maximum likelihood approach allowing the assessment and
comparison of various estimation methods without the use
of a gold standard was suggested [192, 193]. The method
estimates the relative accuracy and consistency of the
assessed algorithms without a priori knowledge of the gold
standard approach. Simulated studies seem to suggest that
the technique is capable of estimating accurately the
parameters of a regression line without a gold standard

Fig. 7 Representative segmentation results of FDG PET/CT image of
a patient presenting with histologically proven NSCLC. The GTVs
defined on the non-homogeneous lesion with irregular shape (maxi-
mum diameter determined by histology is 7 cm) using nine
segmentation techniques are depicted on both the CT (left) and FDG
PET (right) transaxial slices. These include manual delineation
performed by an experienced radiation oncologist on both the CT
(CTman) and PET (PETman) images, four semi-automated methods

comprising the SBR-based adaptive thresholding technique [91], RG
[28], Black et al. technique [90], Nestle et al. technique [94] and three
fully automated methods: standard FCM [120], the FCM-S which
incorporates nonlinear anisotropic diffusion filtering to incorporate
information about the spatial context and the FCM-SW algorithm
which also considers inhomogeneity of tracer uptake through the use
of the à trou wavelet transform [123]

Table 3 Summary of comparative PET image segmentation results of
the clinical study shown in Fig. 7 (maximum diameter determined by
histology is 7 cm) showing the maximum diameter and volume of the
lesion estimated by each segmentation technique. The overlap fraction
used to assess geographic mismatch between the GTV/BTVs
delineated using the different techniques with respect to the BTV
delineated using the SBR technique is also shown. Note the large
differences between the estimated volumes despite the small differ-
ences between the maximum diameters measured by the various
segmentation techniques

Segmentation
method

Max. diameter
(cm)

Volume
(cc)

Overlap fraction
w.r.t. SBR

CTman 6.5 98 0.60

PETman 7.5 80 0.70

RG 6 61 0.95

Nestle et al. 7 138 0.47

Black et al. 6.5 117 0.55

SBR 6.5 65 -

FCM 4.8 32 0.49

FCM-S 5.5 45 0.66

FCM-SW 6.5 76 0.87
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(i.e. without the x-axis). The technique seems appropriate for
evaluation of image segmentation techniques, particularly that
the approach was successful in estimating the volume of a
physical phantom using two imaging modalities (SPECT and
CT) [194].

Spatial overlap index Typically, the Dice similarity coeffi-
cient (DSC) is used, which is defined in terms of pixel ratio of
the overlapping regions, where at any given threshold DSC
values would range from 0, indicating no spatial overlap
between two sets of binary segmentation results, to 1
indicating complete overlap [169]:

DSC ¼ 2 A \ Bð Þ
Aþ Bð Þ ð18Þ

The multiclass type I (TI) and type II (TII) errors were also
suggested to quantify the error based on mis-segmented
voxels [168, 195]. The percentages of the two error types are
given by:

TI ¼ 100� Number of voxels of class k not classified as k

Total number of voxels of class k

ð19Þ

TII ¼ 100� Number of voxels of other classes than k classified as k

Total number of voxels of other classes than k

ð20Þ

Mutual information This is a measure of uncertainty
(entropy), which is routinely used with registration algo-
rithms [196]; however, the metric is applicable to segmen-
tation analysis as well [197]. Entropy measures, and
particularly mutual information, have found widespread
use in nuclear medicine applications. There are many
variants of mutual information and joint entropy measures;
however, they do not seem to be widely used for this
purpose. In a recent assessment of voxel similarity
measures, Holden et al. have demonstrated clear preference
for those based on entropy measures including mutual
information [198]. A normalized version of this metric is
recommended, which is given by:

NMI ¼ HðAÞ þ HðBÞ
H A;Bð Þ ð21Þ

where H(·) is the Shannon entropy.

Challenges and future directions

An overview of current state-of-the art developments in
PET image segmentation techniques is provided in this

review. Approximate methods suitable for clinical routine
applications and more sophisticated approaches for research
applications, where there is greater emphasis on accurate
quantitative analysis, have been proposed. It is gratifying to
see in overview the progress that PET image segmentation
has made in the last decade following the successful
introduction of PET/CT in the radiation therapy treatment
planning process, from operator-dependent manual delin-
eation of structures, through simple thresholding, the use of
classifiers and fuzzy clustering, and more recently active
contour models, dynamic PET data analysis and atlas-
guided approaches incorporating prior information [24].
Recent developments have been enormous particularly in
the last 5 years, the main opportunities striving towards
improving the accuracy, precision and computational speed
through efficient implementation in conjunction with
decreasing the amount of operator interaction. The application
of PET image segmentation is well established in research
environments and is still limited in clinical settings to
academic institutions with advanced physics and technical
support. As the above-mentioned challenges are met, and
experience is gained, implementation of validated techniques
in commercial software packages will be useful to attract the
interest of the clinical community and increase the popularity
of these tools. It is expected that with the availability of
computing power, more complex and ambitious computer
intensive segmentation algorithms will become clinically
feasible.

Despite the remarkable progress that image segmentation
has made during the last few years, performance validation
in a clinical setting remains the most challenging issue
[144]. Notwithstanding the outstanding growth achieved as
can be witnessed by the enormous number of publications
in the field, many challenging issues still remain to be
solved through research. There is no shortage of challenges
and opportunities for PET image segmentation today.
Tumour heterogeneity and stability of tracer uptake is one
of the challenges facing automated delineation of BTVs
[199]. Very few studies have addressed the issue of tumour
heterogeneity which cannot be appropriately handled using
simple thresholding techniques [89, 123]. It should be
noted that most published studies reporting on the use of
image segmentation in the context of PET-guided radiation
therapy focused on FDG as tracer whereas very few
investigations paid attention to other probes. Evolving
areas for application of other promising radiotracers for
this purpose [200–203] include but are not limited to
markers of tumour proliferation (e.g. 18F-fluorothymidine,
FLT), amino acid metabolism (11C-methionine, 11C-
tyrosine and 18F-fluoroethyltyrosine, FET), cell membranes
and fatty acid metabolism (11C-acetate or 11C-choline and
18F-choline), somatostatin receptors (68Ga-DOTA-TOC)
and hypoxia (18F-FMISO, 18F-FAZA, 64Cu-ATSM and
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18F-EF5) which have already shown their potential in
patient management or dose painting in radiation therapy
[204, 205]. In addition, novel tracers have been developed
that specifically bind to certain intra- or extracellular
compounds of various tumours, such as 18F-DOPA (metab-
olism of amine precursor uptake and decarboxylase, APUD)
which is now widely adopted as a diagnostic tool for the
imaging of neuroendocrine tumours [206]. Published reports
so far involved the use of tracers such as 11C-methionine [53,
180, 207], 18F-choline [208–210], 18F-FLT [211] and
18F-FET [88, 212]. In addition, while the role of hypoxia
markers was demonstrated in dose painting techniques [205],
its relevance is not well established in target volume
definition. Experiments performed on animal models have
shown the limitations of PET-guided dose painting tech-
niques which should be considered with caution given the
finite spatial resolution of current clinical PET scanners
[179]. It would be interesting to explore optimal strategies
aiming at tailoring image segmentation techniques to match
the specificity of each particular cancer imaging probe and
tumour type [60]. Despite the worthwhile research carried out
and the remarkable achievements, the field is still in its
infancy and plenty of research opportunities still exist
particularly in connection with the design of experimental
clinical protocols and tracers or combinations of tracers to be
used for each application, which remain open research
questions.

PET image segmentation methods developed so far were
rather general and as such were not optimized to address a
specific problem or type of tumour and/or localization. The
availability of integrated PET/CT imaging systems provides
new opportunities as well as new challenges in radiotherapy
treatment planning and delivery; they have also presented
many technical challenges on how to integrate different
modalities information properly affecting their visualization
and delineation. One of the challenges faced by scanner
manufacturers is to provide commercial platforms that can
easily handle multimodality images from any DICOM-
compatible imaging modality including hybrid PET/CT and
incorporate this information with minimum effort into the
radiation therapy treatment planning software. There is
still a lack of commercial tools available in treatment
planning systems allowing importation and realignment of
functional PET images and display of SUV units for user-
defined automatic thresholding. Some investigators have
argued for a potential role of PET/MRI to replace PET/CT
as a platform of choice [213]. Besides the soft tissue
discrimination, blood flow measures and indirect bio-
chemical content could be incorporated [214]. Currently
MRI is still in its infancy for radiotherapy application.
However, its role is more in relation to better soft tissue
discrimination compared to CT. In addition, functional
MRI (fMRI) and its ability to compete with PET in

radiation oncology as a delineation tool has not been well
demonstrated yet.

PET will undoubtedly continue to play an important role
in the management of patients with cancer [215]. In this
regard, it should be emphasized that many different
computational approaches and algorithmic design paths
have been and continue to be pursued in both academic and
corporate settings, which offer different compromises in
terms of performance and versatility but in most cases
improve the clinical workflow efficiency. It is still uncertain
which algorithms will be the most successful to deserve
incorporation into future software supplied by either
medical imaging or radiation therapy treatment planning
vendors, but it is certain that technical advances will
continue and will enable more accurate quantification of
molecular targets using PET. In the clinical setting, it has
become standard practice to use simplified techniques
compared to the often complex methods developed for
research where there is greater emphasis on quantitative
accuracy. As a general guideline, fixed thresholding
techniques should not be used as adaptive thresholding
techniques which take into account the background could
be easily implemented in the clinic following careful
implementation of the experimental calibration procedure
required to derive imaging protocol- and scanner-specific
parameters. For those departments with limited physics
support, manual delineation techniques are to be preferred
to fixed thresholding approaches. Fully automated PET
image segmentation techniques remain the best option and
will likely find their way to the clinic in the near future.
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