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Rationale and Objectives. The aim of this study was to investigate whether using a fractal dimension as an objective index

(quantitative measure) to assess and control the ‘‘visual’’ or ‘‘texture’’ similarity of reference-image regions selected by a content-

based image retrieval (CBIR) scheme would (or would not) affect the performance of the scheme in classification between image

regions depicting suspicious breast masses.

Materials and Methods. An image data set depicting 1500 verified mass regions and 1500 false-positive mass regions was used.

Fourteen morphologic and intensity distribution features and a fractal dimension were computed. A CBIR scheme using

a k-nearest neighbor classifier was applied, and two experiments were conducted. In the first experiment, the CBIR scheme was

evaluated using all 15 features. In the second experiment, the fractal dimension was used as a prescreening feature to guide the

CBIR scheme to search for the most similar reference images that had similar measures in the fractal dimension.

Results. The CBIR scheme achieved classification performance with areas under the receiver-operating characteristic curve of

0.857 (95% confidence interval [CI], 0.844–0.870) using 14 features and 0.866 (95% CI, 0.853–0.879) after adding the fractal

dimension (P = .005 for both results). After using the fractal dimension as a prescreening feature, the CBIR scheme achieved an

area under the receiver-operating characteristic curve of 0.851 (95% CI, 0.837–0.864), without a significant difference from the

previous result using the original 14 features (P = .120). The difference of fractal dimension values between the selected similar

reference images was reduced by 56.7%, indicating improvement in image texture similarity. In addition, more than half of

references were discarded early, without similarity comparisons, indicating improvement in searching efficiency.

Conclusions. This study demonstrated the feasibility of applying a fractal dimension as an objective (quantitative) and efficient

search index to assess and maintain the texture similarity of reference mass regions selected by a CBIR scheme without reducing

the scheme’s performance in classifying suspicious breast masses.

Key Words. Content-based image retrieval (CBIR); mammograms; fractal analysis; computer-aided diagnosis (CAD); visual

similarity; receiver-operating characteristic (ROC) analysis.
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Content-based image retrieval (CBIR) schemes have been

developed to search for images similar to a queried image

from large reference-image databases on the basis of features
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or image content inherently contained within the images (1,2).

In particular, the CBIR method has been proposed to over-

come the difficulties encountered in textual annotation or

description by manual methods for large image databases (3).

Although the use of purely visual image querying is unlikely

to be able to completely replace text-based searching

methods, CBIR has the potential to be a very useful comple-

ment to text-based searching methods because of unique im-

age characteristics (4). In the field of computer vision, CBIR

has been one of the most active research areas over the past 30

years (5).
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Currently, with the advances in digital technologies ap-

plied to medical imaging, a large number of diverse radio-

logic and pathologic images in digital format are rapidly

produced in hospitals and medical centers using sophisticated

image acquisition devices and digital scanners. These digital

images have been routinely used for the purposes of diag-

nosis and therapy. The management of and access to these

large image repositories has become increasingly complex

and challenging (1). In reading and interpreting medical im-

ages in daily clinical practice, observers (ie, radiologists and

pathologists) are often faced with new unknown and suspi-

cious lesions, requiring them to search for and make com-

parisons to similar cases with previously verified results in

their decision making in detection and diagnosis (6,7). This is

a difficult and very time consuming task because of the rapid

increase in the sizes of medical imaging databases. Therefore,

developing and applying CBIR schemes to more effectively

organize and retrieve images has attracted wide research in-

terest in medical imaging and informatics (1,4,8). In partic-

ular, a number of studies have recently been conducted on

how to develop and optimize CBIR schemes to search for

similar breast lesions (including masses and microcalcifica-

tion clusters) (3,6,9–11).

There are many factors to consider in the design of a CBIR

system, such as the domain and purpose, the choice of

appropriate features, the criteria for assessing image simi-

larity, the indexing mechanism, and the query formulation

technique (1,4). One of the most important factors in the

design process is the choice of suitable visual features and the

methods to extract them from raw images (1), because the

query image is formulated and represented by exclusive

features (9). Moreover, feature extraction affects all subse-

quent processes. In medical imaging applications, the per-

formance and potential clinical utility of CBIR schemes are

evaluated primarily by three factors: (1) clinical relevance (ie,

classification performance evaluated using receiver-operat-

ing characteristic [ROC] analysis), (2) visual similarity be-

tween the queried image region and the selected reference

regions (ie, finding the effective visually similar indices), and

(3) search efficiency (ie, whether the computation task can be

done in real time). Some previous studies have focused on

improving CBIR schemes in distinguishing between positive

and negative lesions (clinical relevance) (6,10), while others

have assessed and compared the visual similarity of selected

reference images using subjective ratings (11) and a two-al-

ternative forced-choice observer preference study (12). Al-

though visual similarity is very important in the application

of CBIR schemes, previous studies have also found that it is

a subjective concept, with high interobserver variability

(11,12). Therefore, identifying and applying an objective

index (a quantitative feature or feature set) to assess the visual

similarity of reference-image regions selected by CBIR

schemes is an important and technically challenging task.
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In addition, many similarity indices based on pixel value

distribution (ie, mutual information and Pearson’s correla-

tion) used in previous CBIR schemes are computationally

expensive and cannot be used to conduct efficient (‘‘real-

time’’) image searches (13). Our goal is to guarantee that all

reference-image regions selected by CBIR schemes have

improved ‘‘visual similarity’’ assessed using an objective and

computational efficient index (not the previously used sub-

jective indices), without reducing the schemes’ performance

in the classification of suspicious lesions (diagnosis of med-

ical images).

In computer vision, texture is defined by such terms as

‘‘structure’’ and ‘‘randomness’’ (5). The fractal model (or

analysis) has been introduced to describe the ruggedness of

natural objects (14). One of the advantages of fractal analysis

is the ability to quantify and describe the irregularity and

complexity of images with a measurable value, which is

called the fractal dimension (15,16). Because the fractal

dimension shows both self-similarity and overall roughness

on multiple scales (17), it can be used to describe and inter-

pret patterns of visual texture (18). For example, one previous

study reported that because cancerous tumors exhibited

a certain degree of randomness associated with their growth

and were typically irregular and complex in shape, fractal

analysis could provide a better measure of their complex

patterns than conventional Euclidean geometry (19). Other

studies have also suggested that the subjective evaluation of

visual features was highly correlated with fractal dimensions

of textile design images (20) and could help in determining

the inherent complexity of visual images and serve as a tool

for the estimation of visual complexity (21). Also, some

researchers believed that visual similarity based on the fractal

dimension might at least partially imply or correlate with

semantic similarity (22). Therefore, the fractal dimension can

be used as a feature for both visually recognizable image

texture and semantic similarity in searching for irregular

cancerous regions.

Because of its unique advantages, fractal analysis has been

widely applied to many medical imaging research areas, in-

cluding detection, segmentation, and classification, with

varied success. For example, the fractal dimension has been

used in the detection and segmentation of microcalcifications

depicted on digital mammograms (14,23), distinguishing

between benign and malignant breast masses (24), the clas-

sification and analysis of mammographic parenchyma pat-

terns (17,25), and the analysis of trabecular bone structure

(26,27). However, to the best of our knowledge, the fractal

dimension has not been applied in any CBIR schemes to

search for similar medical images (ie, those depicted breast

mass regions) from reference databases. In this preliminary

study, we investigated and tested whether using the fractal

dimension as an objective index (quantitative measure) to

assess and control the visual similarity of reference-image
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regions selected by a CBIR scheme would (or would not)

affect the performance of the scheme in the classification of

image regions depicting suspicious breast masses.

MATERIALS AND METHODS

Reference-image Database

We have assembled a large and diverse image database of

mammograms in our laboratory. The original digitized

mammograms were generated using several film digitizers,

with a pixel size of 50 � 50 mm and 12-bit gray-level reso-

lution. To create a reference database used in CBIR-based

computer-aided diagnosis (CAD) studies, our computer

program first subsampled the images by a factor of two

(increasing pixel size to 100� 100 mm) and then extracted all

selected regions of interest (ROIs) with a fixed size of 512 �
512 pixels. The center of each suspicious mass was also

located in the center of the extracted ROI. Using the ROI

center pixel as a mass region growth seed, a previously de-

veloped multilayer topographic region growth algorithm (28)

used in our CAD scheme was applied to segment the mass

region (define its boundary contour). For each true-positive

mass, the automated segmentation result (its boundary con-

tour) was visually examined. If a noticeable segmentation

error was identified, the mass boundary contour was manu-

ally corrected (redrawn). Unlike some previously reported

studies, in which negative ROIs were randomly selected and

extracted from negative images, each negative ROI selected

in our reference database actually contains a false-positive

mass that is automatically segmented and cued by the CAD

scheme.

The reference database used in this study includes 3000

ROIs extracted from mammograms acquired from 1127

patients. In 336 cases, ROIs were extracted from two breasts,

and in 791 cases, ROIs were extracted from one breast. Thus,

among 1463 breasts (2�336 + 791), 843 depict verified mass

regions (true-positive findings), and 620 do not. Among the

843 breasts depicting positive masses, 722 depict malignant

masses, and 121 depict biopsy-proved benign masses. All

these masses were originally rated in Breast Imaging Re-

porting and Data System categories 4 and 5 by radiologists.

Similar to our previous study (12), the goal of the CBIR

schemes compared and tested in this study is to detect sus-

picious mass regions (classification of whether the queried

ROI depicted a suspicious breast mass). Thus, each true-

positive ROI depicts one verified mass (either malignant or

benign), and each false-positive ROI depicts a CAD-cued

false-positive mass that is actually negative. In summary,

among these 3000 ROIs, 1500 are true-positive regions, and

the remaining 1500 are negative regions. The 1500 true-

positive ROIs were extracted from 906 masses depicted on

843 positive breasts. Among them, 594 masses were ex-
tracted from both the craniocaudal and mediolateral oblique

views, and 312 masses were extracted from only one view.

The 1500 negative ROIs were extracted from CAD-cued

false-positive mass regions depicted on 769 breasts (includ-

ing 620 negative and 149 positive breasts). In addition, some

of image characteristics of these selected true-positive mass

regions have been reported elsewhere. Approximately half of

these masses were rated subjectively as ‘‘subtle’’ to ‘‘very

subtle’’ by radiologists (12).

On the basis of mass segmentation results, we used

a computer scheme to compute 14 morphologic and intensity

(pixel value) distribution features from each segmented mass

region (including both true-positive and false-positive re-

gions). These 14 features were selected from a large initial

feature pool using genetic algorithm (GA), as reported in our

previous study (12). The detailed definitions and computing

methods of these features, including three global features

computed from the whole breast area segmented from the

image (average pixel value in the breast area, average local

pixel value fluctuation in the breast area, and standard devi-

ation of the local pixel value fluctuation in the breast area)

and 11 local features computed from the segmented mass

region and its surrounding background (region conspicuity,

normalized mean radial length of a region, standard deviation

of radial length, skew of radial length, shape factor ratio,

standard deviation of pixel value inside the mass region,

standard deviation of the gradient of boundary pixels, skew

of the gradient of boundary pixels, standard deviation of pixel

values in the surrounding background, average local pixel

value fluctuation in the surround, and normalized central

position shift), have been previously reported (12). These 14

computed image features were saved in a reference-feature

data file that contains all extracted and selected ROIs in our

reference database.

Fractal Dimension

We added a new feature, the fractal dimension, into the

reference-feature data file for each selected ROI in this study.

To compute the fractal dimension, the computer scheme first

applied the fast Fourier transform to each ROI and produced

a unique two-dimensional complex array called the power

spectrum (27). The power spectrum is calculated as

Pðu; vÞ ¼ jFðu; vÞ2j ¼ Rðu; vÞ2þ Iðu; vÞ2;

where u and v represent the horizontal and vertical compo-

nents of frequencies, respectively, and R(u, v) and I(u, v) are

the real and imaginary parts of the Fourier transform F(u, v),

respectively. The power spectrum is displaced in polar form

and shifted to locate zero frequency at the center. The scheme

calculates log[f(u, v)], where f ðu; vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

, and aver-

age log[P(u, v)] in the condition of f ðu; vÞ#
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

. Each
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Figure 1. (a) Power spectrum using Fourier transform and (b) line fitting for the curve on

average log[P(u, v)] versus log[f(u, v)]. The center of the image is the origin of the fre-
quency coordinate system; f0, f1, and f2 are the distances according to the frequencies,

u and v, from the origin of the coordinate system.
set of u and v is defined by every 0.1 of log[f(u, v)] (Fig 1a).

The slope of the curve on average log[P(u, v)] versus log[f(u,

v)] is calculated by least-squares fitting (Fig 1b). Finally, the

fractal dimension is calculated as

fractal dimension ¼ ð7� slopeÞ=2:

Each fractal dimension computed from 3000 reference

ROIs was then normalized to range from zero to one. The

results were saved in the reference-feature data file together

with the aforementioned optimal set of 14 features. Finally, in

the study, the fractal dimension was either used as an indi-

vidual (prescreening) feature or combined with the other 14

features to describe each ROI.

CBIR Scheme Using a k-Nearest Neighbor
Classifier

In our previous study (12), we developed and tested

a CBIR scheme using a multiple-feature-based k-nearest

neighbor (kNN) classifier to search for similar breast masses

depicted in the reference database. Our GA optimized the

kNN-based classifier, which searches for and identifies 15 (K)

of the most ‘‘similar’’ suspicious mass regions to the testing

(queried) region from the preestablished reference-feature

data file. The similarity is measured by the Euclidean distance

(d) between a testing mass region (yT) and each of the ref-

erence regions (xi) in a multidimensional space with FN

selected image features (fr):

dðyT; xiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XFN

r¼1

½frðyTÞ � frðxiÞ�2
vuut :

A smaller distance indicates a higher degree of ‘‘similarity’’

between two compared regions. The kNN classifier then
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computes a detection score to indicate the likelihood of being

a true mass to the queried region:

PTP ¼
PN

i¼1 wTP
iPN

i¼1 wTP
i þ

PM
j¼1 wFP

j

;N þM ¼ K;

where wi = 1/[d(yT, xi)]
2 (a distance weight), and wTP

i and wFP
j

are the distance weights for the true-positive (i) and false-

positive (j) mass regions, respectively. N is the number of

verified true-positive mass regions, and M is the number of

CAD-cued false-positive regions.

Performance Evaluation

When applying the CBIR scheme, a retrieved reference

image (ROI) is considered to be clinically relevant if it be-

longs to the same class (ie, mass or nonmass in this study) of

the query image (ROI). Because CBIR schemes use instance-

based machine learning methods that depend on nearest

neighbors and/or locally weighted regression to approximate

real-valued or discrete-valued target functions, no pretraining

process is needed to construct a general and explicit target

function (28). In this study, we used a leave-one-case-out

method to test and evaluate the performance of our CBIR

scheme. In the experiment, each of 3000 ROIs in our refer-

ence database was separately used once as a testing (queried)

ROI. In this iterative process of performance evaluation, once

a testing ROI was selected, the CBIR scheme searched for the

K ROIs through the remaining reference database (excluding

itself and all other ROIs extracted from the same case or

patient) that were considered the most similar to the testing

ROI. As a result, a set of K similar reference ROIs and

a corresponding detection score is generated for the testing

ROI. On the basis of the detection scores for both true-posi-

tive and false-positive ROIs, we applied the ROC data-fitting
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and analysis program ROCKIT (Charles E. Metz, University

of Chicago, Chicago, IL) to compute ROC curves, including

the areas under the curves (Az) and 95% confidence intervals

(CIs). The Az values were used as indices to assess the per-

formance of the CBIR scheme in selecting clinically relevant

reference ROIs. Statistically significant differences (P
values) were also used to compare the performance differ-

ence between two CBIR schemes.

In this study, we conducted two experiments to evaluate

CBIR schemes with the fractal dimension. In the first exper-

iment, we tested and evaluated our kNN-based CBIR scheme

using 15 features (including the fractal dimension and the

previously selected optimal feature set with 14 features). The

primary purpose of this experiment was to test whether adding

the fractal dimension was redundant or whether it could re-

place a number of the other existing features. We applied the

GA with the same procedure as described in our previous

study (12) to search for the optimal features among these 15

features (14 morphologic and intensity distribution features

and the fractal dimension) and the number (K) of similar ref-

erence regions. In brief, a binary coding method was applied

to create GA chromosomes. Each extracted feature corre-

sponded to one gene of a chromosome, for which a value of 1

indicated that the feature was selected and a value of 0 indi-

cated that the feature was discarded. Five additional genes

were also appended to the chromosome to find an optimal

reference K. For example, 01111 indicates that 15 neighbors

are selected. Thus, each GA chromosome included 20 genes

in this experiment. The GA iteratively performed crossover

and mutation operations to find the compositions of genes

improving the performance of the CBIR scheme. At each it-

eration, the Az value was computed according to the combi-

nation of the features and K corresponding composition of

genes selected by the GA. When there was no performance

improvement in the new generation or the searching genera-

tion reacheed the predetermined maximum number (ie, 100 in

our studies), the GA optimization terminated.

In the second experiment, we added the fractal dimension

as a prescreening feature (condition) to our previously opti-

mized CBIR scheme using 14 features. The purpose of this

experiment was to force the CBIR scheme to search only for

the reference ROIs that had similar fractal dimension values

(texture similarity) to the testing ROI. In the experiment, once

a testing ROI was queried, the fractal dimension was used as

a criterion to discard early all the reference ROIs if the dif-

ference (dFD) of fractal dimensions between the testing ROI

and these reference ROIs was larger than a predetermined

threshold (a). The criterion was �a # dFD # a. The refer-

ence ROIs beyond the condition were discarded in advance

before the previously developed CBIR scheme (12) was

applied to search for similar ROIs from the remaining images

in the reference database. Hence, computational complexity

was reduced because the number of reference regions re-
moved by the condition resulted in further improvement in

search efficiency. We systematically tested and evaluated the

performance of the CBIR scheme and computational com-

plexity as a function of the threshold in fractal dimension

difference (a). Finally, we compared the statistically signif-

icant difference between performance of the CBIR schemes

using the fractal dimension as one additional feature (exper-

iment 1) or a prescreening feature (experiment 2) and the

CBIR scheme using only the previously optimized 14

features using the CORROC program in ROCKIT.

RESULTS

In the first experiment, the GA generated an optimal kNN

including all 15 features and 26 neighbors (K = 26). The

CBIR scheme achieved the best performance (Az = 0.866;

95% CI, 0.853–0.879). Compared to the previously opti-

mized CBIR scheme, which achieved an Az value of 0.857

(95% CI, 0.844–0.870) using 14 features and the 15 nearest

neighbors (K = 15), we found that the fractal dimension was

not a redundant feature, and it could make the contribution to

improving the CBIR scheme’s performance. Figure 2 shows

two ROC curves plotted using classification results generated

by the previous scheme using 14 features and the new scheme

adding the fractal dimension. The difference between the two

Az values was assessed with a two-tailed P value computed in

Figure 2. Comparison of the two receiver-operating character-
istic (ROC) performance curves generated using two content-

based image retrieval schemes with the original 14 features and

adding the Fourier spectrum–based fractal dimension as the 15th

feature. The areas under the ROC curves are 0.857 (95% confi-
dence interval, 0.844–0.870) and 0.866 (95% CI, 0.853–0.879),

respectively.
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ROCKIT (P = .005), with a 95% CI for the difference of

�0.0136 to �0.0025.

For the second experiment, Table 1 shows the computed Az

values and their 95% CIs of the CBIR scheme as the variation

of the thresholds (a) on the allowed difference in fractal di-

mension values between the queried ROI and the selected

reference ROIs. For example, the results show that for a =

0.10, our CBIR scheme using 14 features and 15 nearest

neighbors achieved the best performance (Az = 0.851; 95%

CI, 0.837–0.864). There was no statistically significant dif-

ference between the performance of the CBIR scheme using

the fractal dimension as a prescreening condition (ie, a = 0.10)

and the original CBIR scheme using only the previously

optimized 14 features (P = .120). At this threshold level, 1588

reference ROIs (approximately 53%) were discarded early

(Table 1). The mean� standard deviation of fractal dimension

differences between one test region and each of the 15 most

similar reference regions selected by the CBIR scheme using

the fractal dimension as a prescreening condition was 0.045�
0.028. On the other hand, the mean � standard deviation of

those regions selected by the CBIR scheme without the fractal

dimension was 0.104 � 0.057 (Fig 3). The results indicated

that when using the new CBIR scheme, the difference of se-

lected reference ROIs in the fractal dimension was substan-

tially reduced by 56.7% without reducing performance in the

classification of suspicious breast masses.

DISCUSSION

Although a large number of CBIR schemes have been

developed and tested, there is no universally applicable CBIR

Table 1
Performance of the Content-Based Image Retrieval Scheme
and the Average Number of Early Discarded (Removed)
Reference ROIs as a Function of the Comparison Threshold of
the Fractal Dimension

a

(Half of

Difference

Between Two
Fractal

Dimensions) Az 95% CI

Average Number
of Removed

Reference ROIs

0.06 0.843 0.844–0.870 2140

0.07 0.843 0.829–0.857 1967

0.08 0.845 0.931–0.859 1835

0.09 0.850 0.836–0.862 1709

0.10 0.851 0.837–0.864 1588

0.20 0.853 0.839–0.866 695

0.30 0.853 0.839–0.865 272

Az, area under the receiver-operating characteristic curve; CI,

confidence interval; ROI, region of interest.
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scheme for medical imaging applications. All CBIR schemes

are domain knowledge dependent, because image charac-

teristics or features vary widely in different applications.

Medical imaging is an ideal application for CBIR schemes

because of the limited definition of image classes (eg, digital

mammograms) and because the meaning and interpretation

of medical images are better understood and characterized

(3). Among the components of CBIR schemes, feature

selection to describe image properties is among the most

important. As a ‘‘visual aid’’ tool, our previously pilot study

demonstrated that the low performance level of a CBIR

scheme in the classification of lesions (clinical relevance)

might mislead radiologists and reduce their diagnostic per-

formance, while the poor visual similarity between lesions

would also result in radiologists’ ignoring the CBIR-selected

reference ROIs in their decision making (29). Therefore,

finding an optimal feature set to improve the performance of

CBIR schemes in both clinical relevance and visual similarity

is a significant issue at present. However, the most previous

studies of developing CBIR schemes for medical images (in

particular using mammograms) separately focused on im-

proving either clinical relevance or visual similarity. The

unique characteristic of this study is that we developed and

assessed a CBIR scheme whose aim is to achieve high per-

formance in both clinical relevance and visual similarity.

In general, the use of multiple features leads to more

accurate pattern classification than the use of a single feature

because the weaknesses of one feature could be compensated

by the strengths of the other features (22). On the other hand,

a coarse feature set without refining for the specified purpose

does not always promise an improvement in performance.

Figure 3. Distributions of the mean of fractal dimension differ-

ences between the testing region and each of 15 similar regions

selected by two content-based image retrieval schemes with and
without using the fractal dimension as a prescreening condition.
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Therefore, even though any feature is well known as a good

feature to describe an image, to combine with a previously

well organized feature set, it needs to be evaluated again with

the previously developed feature set. In the first experiment,

the GA optimization resulted in a new kNN-based CBIR

scheme that contained all 15 features, including the previ-

ously optimized 14 morphologic and intensity distribution

features and the fractal dimension, which indicates that the

fractal dimension is not a redundant feature or highly corre-

lated to any of the previously selected 14 morphologic and

intensity distribution features. As an additional feature used

in a kNN algorithm, the fractal dimension contributes to

improvements in CBIR scheme performance.

Because there are two ways to define the relevance (or

performance) of CBIR results, visual or semantic (30), in

which visual similarity means that two images ‘‘look visually

similar’’ regardless of their content, the selected reference-

image set must also be considered by observers as actually

visually ‘‘similar’’ and ‘‘relevant’’ to the case being diag-

nosed. Otherwise, observers will largely ignore the CBIR

results (12,29). However, using subjective rating methods to

assess visual similarity is very difficult and often unreliable

because of the large interobserver variation. Studies have

shown that the difference between computerized selection

results and the average visual selection results of a panel of

radiologists was often smaller than the interobserver selec-

tion results (11,31). Thus, developing an objective (or

quantitative) index to assess visual similarity may be an im-

portant and practical alternative in developing and evaluating

CBIR schemes. Previous studies have shown that the fractal

dimension can be used as a visually similar texture feature

(19–22). Thus, in this study, we selected the fractal dimen-

sion as an objective index to increase visual texture similarity

in the retrieved reference regions. The potentially clinical

utility of using the fractal dimension as an objective index to

improve visual similarity depends on whether this will not

significantly affect (in particular reduce) the performance of

CBIR schemes in selecting clinically relevant images. Our

second experiment clearly demonstrated that the use of the

fractal dimension as a criterion for visual texture similarity

did not significantly affect the performance of the CBIR

scheme in the classification of suspicious breast masses de-

picted on digital mammograms. However, it increased the

visual texture similarity by substantially reducing the differ-

ence of the fractal dimension between the queried (testing)

ROI and each of the similar reference regions selected by the

CBIR scheme.

In addition, using the fractal dimension as an objective

index of visual similarity assessment has a number of other

advantages. First, as the size of a reference database in-

creases, computational efficiency becomes an important is-

sue in the real-time application of CBIR schemes (5). Using

the fractal dimension as a prescreening tool, CBIR schemes
can discard early a large fraction of ROIs and reduce

searching space in the reference database before more com-

putationally complex methods (or algorithms) are used.

Second, unlike several other potentially visual similarity

comparison indices (ie, mutual information and Pearson’s

correlation coefficient [13]), the fractal dimensions of all

reference ROIs in the database can be precomputed (offline),

similar to all other morphologic and intensity distribution

features used in our kNN algorithm. Thus, the fractal

dimension is a unique feature suitable to be implemented in

CBIR schemes with real-time computation and comparison

capabilities. Third, fractal dimension or analysis is also scale

independent (15). Although shape features are a good cue in

searching for the same objects in an image, they rely on

accurate segmentation results and are not robust to various

scales. Therefore, the fractal dimension can serve as a reliable

feature in searching for or matching mass regions of the same

patient depicted on images acquired during sequential

examinations.

We recognize that although the results are encouraging,

this was a very preliminary study that addressed a difficult but

very important technical challenge in developing and evalu-

ating CBIR schemes applied for medical images. This study

had a number of limitations. First, although the fractal di-

mension and analysis is related to visual similarity in image

texture features, only when it is applied to an ideal fractal

surface (continuous and truly self-similar) will make the

computed fractal dimension values be the same (16). There-

fore, in a future study, we will compare other computational

methods of the fractal dimension to determine the optimal

solution that enables the fractal dimension to have the best

capability for classifying suspicious breast masses and

searching for texturally similar mass regions depicted on

mammography. In addition, although improving texture

similarity is an important step toward improving overall vi-

sual similarity in selecting medical images using CBIR

schemes, whether using the similarity of the fractal dimen-

sion can actually produce acceptable visual similarity re-

quired in clinical practice by radiologists still needs to be

investigated using different observer preference studies.

Second, the ultimate clinical utility of CBIR schemes de-

pends on many factors, including (1) scheme performance

level, (2) observers’ confidence levels in accepting the CBIR-

generated results, (3) observers’ experience in medical image

diagnosis, and (4) the subtlety of the queried cases. This

study focused only on improving scheme performance. Many

application-related issues need to be investigated further be-

fore any CBIR schemes can be optimally used in clinical

practice.

In summary, because of the growing sizes of image

repositories, their complexity, and the need for reference

images to compare similar cases with previously verified

results, CBIR has recently been attracting research interest in
1177
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medical imaging and informatics. Because of the large dif-

ference between human and computer vision, developing an

efficient CBIR scheme that can achieve high performance in

both clinical relevance and visual similarity remains a diffi-

cultly technical challenge. In this preliminary study, we

adopted and tested the fractal dimension, a well-recognized

texture feature that somehow correlates with visual similar-

ity, as a texture measure in a CBIR scheme to describe the

roughness of mass regions. The results of this study indicate

that (1) combining the fractal dimension with other mor-

phologic and intensity distribution features is not redundant

and may increase the performance of a CBIR scheme, and (2)

using the fractal dimension as a prescreening tool to improve

visual textural similarity of selected reference ROIs does not

significantly affect the performance of a CBIR scheme in the

classification of suspicious breast mass regions. Therefore,

the fractal dimension can be selected as a ‘‘visually’’ and

semantically promising feature used in CBIR schemes to

improve their performance and computational efficiency.
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