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The effectiveness of content-based image retrieval (CBIR) systems can be improved by combining image
features or by weighting image similarities, as computed from multiple feature vectors. However, feature
combination do not make sense always and the combined similarity function can be more complex than
weight-based functions to better satisfy the users' expectations. We address this problem by presenting
a Genetic Programming framework to the design of combined similarity functions. Our method allows
nonlinear combination of image similarities and is validated through several experiments, where the
images are retrieved based on the shape of their objects. Experimental results demonstrate that the GP
framework is suitable for the design of effective combinations functions.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Advances in data storage and image acquisition technologies have
allowed the creation of large image data sets. In order to deal with
these data, it is necessary to develop appropriate information sys-
tems which can support different services. The focus of this paper is
on content-based image retrieval (CBIR) systems [1]. Basically, CBIR
systems try to retrieve images similar to a user-defined specification
or pattern (e.g., shape sketch, image example). Their goal is to sup-
port image retrieval based on content properties (e.g., shape, texture,
and color).

A feature extraction algorithm encodes image properties into a fea-
ture vector and a similarity function computes the similarity between
two images as a function of the distance between their feature vec-
tors. An image database can be indexed by using multiple pairs of
feature extraction algorithms and similarity functions. We call each
pair a database descriptor, because they tell how the images are dis-
tributed in the distance space. By replacing the similarity function,
for example, we can make groups of relevant images more or less
compact, and increase or decrease their separation [2]. These de-
scriptors are commonly chosen in a domain-dependent fashion, and,
generally, are combined in order to meet users' needs. For example,

∗ Corresponding author. Tel.: +551935215887.
E-mail addresses: rtorres@ic.unicamp.br (R.S. Torres), afalcao@ic.unicamp.br (A.X.

Falcão), mgoncalv@dcc.ufmg.br (M.A. Gonçalves), jpaulo@ic.unicamp.br (J.P. Papa),
bzhang@vt.edu (B. Zhang), wfan@vt.edu (W. Fan), fox@vt.edu (E.A. Fox).

0031-3203/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2008.04.010

while one user may wish to retrieve images based on their color
features, another one may wish to retrieve images according to their
texture properties.

Feature vector and descriptor do not have the samemeaning here.
The importance of considering the pair, feature extraction algorithm
and similarity function, as a descriptor should be better understood.
In CBIR systems, it is common to find solutions that combine image
features irrespective of the similarity functions [3]. However, these
techniques do not make sense, for example, when the image con-
tent is a shape and the properties are curvature values along it and
color/texture properties inside it. The similarity function usually has
a crucial role in making the descriptor as invariant as possible to
changes in image scale and rotation. This is true even when we con-
sider only shape descriptors. It does not make sense, for example, to
combine multiscale fractal dimensions [2] with bean angle statistics
(BAS) [4] irrespective of their similarity functions. The importance
of the similarity function coupled with the feature extraction algo-
rithm is illustrated in Fig. 1. Precision--recall curves were computed
from an MPEG-7 part B database [5] for four different descriptors.
They provide different combinations of feature extraction algorithms
that encode BAS [4] and segment saliences (SS) [6], with Euclidean
metric and matching by optimum correspondent subsequence (OCS)
[7] as similarity functions. We are not mixing properties, only re-
placing similarity functions, to show their role in the effectiveness
of each descriptor. Both SS and BAS have been proposed with OCS.
Fig. 1 shows that the configurations which use OCS yield the best
effectiveness.
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Fig. 1. Precision--recall curves for BAS and SS descriptors in MPEG-7 database using
two different similarity functions.

At a higher level, we really wish to combine descriptors encoding
several properties in order to address the semantic gap problem: it
is not easy for a user to map her/his visual perception of an image
into low level features. Without mixing distinct properties in a same
feature vector, this combination could be done by weighting the sim-
ilarity values resulting from different descriptors [8--10]. However,
more complex functions than a linear combination are likely to pro-
vide more flexibility in matching the results with the users' expec-
tations. We address the problem by presenting a genetic program-
ming (GP) framework to the design of combined similarity functions.
Our solution relies on the creation of a composite descriptor, which
is simply the combination of pre-defined descriptors using the GP
technique. We employ GP to combine the similarity values obtained
from each descriptor, creating a more effective fused similarity func-
tion. As far as we know, this approach is original and opens a new
and productive field for investigation (considering, for example, dif-
ferent applications, descriptors, and GP parameters).

Our motivation to choose GP stems from its success in many
other machine learning applications [11--13]. Some works, for ex-
ample, show that GP can provide better results for pattern recog-
nition than classical techniques, such as Support Vector Machines
[14]. Different from previous approaches based on genetic algorithms
(GAs), which learn the weights of the linear combination function
[15], our framework allows nonlinear combination of descriptors. It
is validated through several experiments with two image collections
under a wide range of conditions, where the images are retrieved
based on the shape of their objects. These experiments demonstrate
the effectiveness of the framework according to various evaluation
criteria, including precision--recall curves, and using a GA-based ap-
proach (its natural competitor) as one of the baselines. Given that it
is not based on feature combination, the framework is also suitable
for information retrieval from multimodal queries, as for example
by text, image, and audio.

The remainder of this paper is organized as follows. Section 2
gives the background information on GAs and GP. Section 3 intro-
duces a generic model for CBIR which includes the notion of simple
and composite descriptors. Section 4 presents a formal definition
of the combination function discovery problem and describes our
framework based on GP. Section 5 describes several experiments,
which validate our approach, while Sections 6 and 7 discuss the
main achieved results and related works, respectively. In Section 8
we conclude the paper, explaining implications of this study and
presenting future research directions.

2. Background

2.1. Genetic programming

GAs [16] and GP [11] belong to a set of artificial intelligence
problem-solving techniques based on the principles of biological in-
heritance and evolution. Each potential solution is called an individ-
ual (i.e., a chromosome) in a population. Both GA and GP work by
iteratively applying genetic transformations, such as crossover and
mutation, to a population of individuals to create more diverse and
better performing individuals in subsequent generations. A fitness
function is available to assign a fitness value for each individual.

The main difference between GA and GP relies on their inter-
nal representation---or data structure---of an individual. In general,
GA applications represent each individual as a fixed-length bit
string, like (1101110 . . .) or a fixed-length sequence of real numbers
(1.2, 2.4, 4, . . .). In GP, on the other hand, more complex data struc-
tures are used (e.g., trees, linked lists, or stacks [17]). Fig. 2 shows
an example of a tree representation of a GP individual.

Furthermore, the length of a GP data structure is not fixed, al-
though it may be constrained by implementation to be within a cer-
tain size limit. Because of their intrinsic parallel search mechanism
and powerful global exploration capability in a high-dimensional
space, both GA and GP have been used to solve a wide range of hard
optimization problems that oftentimes have no known optimum so-
lutions.

2.2. GP components

In order to apply GP to solve a given problem, several key compo-
nents of a GP system need to be defined. Table 1 lists these essential
components along with their descriptions.

The entire combination discovery framework can be seen as an
iterative process. Starting with a set of training images with known
relevance judgments, GP first operates on a large population of ran-
dom combination functions (individuals). These combination func-
tions are then evaluated based on the relevance information from
training images. If the stopping criteria is not met, it will go through
the genetic transformation steps to create and evaluate the next gen-
eration population iteratively.

GP searches for good combination functions by evolving a popu-
lation along several generations. Population individuals are modified
by applying genetic transformations, such as reproduction, mutation,
and crossover. The reproduction operator selects the best individuals
and copies them to the next generation. The two main variation op-
erators in GP are mutation and crossover. Mutation can be defined
as random manipulation that operates on only one individual. This
operator selects a point in the GP tree randomly and replaces the
existing subtree at that point with a new randomly generated sub-
tree [18]. The crossover operator combines the genetic material of
two parents by swapping a subtree of one parent with a part of the
other (see Fig. 3).
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Fig. 2. A sample tree representation.
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Table 1
Essential GP components [14]

Components Meaning

Terminals Leaf nodes in the tree structure (i.e., x, y as in Fig. 2).
Functions Non-leaf nodes used to combine the leaf nodes. Commonly used numerical operations: +, −, ∗, /, log.
Fitness function The objective function GP aims to optimize.
Reproduction A genetic operator that copies the individuals with the best fitness values directly into the population for the

next generation without going through the crossover operation.
Crossover A genetic operator that exchanges subtrees from two parents to form two new children. Its aim is to improve

the diversity as well as the genetic fitness of the population. This process is shown in Fig. 3.
Mutation A genetic operator that replaces a selected individual's subtree, whose root is a picked mutation point, with a

randomly generated subtree.
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Fig. 3. A graphical illustration of the crossover operation [14].

3. CBIR model

In this section, we formalize how a CBIR system can be modeled.

Definition 1. An image Î is a pair (DI , �I), where:

• DI ⊂ Z2 is a finite set of pixels, and
• �I : DI → D′ is a function that assigns to each pixel p in DI a vector
�I(p) of values in some arbitrary space D′ (for example, D′ = R3

when a color in the RGB system is assigned to a pixel).

Definition 2. A simple descriptor (briefly, descriptor) D is defined as
a pair (�D,�D), where:

• �D : Î → Rn is a function, which extracts a feature vector �vÎ from
an image Î.
• �D : Rn ×Rn → R is a similarity function that computes the sim-

ilarity between two images by taking into account the distance
between their corresponding feature vectors.

Definition 3. A feature vector �vÎ of an image Î is a point in Rn space:
�vÎ= (v1, v2, . . . , vn), where n is the dimension of the vector. Examples
of possible feature vectors are the color histogram [19], the multi-
scale fractal curve [2], and the set of Fourier coefficients [20]. They
encode image properties, such as color, shape, and texture. Note that
different types of feature vectors may require different similarity
functions.

Fig. 4(a) illustrates the use of a simple descriptor D to compute
the similarity between two images ÎA and ÎB. First, the extraction

algorithm �D is used to compute the feature vectors �vÎA and �vÎB
associated with the images. Next, the similarity function �D is used
to determine the similarity value d between the images.

Definition 4. A composite descriptor D̂ is a pair (D,�D) (see Fig. 4(b)),
where:

• D= {D1,D2, . . . ,Dk} is a set of k pre-defined simple descriptors.
• �D is a similarity function which combines the similarity values
obtained from each descriptor Di ∈D, i= 1, 2, . . . , k.

Fig. 4(b) illustrates the use of a composite descriptor D̂ to compute
the distance between images ÎA and ÎB.

4. GP framework for CBIR

The present framework uses GP to combine simple descriptors.
This decision stemmed from three reasons: (i) the large size of the
search space for combination functions; (ii) previous success of using
GP in information retrieval; and (iii) no prior work on applying GP
to image retrieval.

The corresponding CBIR system can be characterized as follows.
For a given large image database and a given user-defined query
pattern (e.g., a query image), the system retrieves a list of images
from the database which are most "similar” to the query pattern,
according to a set of image properties. These properties may take
into account the shape, color, and/or texture of the image objects,
and are represented by simple descriptors. These simple descriptors
are combined using a composite descriptor D̂GP , where �DGP

is a
mathematical expression uniquely represented as an expression tree,
whose non-leaf nodes are numerical operators (see Table 1) and the
leaf node set is composed of the similarity values di, i=1, 2, . . . , k. Fig. 5
shows a possible combination (obtained through the GP framework)
of the similarity values d1, d2, and d3 of three simple descriptors.

The overall retrieval framework can be divided into two different
approaches based onwhether or not it considers the use of validation
sets in the similarity function discovery process.

The use of validation sets aims to avoid the effect of overtrain-
ing (overfitting) [14]. Overtraining can occur when the learned or
evolved model fits the particulars of the training data overly well
and consequently does not generalize to new unseen examples [21].

4.1. GP framework without validation sets

Algorithm 1 illustrates the GP-based retrieval framework with-
out considering validation sets. Initially, the population starts with
individuals created randomly (step 4). This population evolves gen-
eration by generation through genetic operations (step 5). A fit-
ness function is used to assign the fitness value for each individual
(step 5.1.1). This value is used to select the best individuals (step
5.2). Next, genetic operators are applied to this population aiming
to create more diverse and better performing individuals (step 5.4).
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Fig. 5. Example of a GP-based similarity function represented in a tree.

The last step consists in determining the best individual to be ap-
plied to the test set (step 6). The commonest choice is the individual
with the best performance in the training set (e.g., the first tree of
the last generation).

Algorithm 1.
(1) Let T be a training set
(2) Let S be a set of pairs (i, fitnessi), where i and fitnessi are an

individual and its fitness, respectively.
(3) S← ∅
(4) P ← Initial random population of individuals

("similarity trees”)
(5) For each generation g of Ng generations do

5.1. For each individual i ∈ P do
5.1.1. fitnessi ← fitness(i, T)
5.2. Record the top Ntop individuals and their fitness values in Sg
5.3. S← S ∪ Sg
5.4. Create a new population P by:
5.4.1. Reproduction
5.4.2. Crossover
5.4.3. Mutation

(6) Apply the "best individual” in S on a test set of
(query) images

4.2. GP framework with validation sets

The last step presented in the GP framework consists in deter-
mining the best individual to be applied to the test set. Since the
natural choice would be the individual with best performance in
the training set, it might not generalize due to overfitting during

the learning phase [22]. In order to alleviate this problem, the best
individuals over the generations are applied to a validation set. In
that way, it is possible to select the individual that presents the best
average performance in both sets: training and validation. Algorithm
2 presents the GP framework for image retrieval that considers the
use of validation sets.

Note that, since the average does not ensure that the selected
individual has a similar performance in both sets, it would be in-
teresting to consider the standard deviation to correct such a bias.
Formally, we apply the method described in Ref. [22] to determine
the best individual: let f i be the average performance of individual
i in the training and validation sets, and �(fi) be the corresponding
standard deviation. The best individual is given by

argmax
i

(f i − �(fi)) (1)

Algorithm 2.
(1) Let T be a training set
(2) Let V be a validation set
(3) Let S be a set of pairs (i, fitnessi), where i and fitnessi are

an individual and its fitness, respectively.
(4) S← ∅
(5) P← Initial random population of individ-

uals ("similarity trees”)
(6) For each generation g of Ng generations do

6.1 For each individual i ∈ P do
6.1.1. fitnessi ← fitness(i, T)
6.2. Record the top Ntop similarity trees and their fitness
values in Sg
6.3. S← S ∪ Sg
6.4. Create a new population P by:
6.4.1. Reproduction
6.4.2. Crossover
6.4.3. Mutation

(7) F ← ∅
(8) For each individual i ∈ S do

8.1. F ← F ∪ {(i, fitness(i,V))};
(9) BestIndividual← SelectionMethod(F, S)
(10) Apply the "best individual” on a test set of (query) images

The main difference between Algorithms 1 and 2 relies on the
use of a validation set to identify appropriate individuals to be used
on the test set. The individual selection method used in Algorithm 2



R.S. Torres et al. / Pattern Recognition 42 (2009) 283 -- 292 287

(step 8) considers the performance of individuals in the training set
(stored in the set S) and in the validation set (stored in the set F),
and selects the individual that satisfies Eq. (1).

5. Experiments

The experiments described below were carried out for shape-
based descriptors. However, the proposed framework is generic and
allows the combination of descriptors that encode different proper-
ties (i.e., color, texture, etc.).

5.1. Shape descriptors

Table 2 presents a brief overview of the shape descriptors used
in our experiments. This list includes widely used descriptors for
comparison purposes [20] and recently proposed ones [2,4]. Here,
the GP framework is used to combine them in a suitable way, taking
advantage of the fact that they encode different shape properties
(frequency and spatial features, local and global information, etc.).

Many versions of these methods have been presented, but this
work considers their conventional implementations.

5.2. GP system

The following is a detailed description of our implementation of
the above framework.

• List of terminals: As pointed out in Section 4, our terminals are
composed of the similarity functions defined by each descriptor
presented in Section 5.1.
• Functions: The following functions were used in our implementa-

tion: +,×, /, sqrt. Subtraction is not used, to avoid handling nega-
tive results. This function set is widely used in common GP exper-
iments and is suitable to validate our ideas.
• Initial population generation: The initial set of trees, constrained

to have a maximum depth of four levels, were generated by the
ramped half-and-half method [11]. This method stipulates that half
of the randomly generated trees must be generated by a random
process which ensures all branches of the maximum initial depth.
The remaining randomly generated trees require branches whose
lengths do not exceed this depth. These constraints have been
found to generate a good initial sample of trees [11]. Our experi-
ments consider a population containing 600 individuals.
• Fitness functions: The fitness function plays a very important role

in guiding GA/P to obtain the best solutions within a large search
space. By considering our problems, a fitness function measures
how effective a combination function represented by an individual
tree is for ranking images. Good fitness functions will help GA/P
to explore the search space more effectively and efficiently. Bad
fitness functions, on the other hand, can easily make GA/P get
trapped in a local optimum solution and lose the discovery power.
The next paragraphs present a formal definition of the chosen
fitness functions:
FFP1 [13]: FFFP1 =

∑|N|
i=1 r(Îi) × k1 × ln−1(i + k2), where i is the

image position after retrieval and Îi is the image at position i.

Table 2
Shape descriptors used in our experiments

Descriptor Distance function

BAS40 [4] OCS [7]
BAS60 [4] OCS [7]
MS fractal dimension [2] Euclidean distance
Fourier descriptors [20] Euclidean distance
Moment invariants [20] Euclidean distance

r(Î) ∈ {0, 1} is the relevance score assigned to an image, being 1
if the image is relevant and 0 otherwise. |N| is the total number
of retrieved images. k1, k2 are scaling factors. After exploratory
analysis we set k1 = 6 and k2 = 1.2 in our experiments.
FFP2 [13]: FFFP2 =

∑|N|
i=1 r(Îi) × k3 × log10(1000/i), where k3 is a

scaling factor. We set k3 = 2 in our experiments.
FFP3 [13]: FFFP3=

∑|N|
i=1 r(Îi)×k−14 × (e−k5×ln(i)+k6 −k7), where k4,

k5, k6, k7 are scaling factors that are set to 3.65, 0.1, 4, and 27.32,
respectively.
FFP4 [13]: FFFP4 =

∑|N|
i=1 r(Îi) × k8 × ki9, where k8 and k9 are two

scaling factors, which are set to 7 and 0.982, respectively.
PAVG@10 [23]: FPAVG@10 =

∑10
i=1 (r(Îi)× (

∑i
j=1 r(Îj)/i))/TRel, where

TRel is the total number of relevant images in a collection.
CHK [13]: FCHK = 1/|N|∑|N|i=1 (r(Îi)×

∑|N|
j=i 1/j).

LGM [13]: FLGM= (
∑|N|

i=1 (rB(Îi)×1/A((A−1)/A)i−1))×∑|N|
i=1 r(Îi)/|N|,

where rB(Î) ∈ {1,−1} is a function returning the relevance of im-
age Î, being +1 if Î is relevant, −1 otherwise. A is a user-defined
parameter. We set A to 2.
The fitness functions defined above were evaluated under the GP
framework. PAVG@10, or average precision after 10 images are re-
turned, is a common measure used in information retrieval evalu-
ations [23]. Functions FFP1, FFP2, FFP3, FFP4, CHK, and LGM were
used since they follow the principles of utility theory [13,24]. Ac-
cording to utility theory, there exists a utility function (a user's
preference function) that assigns a utility value (the gained value
from a user's perspective) for each item. These values vary from
item to item. The item can be a book, a product, or an image, as in
our case. In general, we assume the utility of a relevant image de-
creases with its ranking order. More formally, given a utility function
U(x), and two ranks x1, x2, with x1 < x2, according to this assump-
tion, we expect the following condition to hold: U(x1) >U(x2). The
question is how to define the utility function. There are many pos-
sible functions that can be used to model this utility function sat-
isfying the order-preserving condition given above. We decided to
use FFP1, FFP2, FFP3, FFP4, CHK, and LGM, since most of them pre-
sented a good result in previous work on using GP for the ranking
discovery problem [13].
• The GP operators:

Reproduction. Reproduction copies the top rate_r × P trees in the
current generation to the next, directly without undergoing any
genetic transformation. The reproduction rate, rate_r, is generally
0.1 or less, and P is the population size. In our case, rate_r = 0.05.
Crossover. Crossover ensures variety by creating trees that differ
from their parents. For crossover, a method called tournament se-
lection [11] is used. Tournament selection works by first selecting,
with replacement, k (we use six) trees at random from the cur-
rent generation. The two trees with the highest fitness values are
paired and exchange subtrees.
Mutation. In this case, an individual is selected, and a mutation
point picked (a subtree of the individual). The subtree of the mu-
tation point is deleted and replaced by a randomly generated sub-
tree. Our experiments considered 25% as the percentage of indi-
viduals selected for mutation (the mutation rate).
• Stopping criterion: We stop the GP discovery process after 25 gen-

erations. We have observed that a period from 25 to 50 genera-
tions is sufficient to generate high-performing trees.

5.3. Image databases

Two different databases have been used to compare the proposed
GP-based shape descriptors.

Fish shape database: This shape database contains 1000 images
created by using 100 fish contours chosen randomly from the data set



288 R.S. Torres et al. / Pattern Recognition 42 (2009) 283 -- 292

available from www.ee.surrey.ac.uk/Research/VSSP/imagedb/
demo.html. Since there is no semantic definition of classes for the
fish contours in this database, we defined a class as consisting of
10 different manifestations of each contour by rotation and scaling.
Then, the problem consists of 100 classes with 10 shapes each. In
this case, each original image is considered as query image, and its
manifestations are taken as relevant images.

Experiments using this database will assess the invariance of the
GP-based descriptor regarding to rotation and scaling transforma-
tions.

MPEG-7 part B: This is the main part of the Core Experiment CE-
Shape-1 [5]. The total number of images in the database is 1400: 70
classes of various shapes, each class with 20 images.

Two set of experiments were performed based on whether it
considers or not the use of validation sets. The first set of experiments
uses a two data-sets design in our experiments. In this case, we
randomly split the data into training and test parts. The training set
used a random 50% sample for each class. The second one includes
validation set. In this case, the training, validation, and test sets used
30%, 20%, and 50% samples for each class, respectively.We considered
the same test set for experiments with and without using validation
sets.

6. Results

As mentioned earlier, the objective of an image retrieval system
is to match database images to a user's query and place them in
descending order of their predicted relevance (similarity).

6.1. Comparison criteria and baselines

Weused precision after 10 images are returned as our comparison
criteria.

The conducted experiments used two different samples (samples
1 and 2) for each data set, following the same distribution of training,
validation, and test sets. The use of these samples aims to verify if
the proposed approach is sample invariant.

We first evaluate the individual performance of each descriptor.
Table 3 shows the average precision for each similarity evidence
(shape descriptor). Note that the BAS60 shape descriptor presents
the best result in both MPEG-7 and fish shapes collections.

6.2. GP results

The conducted experiments can be divided into two groups. The
first session (Section 6.2.1) considers the BAS descriptors. In this
case, it aims to verify if the GP framework is able to discover suitable
similarity combination functions that outperform the baselines (each
shape descriptor in isolation).

We also compare the effectiveness of our GP approach with a GA-
based composite descriptor. The GA-based descriptor uses a fixed-
length sequence of real numbers (weights) to indicate the impor-
tance of each descriptor. In this case, given a set of similarity func-
tions �i of pre-defined descriptors, a GA-based similarity function is
defined as �GA(�1,�2, . . . ,�k)=w1�1 +w2�2 + · · · +wk�k, where wi

Table 3
Average precision after 10 images are returned, considering the evidences in isolation

Descriptor MPEG-7 Precision@10 Fish shapes precision @10

Sample 1 Sample 2 Sample 1 Sample 2

BAS40 65.35 64.84 83.35 81.10
BAS60 66.27 65.37 93.25 92.30
MS fractal dimension 40.71 40.05 71.35 68.85
Fourier descriptors 20.25 20.44 24.20 23.75
Moment invariants 34.68 35.02 63.20 61.45

Table 4
Average precision after 10 images are returned, considering the GP-based descriptors
using BAS40 and BAS60 descriptors for Approach 1

Descriptor MPEG-7 precision@10 Fish shapes precision@10

Sample 1 Sample 2 Sample 1 Sample 2

BAS60 66.27 65.37 93.25 92.30
GP with PAVG@10 70.56 (6.47%) 69.21 (5.87%) 93.75 (0.54%) 92.75 (0.49%)
GP with FFP1 70.92 (7.02%) 69.59 (6.46%) 94.20 (1.02%) 93.30 (1.08%)
GP with FFP2 70.79 (6.82%) 69.76 (6.72%) 94.30 (1.13%) 93.35 (1.14%)
GP with FFP3 70.75 (6.76%) 69.44 (6.23%) 94.05 (0.86%) 93.30 (1.08%)
GP with FFP4 70.40 (6.23%) 68.97 (5.51%) 94.05 (0.86%) 93.30 (1.08%)
GP with CHK 70.73 (6.73%) 66.78 (2.16%) 94.20 (1.02%) 93.30 (1.08%)
GP with LGM 70.86 (6.93%) 70.90 (8.46%) 94.15 (0.97%) 93.20 (0.98%)
GA 69.37 (4.68%) 68.30 (4.48%) 93.40 (0.16%) 92.55 (0.27%)

Table 5
Average Precision after 10 images are returned, considering the GP-based descriptors
using BAS40 and BAS60 descriptors for Approach 2

Descriptor MPEG-7 precision@10 Fish shapes precision@10

Sample 1 Sample 2 Sample 1 Sample 2

BAS60 66.27 65.37 93.25 92.30
GP with PAVG@10 73.13 (10.35%) 72.04 (10.20%) 96.12 (3.07%) 93.04 (0.80%)
GP with FFP1 73.36 (10.69%) 72.40 (10.75%) 98.03 (5.12%) 96.04 (4.05%)
GP with FFP2 73.30 (10.60%) 72.30 (11.50%) 98.03 (5.12%) 96.04 (4.05%)
GP with FFP3 73.19 (10.44%) 72.08 (10.26%) 98.03 (5.12%) 96.04 (4.05%)
GP with FFP4 72.96 (9.94%) 71.30 (9.07%) 98.03 (5.12%) 95.95 (3.95%)
GP with CHK 70.08 (10.27%) 69.10 (5.71%) 98.03 (5.12%) 96.00 (4.00%)
GP with LGM 73.2 (10.45%) 73.37 (12.24%) 97.03 (4.05%) 95.30 (3.25%)
GA 69.37 (4.68%) 68.30 (4.48%) 93.40 (0.16%) 92.55 (0.27%)

are weights defined by the GA framework. In our GA implementation,
we considered a population of 100 individuals and 30 generations.

BAS40 and BAS60 present an outstanding performance in both
databases (see Table 3). Therefore, the second experiment session
(Section 6.2.2) was carried out without considering these shape de-
scriptors. The idea was to evaluate if the GP framework is able to
discover suitable similarity functions even without considering good
descriptors.

6.2.1. With BAS descriptors
Two experiments were carried out, named Approaches 1 and 2,

which use Algorithms 1 and 2, respectively.
Tables 4 and 5 present the average precision of the GP-based

descriptors, using different fitness functions. In this case, GP used
the BAS descriptors.

With regard to the MPEG-7 collection, GP-based descriptors out-
perform the BAS60 baseline. For the first sample, FFP1 was the best
fitness function, while LGM was the best for the second sample.
Note also that GP presents a better result if compared to the GA-
based descriptor, except for the CHK fitness function when applied to
sample 2.

For the fish shapes collection, the BAS60 shape descriptor yields
a high precision value, since the relevant image set is composed
of similar images obtained by affine transformations (rotation and
scaling). However, despite the high effectiveness of the baseline, the
results based on the GP approach are better. For this collection, the
best results were obtained for the FFP2 fitness function with regard
to both samples (samples 1 and 2). It can be seen that the results
obtained using the validation set, Approach 2, outperforms Approach
1 in both databases, due to the capacity of decreasing the effects of
the overtraining problem.

Fig. 6 presents the best tree obtained by the GP framework, con-
sidering the FFP2 fitness function on sample 1 of the MPEG-7 col-
lection. Note that the BAS60 descriptor appears in several nodes.
This is an expected result since this is the best descriptor in iso-
lation (see Table 3). Note also that this tree includes moment in-

http://www.ee.surrey.ac.uk/Research/VSSP/imagedb/demo.html
http://www.ee.surrey.ac.uk/Research/VSSP/imagedb/demo.html
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variants and MS fractal dimension descriptors and does not con-
sider the Fourier descriptor (the worst one in isolation---see Table 3).

(+ (+ (+ ContourMSFractal 0_0) 1)
    (+ (+ (+ ContourMSFractal 0_0)
          (+ (sqrt 0_5)
             (sqrt (* BAS60 0_5))))
       (* (* BAS60 BAS60)
          (* (* BAS60 BAS60)
             (* (* (* BAS60 BAS60)
                   (* (+ (/ BAS60
                            (/ (+ ContourMSFractal MomentInvariants)
                               (sqrt (+ 0_0 BAS60))))
                         (sqrt (+ BAS40 0_0))) BAS40))
                (+ (+ (sqrt (* (* BAS60 BAS60)
                               (* (* (* BAS60 BAS60)
                                     (+ (* BAS60 BAS60)
                                        (* 1 BAS60))) BAS40)))
                      (sqrt 0_0)) BAS60))))))

Fig. 6. Best GP tree using the FFP2 fitness function on sample 1 of the MPEG-7
collection.

Query 1

GP

GA

BAS60

GP

GA

BAS60

GP

GA

BAS60

2 3 4 5 6 7 8 9

Fig. 7. Results of similarity retrieval for three query images (first column), using GP with FFP1, GA, and BAS60.

Fig. 7 shows examples of similarity retrieval using three differ-
ent query images (first column) and by taking into account the GP
with FFP1, GA, and BAS60 (MPEG7 collection, sample 2). As we can
see GP was able to return more similar images in the first posi-
tions, except for the last query. In this case the three methods re-
turn the same number (2) of relevant images among the first 10
position.

Fig. 8 presents the precision versus recall curves of the best GP-
based descriptor, the GA-based descriptor, and the best evidence by
taking into account the two samples of the MPEG-7 and fish shapes
collections. Note that the GP-based descriptor has the best curve in
all cases, except for sample 1 of the fish shapes data set. In this case,
the GA-based descriptor outperforms the GP one for recall values
lower than 0.47.

6.2.2. Without BAS descriptors
Tables 6 and 7 present the average precision of the GP framework

without using BAS60 and BAS40 shape descriptors, considering the
use of Algorithms 1 and 2 (with validation sets), respectively. As it
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Fig. 8. Precision versus recall curves of the best GP descriptor, GA-based descriptor, and the best evidence. (a) MPEG-7---sample 1, (b) MPEG-7---sample 2, (c) fish
shapes---sample 1, (d) fish shapes---sample 2.

Table 6
Average precision after 10 images are returned, considering the GP-based descriptors
without BAS40 and BAS60 for Approach 1

Descriptor MPEG-7 precision@10 Fish shapes precision@10

Sample 1 Sample 2 Sample 1 Sample 2

MS fractal dimension 40.71 40.05 71.35 68.85
GP with PAVG@10 46.13 (11.75%) 46.22 (15.41%) 76.70 (7.50%) 74.45 (8.13%)
GP with FFP1 46.25 (13.61%) 46.32 (15.66%) 77.65 (8.11%) 75.40 (9.51%)
GP with FFP2 46.63 (14.54%) 44.71 (11.64%) 76.95 (7.84%) 74.70 (8.49%)
GP with FFP3 46.73 (14.79%) 46.17 (15.28%) 76.95 (7.84%) 74.60 (8.35%)
GP with FFP4 46.46 (14.12%) 45.95 (14.73%) 76.90 (7.78%) 74.75 (8.57%)
GP with CHK 46.94 (15.30%) 46.14 (15.20%) 77.00 (7.92%) 74.70 (8.49%)
GP with LGM 46.13 (13.31%) 46.13 (15.18%) 77.25 (8.27%) 76.25 (10.75%)
GA 44.23 (8.64%) 42.45 (5.99%) 72.33 (1.37%) 71.55 (3.92%)

can be seen, the GP framework was able to generate good similarity
functions, even without using the descriptors with the best perfor-
mances in isolation.

We performed a pair-wise t-test comparing the best GP frame-
work with all baselines in Tables 4--7. The GP approach is statisti-
cally significant better than all the others, with p <0.05, except for
the GP-based descriptors using BAS40 and BAS60 descriptors for
Approach 1 (Table 4). In this case, GP yields significantly better re-
sults considering p <0.1.

It is worth mentioning that the training step took 30min, on
average, for the fish shapes data set (considering the two samples),
running on a 3.2GHz Pentium 4 with 2G RAM. For the MPEG-7 data
set, training took 40min, on average.

7. Related works

7.1. Descriptors combination

In general, approaches for descriptors combination rely on as-
signing weights to indicate the importance of a descriptor [8--10,25].

Table 7
Average precision after 10 images are returned, considering the GP-based descriptors
without BAS40 and BAS60 for Approach 2

Descriptor MPEG-7 precision @10 Fish shapes precision@10

Sample 1 Sample 2 Sample 1 Sample 2

MS fractal dimension 40.71 40.05 71.35 68.85
GP with PAVG@10 48.04 (18.00%) 48.04 (19.95%) 78.10 (9.46%) 77.03 (11.88%)
GP with FFP1 48.07 (18.07%) 48.06 (20.00%) 79.17 (10.96%) 77.10 (11.98%)
GP with FFP2 48.10 (18.15%) 47.37 (18.27%) 79.04 (10.77%) 77.16 (12.06%)
GP with FFP3 48.13 (18.22%) 47.86 (19.50%) 79.04 (10.77%) 77.30 (12.27%)
GP with FFP4 48.05 (18.02%) 47.70 (19.10%) 78.37 (9.83%) 77.43 (12.46%)
GP with CHK 49.00 (20.36%) 48.20 (20.34%) 78.95 (10.65%) 77.14 (12.04%)
GP with LGM 48.08 (18.10%) 47.90 (19.60%) 78.10 (9.45%) 79.00 (14.74%)
GA 47.54 (16.77%) 46.98 (17.30%) 76.54 (7.27%) 75.22 (9.25%)

Basically, the higher the weight the more important a descriptor is
assumed to be.

The main drawback of these approaches is the fact that it is not
easy to define good weight values for a given application, or even
for a given user in advance. Therefore, several techniques (such as
Refs. [26] and [27]) based on user feedback have been proposed to
assist weight assignment for descriptors in retrieving images by con-
tent. In general, these methods are based on user judgments with
regard to the relevance of previously returned images. Frome et al.
[25] apply a maximal-margin formulation for learning linear com-
binations of elementary distances. This procedure, however, is quite
different from our method: their approach learns from "triplets”
of image: focal (training) image, an image labeled as "less similar”
with regard to the focal image, and an image labeled as "more
similar”.

More recently, kernel-based approaches have been proposed for
combining descriptors [28,29]. Even though they exploit image rep-
resentation and distance measures, these approaches have not been
applied for CBIR. In general, they try to determine appropriate kernel
machines for available image classes, being, therefore, appropriate
for image classification problems.
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7.2. AI techniques in image processing

AI techniques, such as GA and GP, have been successfully used
in several image processing applications: object recognition [30,31],
object detection [12,32], image classification [33], etc.

Howard et al. [30] investigated the use of GP to support au-
tomatic ship detectors in SAR (synthetic aperture radar) imagery.
They use pixel statistics associated with pixel windows as termi-
nals. Unfortunately, they do not compare their method with any
other approach. Bhanu and Lin [12] applied GP to combine im-
age processing operations for object detection. In their framework,
composite operators are represented by binary trees where inter-
nal nodes represent the pre-specified primitive operators and the
leaf nodes represent the original image or primitive (pre-defined)
image features. They also worked on selecting appropriate features
for target detection using GA [32]. A similar approach based on GA
was used by Sun et al. [31] to select features for object detection.
In image classification, Agnelli et al. [33] used the GP-based frame-
work to find out the best combination of image scalar features.
They used a small database (102 images) for validation and did
not compare their GP-based method with any other evolutionary
approach.

8. Conclusions

We considered the problem of combining simple descriptors for
content-based image retrieval. Our solution uses genetic program-
ming (GP) to discover an effective combination function. The pro-
posed framework was validated for shape-based image retrieval,
through several experiments involving two image databases, and
many simple descriptors and fitness functions.

We conclude that the new framework is flexible and powerful
for the design of effective combination functions. The effectiveness
results demonstrate that the GP framework can find better similarity
functions than the ones obtained from the individual descriptors. Our
experiments also demonstrate that the GP framework yields better
results than the GA approach. In fact, even compared to outstanding
baselines (BAS60 on fish shapes data set), GP was able to find out a
better result.

We also evaluated a set of fitness functions based on utility
theory to find the best combination function for the image search
problem. The experiments showed that several of the used fitness
functions are very effective in guiding the GP search. Among the var-
ious fitness functions we tested, FFP1, FFP2, and LGM are the ones
we recommend for the image retrieval problem.

The GP framework for the image retrieval problem is considered
"global”, as it tries to find the best descriptor combination (repre-
sented as just one tree), which optimizes the number of relevant
images returned. "Local” strategies, which are suitable to determine
the best descriptor combination for a given class, would be useful
in classification problems (e.g., Refs. [14,28]). Future work addresses
this research topic. We also plan to devise an automatic mechanism
to incorporate the GP-based descriptors in search engines. Another
important issue that is being investigated is concerned with the de-
velopment of relevance feedback (RF) approaches based on the GP
framework proposed in this paper [34]. RF methods take advantage
of the interactions between the user and the image search engine to
increase the number of returned relevant images in a given query
session [15,35--39].
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