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ABSTRACT 
In the present study, an efficient strategy for retrieving texture 
images from large texture databases is introduced and studied 
within a distributional-statistical framework. Our approach 
incorporates the multivariate Wald-Wolfowitz test (WW-test), a 
non-parametric statistical test that measures the similarity 
between two different sets of multivariate data, which is utilized 
here for comparing texture distributions. By summarizing the 
texture information using standard feature extraction 
methodologies, the similarity measure provides a comprehensive 
estimate of the match between different images based on graph 
theory. The proposed “distributional metric” is shown to handle 
efficiently the texture space dimensionality and the limited 
sample size drawn from a given image. The experimental results, 
from the application on a typical texture database, clearly 
demonstrate the effectiveness of our approach over other texture 
distribution (dis)similarity metrics. In addition, its performance is 
used to evaluate several approaches for texture representation. 
Even though the classification results are obtained on grayscale 
images, a direct extension to color-based ones can be 
straightforward. 

Categories and Subject Descriptors 
H.3.3: [Information Storage and Retrieval]: Information Search 
and Retrieval – Information filtering, Retrieval models, Search 
process, Selection process. 
I.5.3 [Pattern Recognition]: Clustering – similarity measures.  

General Terms 
Algorithms, Measurement, Performance.  

Keywords 
Texture retrieval, Non-parametric distance, distributional metric, 
statistical graph matching, texture features. 

1. INTRODUCTION 
Texture is an important visual property of the materials, and 
together with color and shape are fundamental issues encountered 
in many, low level, image analysis and computer vision tasks. The 
study of texture alone is recognized to be a difficult subject in 
image science and among the different research directions 
pursued in the field. The basic building elements that constitute a 
texture retrieval system are (i) robust texture representation and 
(ii) design of a (dis)similarity measure between texture 
distributions.  

Texture representation is known to be a difficult problem due to 
the high – and usually unknown – true dimensionality of the 
feature space required to represent properly the useful 
information. Texture, as opposed to color, is an area property and 
not a point one and is characterized by features like roughness, 
variability, repeatability, directionality etc, which are defined 
over a certain spatial extent. Many methods for texture retrieval 
and classification use the energy distribution in the frequency 
domain to identify texture. Classical examples include (but are 
not limited to) image decomposition by filtering with a subband 
or wavelet filter bank [1-4] and appliance of a linear 
transformation by a Fourier or discrete cosine transform (DCT) 
[5-7]. In those methods, texture can be modelled by the fusion of 
marginal densities of subband image coefficients. Following this 
approach, one can extract samples from the texture distribution by 
utilizing small neighbourhoods of scale-to-scale coefficients.  
Components of the multivariate texture-distributional vectors are 
formed using the spatially localized coefficients, at different 
image decomposition levels. 

The other key parameter of a texture retrieval system is the 
definition of a dissimilarity measure between different textures. 
Towards this objective, several methods have been proposed 
based on histogram comparison (e.g. see [8]). However, these 
techniques exhibit several drawbacks. The necessary trade-off 
during the binning procedure has been recognized as the major 
cause of this limitation, and as dimensionality increases, the 
histogram-based measures fail to perform effectively [9]. An 
alternative approach to measure texture resemblance is by means 
of non-parametric statistical tests that make no parametric 
assumptions about the underlying sample distribution [7, 8, 10]. 
This guarantees the similarities to be assessable in terms of 
statistical significance, but avoids direct statistical parameter 
estimation. Non-parametric distributional-based methods share a 
common characteristic; they require the availability of a number 
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of (identically-distributed) independent samples from the 
underlying distribution to operate on. These samples need to be 
extracted from the available data. In the core of the proposed 
technique lies a non-parametric test dealing with the “Multivariate 
Two-Sample Problem” [11], which has been adopted here for 
expressing texture image similarity. The specific test is a 
multivariate extension of the classical Wald-Wolfowitz test (WW-
test) and compares two different samples of vectorial observations 
(i.e. two sets of points in RP) by checking whether they form 
different branches in the overall minimal spanning tree (MST) 
[12]. The output of this test can be expressed as the probability 
that the two point-samples are coming from the same distribution. 
Its great advantage is that no a-priori assumption about the 
distribution of points in the two samples is a prerequisite. 

The success of the previously described methodologies for feature 
extraction and distributional similarity estimation are tested on 
part of the OUTex texture database. The retrieval problem is 
stated as follows; given a new texture sample, find from a 
predetermined set of texture samples those that contain the same 
texture. Results should be in accordance with the intuitive notion 
of visual similarity of the different textures. Special effort is taken 
to judge all techniques under equal terms and use the available 
database in an optimal way. Regarding texture feature extraction 
techniques, three different methodologies are incorporated in this 
study, which are considered as golden standard in the scientific 
community: wavelet transform, DCT and Gabor filters. We also 
present retrieval results directly in the image domain, by 
straightforwardly applying the multivariate WW-test without 
initiating any indexing methodology. 

The rest of the paper is organized as follows. In Section 2, the 
multivariate WW-test is shortly presented. Section 3 briefly 
covers the theoretical aspects of the utilized methodologies for 
texture feature extraction. The experimental evaluation using a 
typical greyscale image database is presented in Section 4, 
including a short discussion on the experimental observations. 
Finally, conclusions are drawn in Section 5, along with an outline 
of our future research objectives. 

2. THE MULTIVARIATE WALD -
WOLFOWITZ TEST (WW-TEST) 
A non-parametric test dealing with the “Multivariate Two-Sample 
Problem” [11] has been adopted in the proposed approach for 
estimating texture content similarity in a reliable and convenient 
way. The utilized test is a multivariate extension of the classical 
statistical test of Wald and Wolfowitz and compares two different 
samples of vectorial observations. The output of the test can be 
expressed as the probability that two point-samples are coming 
from the same distribution. Its great advantage is that it is model-
free and this stems from the graph-theoretic origin of the test, 
which is actually based on the concept of MST-graph [12]. 

In the multivariate WW-test, the graph is built over points in Rp: a 
single node corresponds to every given point, the weight 
associated with every possible edge is the corresponding 
interpoint Euclidean distance, while the edges involved in the 
construction of MST are the ensemble of straight-line segments 
connecting all points with minimum total length. WW-test can be 
used to test the hypothesis Ho, whether any two given 
multidimensional point samples { } miiX :1=  and { } niiY :1=  are 

coming from the same multivariate distribution. At first, the two 
data samples of size m  and n  are considered, respectively, from 
distributions defined in RP. Then, the sample identity of each 
point is not encountered and the MST of the overall sample is 
constructed. Based on the sample identities of the points, a test 
statistic R is computed. R is the total number of runs, while a run 
is defined as a consecutive sequence of identical sample identities 
and can be defined as the number of disjoint subtrees that finally 
result. Rejection of Ho is for small values of R. The null 
distribution of this statistic is derived based on combinatorial 
analysis [11]. It has been shown that the quantity:  
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where nmN +=  and C  is the number of edge pairs sharing a 
common node. Its importance is that using simple formulae, the 
significance level (and p-value) for the acceptance of the 
hypothesis Ho can be readily estimated. 
In the present work, the above test is utilized as follows. Given 
the feature extraction step (analysed in the following Section), a 
representative set of textural characteristics – formed as feature 
vectors – is selected for a couple of texture images that are going 
to be compared. W is then computed and used as a similarity 
measure in a way that the more positive its value is, the more 
similar the two images are [13]. The W-quantity computed 
between pairs of images plays the role of a “distributional 
distance” acting on samples of image constituents, and therefore 
inherits interesting invariant characteristics such as rotation and 
translation invariance. Under this perspective, the WW-test can be 
directly incorporated, for example, in classification and retrieval 
processes from image databases, with the great advantage of 
being suitable for dealing with multivariate distributions. 

3. METHODOLOGIES FOR TEXTURAL 
FEATURE EXTRACTION 

3.1 Texture extraction using Wavelets 
In order to accomplish indexing and retrieval practices, a compact 
representation of image texture needs to be derived in the 
transform domain [4]. In the general case, the wavelet transform 
is applied to a given image in N  decomposition levels, 
decomposing each level into four independent and spatially 
oriented channels [14]. In this way, the subbands LL , LH , HL  
and HH  are resulted. Among them, the subbands LH and HL  
are mixed via the type: 

 22
nnn HLLHLHHL += , Nn ...,,2,1=  (2) 

in order to produce the LHHL  subband, for each decomposition 
level n. 
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Figure 1. Construction of the wavelet feature vectors to describe texture information. 
 
To be in agreement with the other feature extraction 
methodologies (that will be presented in the following sub-
sections), we originally partitioned the image into 64=M  non-
overlapping square blocks and, afterwards, applied the wavelet 
decomposition to each one of them as introduced above. The 

NLL  and the nLHHL  subbands, which are 1+= NK  in total, 
can now be utilized for texture feature extraction using standard 
statistical techniques. In our study, we used 2=N  decomposition 
levels due to the small size of the images blocks. For each 
subband, we calculated the mean ],[ mkµ  and the variance ],[ mkσ  
of the energy distribution of the transform coefficients using the 
following equations: 

 ∫ ∫= dxdyyxW mkmk ),(],[],[µ , Kk ...,,2,1=  (3) 

( ) dxdyyxW mkmkmk
2

],[],[],[ |),(|∫ ∫ −= µσ , Mm ...,,2,1=  (4) 
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Figure 2. WW-test in 2-D for a pair of similar textured images 
(labelled by “o” and “∗” for each distinct image), using input 

vectors extracted based on the wavelet transform. 

where ],[ mkW  corresponds to 011 , LHHLorLHHLLL  of the  
−m th block. Based on the above procedure we can create a set of 
−M vectors in the D−6  that best describe each texture image. 

A representative scheme that sketches the above procedure is 
illustrated in Fig. 1. The extracted texture features, can be used as 
input vectors to the WW-engine to compare two texture images. 
Fig. 2 exemplifies the performance of WW-test for a pair of 
similar textured images. In this panel, different labels are 
associated with each of the two images to be compared. Based on 
the image they are coming from, the extracted vectors are labeled 
accordingly using a “star” and a “dot” symbol. By contrasting the 
overall MSTs, it becomes evident that in the case of similar 
images there are many edges having differently labeled nodes as 
endpoints, since the selected vectors tend to mix together. More 
specifically, there are 74 edges ending on nodes coming from 
different images and therefore splitting the overall MST into 75 
subgraphs, thus 75=R  (and 78.1=W ). 

3.2 Texture extraction using DCT 
The Discrete Cosine Transform (DCT) has been widely used in 
the literature for efficient texture feature selection. It uses cosines 
of varying spatial frequencies as basis functions and is commonly 
known for its implementation in the JPEG compression standard 
[5, 15]. In order to extract textural attributes, the images are 
initially partitioned into NN ×  pixel-blocks, with 16=N  in our 
case. The block size was selected in order to reduce the number of 
extracted feature vectors and also try to effectively capture the 
texture information using a larger image patch. In addition, it was 
experimentally verified to produce enhanced retrieval results 
compared to a smaller (e.g., 8=N ) pixel-block. 

The DCT is afterwards applied to each distinct block, as 
illustrated in Fig. 3. From each DCT block, texture can be now 
represented by a feature vector mV , with ]22 ,1[ −∈ Nm , the 
elements of which are the square sums of coefficients of the 
corresponding diagonals (i.e., zig-zag traversal lines) [7], as 
shown in Fig. 3. The vector resulting from the zig-zag ordering 
contain all the AC coefficients starting from the upper left 
location (i.e., )1,0( ) to the bottom right (i.e., )1,1( −− NN ). 
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Figure 3. Construction of the DCT feature vectors to describe 

texture information. 
 

Assuming that a given image is initially divided into M  blocks 
of 1616×  pixels, then a set of  M feature vectors can be extracted 
that best describes the texture image content of the particular 
image. The specific indexing scheme was found to be robust, 
when similarity-based image rotation is encountered [7]. 
Following the same principle as in Section 3.1, the DCT-based 
texture features are used as input vectors to the WW-engine for 
multivariate texture-image matching. In Fig. 4, an example is 
illustrated for a pair of dissimilar – this time – textured images. 
Even though we are operating in a multidimensional space, the 
specific example is conceptualized in a 2-D domain for 
visualization feasibility, using also different symbol for endpoints 
coming from different images. By constructing the MST, in the 
case of dissimilar images the extracted vectors are clearly 
separated from each other, forming clusters at different locations 
in the corresponding feature space. Therefore, there are only a 
few edges (i.e., 16) having endpoints coming from different 
images, spanning the overall graph into 17 subgraphs, thus 

17=R  (and 54.8−=W ). 

3.3 Texture extraction using Gabor Filters 
The relation between the human vision system and the Gabor 
filters is a strong motive to test Gabor filtering for texture feature 
extraction [16]. Spatially, a Gabor function is a Gaussian 
modulated sinusoid. In his work, Daugman [17, 18] generalized 
the Gabor function in 2-D: 
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Figure 4. WW-test in 2-D for a pair of dissimilar textured 

images (labelled by “o” and “*” for each distinct image), using 
input vectors extracted based on the DCT transform. 
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Figure 5. Construction of the Gabor feature vectors to 

describe texture information. 
 

where ),( 00 yx  is the center of the field in the spatial domain and 
),( 00 νξ  is the optimal spatial frequency of the filter in frequency 

domain. xσ  and yσ  are the standard deviations of the elliptical 
Gaussian for axis x  and axis y  respectively. 

In order to extract texture information, we firstly partition the 
texture images into M  non-overlapping rectangular blocks. 
Then, the Gabor filters are applied using four different scales and 
six different orientations, creating 24=N  new filtered 
subimages. The resulted filtered subimages are obtained by 
computing the magnitude from the real 

n
Gℜ  and imaginary 

n
Gℑ  

parts of each n subband of the Gabor filters: 

  22
nn

GGGn ℑℜ += , Nn ...,,2,1=  (6) 

where nG  substitutes ],[ mkW  in (3) and (4), which are used to 
calculate the mean and variance for each one of the  filtered 
subimages. 

In [19], a DN −×2  multidimensional vector is constructed so as 
to be used for similarity matching using a valid (dis)similarity 
measure (i.e., the sum of Euclidean distances). In our study, a 

242×  dimensional feature vector is built for the description of 
texture information, corresponding to the mean and variance 
values per filtered subimages that are contained in each 
corresponding block. In the final stage, a total number of M  
feature vectors of D−48  is constructed for the description of the 
texture information of all database images, which are utilized in 
the multidimensional WW-test for similarity matching. A 
representative scheme of the previously reported technique is 
illustrated in Fig. 5, clearly sketching the overall procedure. 

4. EXPERIMENTAL SET-UP 

4.1 Texture database - performance measures 
In order to test the performance of the proposed non-parametric 
distance-based classification techniques on texture images, using 
the texture features discussed in Section 3, the OUTex database 
(University of Oulu Texture database) was used in our 
experiments. The utilized dataset contains 24 distinct texture 
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Figure 6. Illustrative examples of the 24 categories that 

constitute the utilized texture database 
 
categories, having 180 greyscale images of similar texture of size   
in each class and thus resulting in a total number of 4320 texture 
images of size 128128×  pixels. The amount of images 
comprising a single category is formed by using seven different 
texture orientations per twenty alike texture images. In Fig. 6, 24 
sample images are presented, one for each texture category. 
The most widely used performance measures for testing the 
efficiency and accuracy in information retrieval are the two 
quantities precision (Pr) and recall (Re) [20], which in our case 
were used as follows. For a given query image, let S  be the 
number of similar images that constitute a specific category in the 
image database ( 180=S  as mentioned before) and T  be the set 
of total retrieved results (a user-defined number controlling the 
size of the selected list of images returned after querying by 
example, e.g., the top 10 images). If Z  is the number of retrieved 
images coming from the same class (i.e., correct results) among 
the T  images in the selected list, then Pr and Re are defined as 
[20]: 

 
T
Z

=Pr      and     
S
Z

=Re  

In our experiments, 216 query images were used, which were 
formed by randomly selecting 9 images of similar texture for each 
distinct class. For comparing the efficiency of the multivariate 
WW-test, the quantized histogram was utilized for representing 
the texture distribution of each database image, along with three 
different (dis)similarity measures that belong to a specific 
distance category [8]. In this way, histogram intersection (HI) 
[21] was selected from the heuristic histogram distance category 
[8], and Kullback–Leibler Divergence (KLD) and Jeffrey-
Divergence (JD) from information-theory divergencies [4, 8]. In 
addition, the −1L norm was also incorporated in our experimental 
comparisons, which has been proven to perform well in the case 
of the Gabor filtering technique [22]. The specific metric is 
directly applied to compare single multidimensional vectors 

][ 21 Nffff K= , and is provided by the formula: 

∑ =
−=

N

m mm ffffd
1 2121 ),(  

In order to create single multidimensional vectors from the 
ensemble of vectors that are selected using each particular feature 
extraction technique, we simply compute the mean value from all 
set of vectors in each dimension. Alternatively speaking, the 
vector f  is bound to represent the mass-centroid of the 
distribution under study. 

4.2 Experimental results 
In what follows, all textural feature extraction methodologies 
(presented in Section 3) are exemplified using the multivariate 
WW-test as our standard (dis)similarity measure, which in turn is 
compared against all the other – previously reported – 
(dis)similarity measures. The reason for constructing the 
experimental tests is two-fold: on the one hand our goal is to 
validate the performance of the proposed non-parametric 
statistical test, in comparison to other approaches that are 
considered classical in the image retrieval community; on the 
other hand we aim to estimate the effectiveness of the different 
feature extraction methodologies for building-up a textural image 
retrieval scheme. 
The retrieval results that compare the feature extraction 
methodologies with the different (dis)similarity measures are 
summarized in Fig. 7. In the case of the wavelet method 
(described in Section 3.1), the output of the proposed technique 
for texture feature matching is depicted in Fig. 7(a). Evidently, 
the utilized WW-engine outperforms all other (dis)similarity 
measures, yielding quite good retrieval rates. In the specific 
example, two decomposition levels were used in the 
implementation of the wavelet transform, producing a 6-D texture 
feature space. In addition, Fig. 7(b) present the computed results 
coming from the DCT technique (introduced in Section 3.2). In 
this case, the precision is also substantially higher from all other 
comparison histogram methods, with the WW-test yielding the 
best results and the 1L  distance having ~ 6 % lower precision 
than the proposed statistical measure. The higher precesion 
accuracy is provided using Gabor filters in the feature extraction 
stage (presented in Section 3.3), as depicted in Fig. 7(c). Using 
the WW-test for comparing the multivariate texture distributions, 
we achieved an average precision of more than 95 % for the entire 
database. The specific effectiveness can safely guide the built-up 
of an image retrieval scheme for texture datasets, based on Gabor 
filters (for image-indexing) and the multivariate WW-test (for 
image-matching, i.e., using pairwise comparisons of texture 
distributions). 

It has to be noted that although HI and 1L distances are closely 
related there is a big performance difference. In this work HI is 
approximately calculated as the mean value of HI distances 
between the corresponding pairs of vectors of the two 
distributions. Instead we compute 1L over the mass-centroids of 
the two distributions. The good performance of the 1L can easily 
be explained, as similar textures have similar frequency 
characteristics in their segments (blocks), thus the use of the mean 
value over them produce closely mass-centroids. The other 
measurements instead are used over the distributions and not their 
mass-centroids, producing comparative lower performance. 
Finally, all (dis)similarity measures were compared directly in the 
image domain, without the involvement of any feature extraction 
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Figure 7. Precision vs Recall results of the four methodologies presented in Section 3, using other (dis)similarity measures. (a) using 
wavelets, (b) using DCT, (c) using Gabor filters and (d) in the image domain.  

 
technique. This was dictaded by the need to estimate the 
performance of the involved pattern matching in a straightforward 
way, before applying any pre-filtering scheme that disassociates 
the frequency energy inside each texture image. For this reason, 
each texture image was first divided into 6488 =× image-blocks, 
having a total of 2561616 =×  pixels each (since all database 
images are comprised of 128128×  pixels). Then, a 
multidimensional vector was constructed by concatenating the 
pixels involved inside each image-block, building in this way a 

D−256  texture-feature vector. By representing the grayscale 
values of all image-blocks, 64 vectors were computed, lying in 
a D−256  feature space. Thus, image similarity between two 
texture images can be estimated by computing the similarity of 
their vector distributions, directly in a multidimensional feature 
space. By comparing all the introduced measures using the pre-
defined technique, interesting results are revealed in Fig. 7(d). As 
we can perceive, histogram-based measures, as well as the 1L  
distance, fail to meet the requirements induced by the 
construction of the multidimensional feature space. Their overall 
performance is pretty discouraging. On the other hand, the 
multivariate nature of the WW-test makes it an appropriate gauge 

for texture feature matching, where high-dimensionalities are 
involved. 
By comparing all different aspects of the involved study under the 
experimental umbrella of Fig. 7, the following observations/ 
notices can be made. The involved technique using Gabor 
filtering over image blocks presented in Section 3.3 provides the 
response with the higher precision. In addition, the results coming 
from the image domain approach are the most interesting ones. In 
256 dimensions, WW-test can be successfully used as a similarity 
measure yielding a precision of 77% for the 10=T  images of the 
selected list. On the contrary, all other histogram techniques plus 
the 1L  metric which performed quite close to the proposed 
measure in all previous cases, result in an extremely low precision 
index. Due to the high number of bins (256 in our experiments) 
and the relatively small number of values that can be taken (i.e. 
256 greyscale values), the computed histograms are very sparse 
and relatively empty. This leads to erroneous matches when used 
as distributional distance estimates. Moreover, the 1L  distance 
fails to perform too, however, not because of the high dimensions  
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Figure 8. Summarization of the classification error rate 
results produced using the four methodologies treated at 

section 3, using the WW-Test as similarity measure. 
 
of the feature space, but rather due to the uncompressed nature of 
the involved data. Owing to the arbitrary position (or shape) of 
the texture in the image plane, the vectors coming from each 
image-block are placed in an almost random location, even in the 
case of the same kind of texture. By averaging the 64 extracted 
multidimensional vectors to one central vector in order to be 
inserted in the −1L norm, that structure of the feature space is 
lost, resulting in the consequent failure of the involved distance 
metric. However, this did not occur in all the other feature 
extraction methodologies, since the induced data-compression of 
the energy frequencies did not alter the hidden structure of the 
texture image that characterized the texture. On the other hand, 
the multivariate nature of the WW-test and more specifically the 
construction of the MST retains the texture structure of the 
arbitrary vectors. Graph theory, and more specifically the MST-
graph, puts emphasis on the structural relationships between the 
extracted characteristics. In addition, the MST provides a compact 
description of a point set and characterized by determinacy [23]. 
The precision vs. recall results for all distinct methodologies 
presented in Section 3, using the non-parametric WW-test as the 
similarity measure for pairwise comparisons, are illustrated in 
Fig. 8. It can be clearly noticed that the introduced distributional-
based statistical measure works better in the case of the Gabor 
filters, as well as the DCT-based approach. It should be 
mentioned that the selected window size for texture analysis in 
the utilized database are influenced both by the size of the 
available images and the texture variation included in each image. 
The very good results obtained using Gabor filters are partially 
attributed to the particular construction of the texture database. 
Notice that, different orientations of almost the same texture were 
included and the directional selectivity that these filters possess is 
well known. Nevertheless it is observed that Gabor filters together 
with the DCT decompose a texture image into its subbands in a 
more robust way. 

5. DISCUSSION 
In the present study, a novel approach is presented to tackle the 
texture retrieval problem. The multivariate statistical WW-test, 
which is based on the construction of an MST, is utilized here to 
estimate the gauge between two distinct distributions. Its generic 
character stems from the fact that by altering the character of 
texture image characteristics, we can modify the flavour of 
formulated queries. The multidimensional test can adequately 
operate even with a small number of distributional samples and is 
well suited for texture matching. Part of the flexibility of our 
proposal is due to the statistical nature of the core procedure, the 
WW-test, and specifically its multivariate foundation. Not only 
different image characteristics can – in principle – be combined 
naturally in one type of query, but also different types of queries 
can evolve independently and their results can be compared 
across types. The latter is a direct consequence of the fact that the 
measured W-index relates directly to significance-level and 
therefore can be used as an absolute measure to rank among the 
results of different types of query [13]. 
It is worthy to note that the computational cost needed for the 
creation of the MST using Kruskal algorithm is of order  

)log( NNO , where N  is the number of vectors, which grant 
WW-Test the advantage of low computational cost for relative 
small N ; in our case 128=N . In addition, the number of space 
dimensions has a slight impact on the computational cost. 
In order to extract textural characteristics from a set of given 
images, individual texture samples were extracted from the 
images of the OUTex texture database by partitioning the image 
into non-overlapping regions of almost homogenous texture 
content. The intrinsic dimensionality of the texture regions was 
computed by means of image decomposition, implementing some 
of the well-established techniques. The efficiency in textural 
feature extraction of the different methods, as well as the 
competence of the above measure in distributional texture image 
representations, was tested with quite satisfactory results, which 
yield future ideas for research and application. 
As a scheduled extension of our work, we can straightforwardly 
implement the application of the introduced methodology to color 
or multispectral images for texture retrieval and/or classification 
tasks. This can be accomplished by placing other subband’s 
texture information to higher dimensions in the feature space. 
However, special care has to be taken to the number of extracted 
feature vectors in the case of multispectral images, due to the 
“curse of dimensionality” [24]. In addition, more has to be done 
in order to overcome the problem that arises from the weakness to 
capture texture patterns that have different plain scales. This 
might be accomplished by utilizing adaptive scalable blocks, by 
means of – each time – different sized block patches inside the 
input images. For example, the usage of representative samples 
(instead of simple random patches) can be adopted, by using a 
vector quantization technique like the “Neural-Gas” algorithm 
[25, 26]. In this way, the texture information can be efficiently 
captured in different scales, making use of possible regions of 
interest. Moreover, texture segmentation algorithms could be 
incorporated towards this solution, among the plethora that is 
available in the literature the recent years (e.g., [27-30]). Finally, 
the use of alternative ways to extract texture information based on 
high-level features (i.e., semantic-based texture attributes), so as 
to correlate better with the human perceptual inspection, is of 
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crucial importance [31], as well as the potential application of 
combining other primitives in the feature extraction methodology. 
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