
Threshold-based 3D Tumor Segmentation using Level Set (TSL)

Sima Taheri†, Sim Heng Ong†, Vincent Chong‡
† Department of Electrical and Computer Engineering

‡ Department of Diagnostic Radiology
National University of Singapore

Email: {sima,eleongsh,dnrcfhv}@nus.edu.sg

Abstract

Three-dimensional segmentation is reliable approach to
achieve a proper estimation of tumor volume. Among all
possible methods for this purpose, level set can be used as a
powerful tool which implicitly extracts the tumor surface. In
this paper, we introduce a threshold-based algorithm for 3D
tumor segmentation using level set (TSL). This algorithm
uses a global threshold to form the level set speed function
which is updated iteratively throughout the level set grow-
ing process. An important feature of TSL is that no explicit
knowledge about the tumor and non-tumor density functions
is required. The proposed method can be implemented in
the automatic and semi-automatic forms depending on the
complexity of the tumor shape. TSL is examined on several
clinical MRIs for both visual and quantitative evaluation.
Experimental results demonstrate the effectiveness of our
approach.

1. Introduction

A proper estimation of the tumor size is useful for several
applications such as evaluating the effect of therapy on tu-
mor and changing the treatment plans. Although the largest
tumor diameter is widely used as an indication of the tu-
mor size, because of three-dimensional shape of the tumor
it may not reflect a proper assessment of this tumor attribute
[8]. The tumor volume, on the other hand, suggests an ap-
propriate representation of the tumor size. One way to find
an estimation of tumor volume is to use segmentation algo-
rithms. Such schemes implicitly acquire the tumor volume
through extracting the 3D tumor surface.

In order for 3D image segmentation, active surfaces are
widely used implicitly in the form of level set or explicitly
in the form of snake. However, level set method is pre-
ferred because of its ability to handle complex geometries
and topological changes. But, there are some difficulties in
using level set which make it necessary to be provided by

some additional knowledge about the desired regions. For
example, Ho et.al. proposed the region competition idea in
the level set evolution in which the difference between T1W
and CET1W magnetic resonance images (MRIs) is used
to estimate the parametric density functions of tumor and
non-tumor regions [2]. This idea can be extended based on
non-parametric density estimation using kernel expansion
or Parzen windowing [7]. The main drawback of such algo-
rithms is their dependency on estimation of tumor and non-
tumor probability density functions. On one hand, the para-
metric estimation of the density functions may not provide
necessary precision because tumors are not generally ap-
peared with the uniform intensities. On the other hand, non-
parametric density estimation methods like Parzen window-
ing need to have enough training samples of both regions.
Moreover, the additional complexity of estimation imposed
to such algorithms causes a tendency toward density inde-
pendent approaches.

In this paper, we introduce a threshold-based density in-
dependent approach which benefits level set for 3D brain
tumor segmentation in the MRIs. The basic idea in this al-
gorithm is to use a global threshold to form the level set
speed function. The initial threshold is calculated based on
the level set initialization and then updated throughout the
process of segmentation, iteratively. Upon reaching the tu-
mor boundary, because of the contrast between tumor and
non-tumor intensities, the variation of the threshold declines
so that the process stops. This algorithm can be imple-
mented in the automatic and semi-automatic forms depend-
ing on the complexity of the tumor shape.

The rest of the paper is organized as follows. Sec. 2 in-
troduces the TSL algorithm, its iterative approach for find-
ing and updating the threshold and its stopping criterion.
Furthermore, the formulation of the level set and designing
its speed function are presented in this section. In Sec. 3 a
detailed discussion about threshold updating is provided in
addition to a modified TSL for non-homogeneous tumors.
Simulation results in Sec. 4 show the effectiveness of our
algorithm. Finally, Sec. 5 concludes the whole paper.

IEEE Workshop on Applications of Computer Vision (WACV'07)
0-7695-2794-9/07 $20.00  © 2007



2. TSL algorithm

Let us assume that the histogram of tumor and non-tumor
1 regions are slightly overlapped. Such assumption is quite
frequent in MR images. Without loss of generality, in this
paper we consider the cases that tumor region has mean in-
tensity value grater than that of the background. In such a
situation, a threshold can be found so that it discriminates
between tumor and non-tumor voxels with high probability.
Using level set, TSL specifies an algorithm to find a proper
threshold as well as a method to update it on an iterative
basis. The first estimation of the threshold is based on the
level set initialization which is performed by user inside the
tumor region. The merit of TSL algorithm is that no ex-
plicit knowledge about the density functions of tumor and
non-tumor regions is required.

TSL needs an appropriate estimation of the threshold to
perform segmentation properly. For such an estimation, the
concepts of confidence interval and confidence level must
be considered. In the following, firstly we explain these
concepts and use them to estimate the threshold. After that,
the level set evolution equation is represented fitting to TSL
and its speed function is designed on the basis of our thresh-
old updating approach. Level Set initialization and TSL
stopping criterion are also discussed in this section.

2.1. Confidence Interval

The Confidence Interval (CI) can be defined for any dis-
tribution as an interval in which a certain percentage, Con-
fidence Level (CL), of observations are located. For a sym-
metric distribution such as normal, the CI is within the k
standard deviations, i.e., kσ, around the population mean,
µ. A general relation between CI and CL can be found
based on the Chebyshev’s Inequality. It should be noted
that the Chebyshev’s inequality holds without any assump-
tion regarding the shape of the distribution. For a random
variable ξ with the finite mean and variance we have,

P (|ξ − µ| ≥ kσ) ≤ 1
k2

k > 0 (1)

which shows that greater than (1− 1
k2 ) percent of population

falls within k standard deviations from the population mean.
For the non-symmetric distributions, the one-tailed version
of Chebyshev’s inequality can be used as follows [6],

P (ξ − µ ≥ kσ) ≤ 1
1 + k2

(2)

1The area just around the tumor boundary and inside the cube which
encompasses tumor. This cube is our range of interest (ROI)

2.2. Threshold updating

According to the concept of CI, we define an expression
for threshold updating as follows,

Ti+1 = µ̂i − kσ̂i i ≥ 0 (3)

where Ti+1 is the threshold estimation for the (i + 1)th it-
eration and k is the factor which determines the confidence
level and must be chosen properly. Later, the effect of this
parameter is discussed in great detail. Mean and standard
deviation denoted by µ̂i and σ̂i respectively and are calcu-
lated as follows,

µ̂i =
1
n

n∑
j=1

xij (4)

σ̂2
i =

1
n − 1

n∑
j=1

(xij − µ̂i)2 (5)

where n is the number of accepted tumor samples, xij , upto
ith iteration. Based on the Eq. (3), in each iteration we de-
fine the threshold as a one tailed confidence interval of the
accepted samples upto that iteration.

2.3. Level Set speed function design

In the level set based segmentation, introduced in [1, 3],
a surface, γ(t), is embedded as a zero level set of a higher
dimensional function φ(x, t) = d (R3 × R

+ → R), where
d is the signed distance from x to γ(t). The evolution equa-
tion of the level set is defined as follows [5, 9],

∂φ(x, t)
∂t

+ F (x, t)‖∇φ(x, t)‖ = 0 (6)

where F (x, t) denotes the speed function of the level set.
The original formulation for the speed function uses image
gradient [4, 9]. However, such speed function does not work
well when the image is noisy as well as the cases in which
the boundary of the desired object is not clear. Unfortu-
nately, such characteristics are common in many of MRIs
which makes it hard to benefit such speed function. To im-
prove the performance of level set, the idea of integrating
the region information instead of the image gradient into
the level set speed function was proposed [2, 7]. Motivated
by this idea, TSL uses a threshold based speed function.

The level set speed function is F = F0.F
(i)
I − εκφ ,

where F0 is a constant propagation determined by a positive
number and F

(i)
I is defined based on image characteristics

in the ith iteration and causes the level set to finally attract
to the tumor boundary. The smoothness parameter, κφ, is
the mean curvature of φ(x, t) which prevents the level set
leaking into many small noisy structures in the tumor re-
gion. The strength of this smoothing is controlled with a
positive constant factor ε.

IEEE Workshop on Applications of Computer Vision (WACV'07)
0-7695-2794-9/07 $20.00  © 2007



Intuitively, it is desired to have higher growing speed in a
region where the tumor likelihood is higher and vice versa.
TSL uses an speed function which takes this feature into ac-
count. In other words, TSL determines FI for each sample
proportional to it’s difference from the threshold so that the
greater the difference the higher the speed. Let Ti be the
threshold associated with the ith iteration. F

(i)
I is defined

for each sample based on its normalized difference form Ti

as follows,

F
(i)
I (x, y, z) =

∆
2

[
1 + sgn(∆)
max(∆)

− 1 − sgn(∆)
min(∆)

]
(7)

where ∆ = I(x, y, z) − Ti and sgn is the signum function
defined as follow,

sgn(x) =




1 x > 0
0 x = 0
−1 x < 0

(8)

It should be noted that the sign of F
(i)
I indicates whether the

sample is inside (+) or outside (-) the tumor region. In the
Eq. (7), the first and second terms give the normalized level
set speed for tumor and non tumor voxels respectively.

2.4. Level Set initialization

In TSL algorithm the initialization is performed inside
the tumor region because the first estimation of the thresh-
old, T1 is calculated based on this initial set. Let define
reference slice as one which includes a relatively large inter-
section with tumor compared to the other tumor-contained
slices. It should be noted that the choice of this reference
slice does not affect the process of the algorithm. Depend-
ing on the complexity of the tumor shape the initialization
can be performed in the automatic or semi-automatic forms.

According to mathematics literature, a body is convex if
and only if for any pair of points inside the body, the line
segment which joins them lies entirely inside the body, oth-
erwise the body is called concave [11]. For the convex tu-
mor shape, TSL uses an spherical surface as an initial zero
level set with the center which is placed automatically in
the center of ROI. However, initialization for concave tu-
mor is slightly more complicated so that multiple spheres
may be required to achieve higher precision in the final re-
sults. These multiple spheres should be chosen indepen-
dently and fairly spread on the entire tumor region and their
centers are inserted manually. In both cases the initializa-
tion is performed so that the cross-section of the spheres
with the reference slice is ensured to be within the tumor
region. However it is not necessary for the other slices to
satisfy this condition. T1 is calculated by Eq. (3) just based
on the selected tumor samples in the reference slice. Fig. 1
shows an example of such initializations.

Tumor 13 Tumor 3

Figure 1. TSL initializations on the reference
slices for the convex tumor (left), and con-
cave tumor (right). Circles are the level set
initialization and squares show the sampling
from non-tumor region.

2.5. Stopping criterion

As described, TSL updates the threshold at each iteration
based on the accepted tumor samples upto that iteration. At
the tumor boundary, the negative level set speed for non-
tumor samples causes the TSL to reject them. Therefore
rate of accepting new samples declines so that the variations
of the threshold becomes negligible per iteration. Fig. 3
shows the variation of threshold versus iterations for two
real MRIs. This fact, motivates to define the stopping crite-
rion as follows.

Let define the stopping window of length Ws so that it
contains the thresholds associated with the last Ws itera-
tions. TSL stops when for ts consecutive iterations the vari-
ance of the thresholds in the stopping window becomes less
than a very small number say ε. In fact, for the large enough
values of Ws and ts and a small value of ε the overall perfor-
mance of the TSL algorithm does not change significantly.

3. TSL analysis

In this part, firstly, a detailed discussion about threshold
updating and its main parameter, k, is provided and then
the modified TSL for segmentation of non-homogeneous
tumors is presented.

3.1. Threshold updating parameter

The rate of convergence and the accuracy of segmenta-
tion are directly related to the choice of the threshold which
is also determined by k. Therefore, the parameter k plays
a critical role in the overall performance of TSL algorithm.
In the case where k is chosen very small the level set may
never grow while for relatively large values of k, conver-
gence of TSL may not be possible.

In this section, two different schemes for appropriate
choosing of k are proposed. In the first scheme, the value of

IEEE Workshop on Applications of Computer Vision (WACV'07)
0-7695-2794-9/07 $20.00  © 2007



k is kept fixed during the level set evolution procedure while
in the second scheme, it is chosen adaptively as the level
set grows. The adaptive scheme, although needs a slightly
more complicated initialization helps to reduce the overall
complexity of the algorithm.

According to Eq. (2), k = 1.5 can provide a reason-
able confidence level for the accepted samples. Hence, this
value is used as the lower bound of k in the following analy-
sis. Now, take k a relatively large value so that the threshold
becomes very small. It is obvious that in such a case, TSL
never converges because the samples of non-tumor region
will be included in the level set evolution process. There-
fore, there must exist a critical value of kc greater than 1.5,
thereafter TSL diverges. Since TSL achieves its best per-
formance at kc, the main goal of search-based scheme is to
find an approximation of it. For this reason, the values of k
such that 1.5 ≤ k is swept with a reasonably small step sk.

The search-based scheme is simple but an exhaustive
search must be performed in order to achieve an acceptable
precision of kc. The adaptive scheme tries to rectify this
complexity just by an additional sampling from the non-
tumor region in the initialization phase. Such sampling al-
though needs more user involvement, greatly reduces the
complexity of computation. The shape of selected area in
the non-tumor region is not important however it is required
not to contain any voxels from tumor. Preferably, it should
be selected near to the tumor boundary where the tumor
and non-tumor intensities are more correlated as shown in
Fig. 1. Assuming the same confidence level for both ac-
cepted tumor set and sampled non-tumor set in each itera-
tion, a proper approximation of ki can be found providing
non-overlapping confidence interval as follows,

µ̂NT + kiσ̂NT = µ̂i − kiσ̂i

⇒ ki =
µ̂i − µ̂NT

σ̂i + σ̂NT
(9)

where (µ̂NT , σ̂NT ) are the mean and standard deviation as-
sociated with the sampled non-tumor set.

Based on Eq.(9) the values of ki is proportional to the in-
tensity level difference between the tumor and background.
The higher the level of intensity difference, the greater the
value of ki which means the higher confidence level around
the tumor samples.

3.2. Modified TSL for non-homogeneous tu-
mors

The described TSL is appropriate for the homogeneous
tumors because in the threshold updating procedure, all ac-
cepted tumor samples are used. However, with the minor
modifications in the threshold updating algorithm, TSL is
able to segment the non-homogeneous tumors. In order

to modify TSL algorithm, (µ̂i, σ̂i) can be calculated us-
ing only the accepted samples which are greater than the
last threshold, Ti. Moreover, the level set must be initial-
ized so that no sample from the non-homogeneity region in
the reference slice is included in the initialized set. This
modifications along with the effect of smoothness parame-
ter in level set speed function enables TSL to segment the
non-homogeneous tumors. It should be noted that the non-
homogeneity must be inside the tumor region and not on the
boundary. Fig. 5 shows an example of such tumors which
is successfully segmented by modified TSL.

4. Simulation results and discussion

In this section, firstly, the performance of the TSL algo-
rithm for search-based scheme in comparison with the adap-
tive scheme is investigated. Then, the segmentation results
of this algorithm on various MRIs are validated compared
to the ground truthes. For this purpose, 13 multichannel 3D
MRIs (T1W or CET1W) with the slice thickness of 2-3 mm
are used. Among these MRIs, 5 tumors , labeled from 1 to
5, are concave and the others, labeled from 6 to 13, are cho-
sen convex. For the case of 3 mm slice thickness, the linear
interpolation is done to get higher inter-slice resolution (1.5
mm) and decrease the uncertainty between slices.

4.1. Search-based vs. adaptive TSL

In this section, the performance of the search-based TSL
in comparison with its adaptive case is considered for both
concave, Tumor 3, and convex, Tumor 13, tumors which are
shown in Fig. 1. In the search-based scheme, parameter k
sweeps the values greater than 1.5 with the step size sk =
0.1 in order to approximate kc.

In the search-based TSL, kc is found 1.7 and 2 for the
convex and concave cases, respectively. As discussed, the
greater value of kc for the concave case is expected because
of the higher intensity level difference between tumor and
background in this case.

For the adaptive TSL, the variations of k versus the it-
eration number is shown for the same tumors in Fig. 2. In
this case, the values of parameter k are also also higher for
the concave tumor which is consistent with the foregoing
discussion. Another observation based on this figure is that
the value of k for both cases are monotonically decreasing
up to almost constant values for each case which can be
concluded from our discussion in Sec. 3.1. Interestingly,
the final values of ki in both cases are close to their corre-
sponding kc concluded from the search-based TSL.

Finally, comparing the threshold variation curves associ-
ated with both search-based and adaptive schemes as shown
in Fig. 3, it is concluded that the convergence rate of the
adaptive scheme is higher than that of the search-based
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Figure 2. Variations of k vs. iteration number
using the adaptive TSL

scheme. This event can be justified through the larger num-
ber of samples which is selected from both tumor and non-
tumor regions in the initialization phase of adaptive scheme.

4.2. Segmentation validation

In this part, the results of 3D segmentation by TSL over
13 MRIs for both search-based and adaptive schemes are
compared with the ground truths drawn by an expert. Fig. 4
shows the cross-sections of the extracted surfaces from tu-
mors 3 and 13 with their corresponding MRI slices. This
figure also shows the final extracted 3D tumor surfaces. It
should be noted that these surfaces are the results of the
adaptive scheme.

Since the manual segmentations were carried out in 2D,
in order to facilitate comparison, the cross-sections of the
resulted 3D surface (by TSL) with the MRI slices were con-
sidered for validation. Let GT and Ω denote the set of tu-
mor voxels in the ground truth and the set resulted from
TSL, respectively. In this paper, two measures are used for
comparison which are based on the volume overlap. One
of them compares the volume of the intersection with the
ground truth volume, PM = #(GT∩Ω)

#GT , and the other one

compares it with the union volume [10], JM = #(GT∩Ω)
#(GT∪Ω) .

The higher Percentage Match, PM, indicates the more true
voxels contained by the results and the higher Jaccard Mea-
sure, JM, indicates that the results contain more true voxels
while less false positive ones 2. The validation of segmen-
tation results are shown in Table 1.

2Voxels isolated as tumors by TSL but not in conformance with GT
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Figure 3. Threshold variation curves for the
search-based and adaptive TSL

As mentioned, the first five tumors have concave body
while the other tumors are convex. Table 1 shows the error
of segmentation for concave tumors are almost higher than
convex ones which can be justified through the complexity
of the tumor shapes and the effect of smoothness parameter
in the level set speed function. It can be seen that in the
case of concave tumors, adaptive TSL gives better results
compared to the search-based TSL. Whereas, for the convex
tumors it is possible that search-based TSL performs better
because of doing exhaustive search. Moreover, in the cases
of tumors 8, 11, 12 and 13, both search-based and adaptive
TSL perform almost the same. Considering their respective
MRIs, the reason is because the overlap between the tumor
and non-tumor regions in these cases are relatively small.

5. Conclusion

This paper presents a new threshold-based approach,
called TSL, for 3D tumor segmentation in brain MRIs. TSL
uses level set as a deformable model and defines its speed
function on the basis of intensity thresholding so that no ex-
plicit knowledge about the density functions of the tumor
and non-tumor regions are required. Threshold is updated
iteratively throughout the level set growing process using
two schemes which are presented and their performance are
compared to each other. The visualization and quantitative
evaluations of the segmentation results demonstrate the ef-
fectiveness of our proposed approach. TSL performance is
better for the cases where the intensity level difference be-
tween the tumor and non-tumor regions is higher. It can
also segment non-homogenous tumors providing the non-
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Table 1. Quantitative validation of segmentation
Tumor index 1 2 3 4 5 6 7 8 9 10 11 12 13

PM search-based 73 78 81 85 89 88.9 91 91.5 93.7 95 93 95 96.5

(%) adaptive 80 87 87 91.6 93 93.5 96.2 90 91.6 92.4 95.3 95.7 95.7

JM search-based 72.8 75 79.8 80.7 87 88.5 90.6 89.6 91.8 86.4 92.9 90.6 88.5

(%) adaptive 78 84 84.5 88.5 89 91 87.4 88 90.6 90.6 93 91 90.1

Figure 4. The cross-sections of the extracted surfaces with the MRI slices in addition to a 3D view of
their corresponding surfaces crossed by their reference slices (the middle shown slices).

Tumor 7

Figure 5. result of modified TSL on non-
homogeneous tumor.

homogeneity is within the tumor region. Moreover, TSL
segments convex tumors with higher precision compared
to concave ones. A localized approach to determine the
threshold is part of our future work.
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