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M. Alper Selvera,∗, Aykut Kocaoğlua, Güleser K. Demira, Hatice Doğana, Oğuz Dicleb,
Cüneyt Güzelişa
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Abstract

Identifying liver region from abdominal computed tomography–angiography (CTA) data sets is one of the essential steps in evaluation of
transplantation donors prior to the hepatic surgery. However, due to gray level similarity of adjacent organs, injection of contrast media and
partial volume effects; robust segmentation of the liver is a very difficult task. Moreover, high variations in liver margins, different image
characteristics with different CT scanners and atypical liver shapes make the segmentation process even harder. In this paper, we propose a
three stage (i.e. pre-processing, classification, post-processing); automatic liver segmentation algorithm that adapts its parameters according
to each patient by learning the data set characteristics in parallel to segmentation process to address all the challenging aspects mentioned
above. The efficiency in terms of the time requirement and the overall segmentation performance is achieved by introducing a novel modular
classification system consisting of a K-Means based simple classification system and an MLP based complex one which are combined with
a data-dependent and automated switching mechanism that decides to apply one of them. Proposed approach also makes the design of the
overall classification system fully unsupervised that depends on the given CTA series only without requiring any given training set of CTA
series. The segmentation results are evaluated by using area error rate and volume calculations and the success rate is calculated as 94.91%
over a data set of diverse CTA series of 20 patients according to the evaluation of the expert radiologist. The results show that, the proposed
algorithm gives better results especially for atypical liver shapes and low contrast studies where several algorithms fail.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Living donated liver transplantation is a procedure where a
healthy voluntary donor gives a part of his or her liver to another
person. Measurement of the liver volume and analysis of the
liver vasculature are important stages to decide whether a can-
didate for transplantation is suitable or not. Generally, liver vol-
ume information is used to avoid size incompatibility between
donor and patient, and vasculature analysis in three dimension
(3D) is used for pre-evaluation of surgery. Thus, the success
of liver transplantation depends on the sufficiency of liver vol-
ume and its supplying vessels and accurate knowledge of the

∗ Corresponding author. Tel.: +90 232 4127176; fax: +90 232 4531085.
E-mail address: alper.selver@deu.edu.tr (M.A. Selver).

0010-4825/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compbiomed.2008.04.006

hepatic and portal vascular anatomy of donors for living-related
transplantation would reduce the incidence of vascular compli-
cations during and after transplantation.

Routine preoperative evaluation of donors requires both com-
puted tomography (CT) [1] and CT with contrast medium injec-
tion, namely CT–angiography (CTA), which are currently the
most widely used radiographic techniques for the rendering of
liver parenchyma, vessels and tumors in living liver transplan-
tation donors. Instead of conventional angiography, CTA offers
several advantages: it is minimally invasive and has diminished
patient morbidity, cost, and radiation exposure to patients and
staff. Moreover, CTA provides detailed information on vascula-
ture due to the injection of contrast media. Before 3D rendering
[2] of the vasculature and the measurement of liver volume,
accurate segmentation of the liver from surrounding tissues and
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Fig. 1. Examples of abdominal CTA images: (a) very low contrast between liver and vena cava; (b) low contrast between liver and muscle tissue; (c) high
contrast between liver and adjacent tissues (i.e. right kidney, muscle, vena cava); and (d) atypical liver shape that causes unclear boundary with spleen.

organs is necessary. Since the number of image slices used
for 3D rendering is very large, manual segmentation of the
liver on each slice is time consuming and tedious. Also the
results highly depend on the skill of the operator. Therefore an
automatic segmentation procedure to segment the liver in all
slices is needed.

Besides its several advantages over manual segmentation,
automatic segmentation of the liver is very challenging. These
challenges arise from the following difficulties: First of all, the
gray level values of adjacent organs of the liver are similar to
each other (Fig. 1a and 1b). This similarity reduces the perfor-
mance of thresholding techniques dramatically. Secondly, due
to the injection of contrast media and/or different modality set-
tings, the liver (and all other tissues) may have different gray-
level values for different patient data sets, or even in different
slices of the same data set (Fig. 1a–c). These effects prevent
the usage of the gray level dependent segmentation techniques.
Finally, the anatomical structure of the liver in different im-
age slices is different and its shape can vary significantly from
patient to patient (Fig. 1a and b). Even two or three separate
regions can be seen in the same slice (Fig. 1c). Moreover, it is
reported in [9] that around 15% of the patients have atypical
liver shapes (i.e. unusual size or orientation of the liver, liver
shape after segmentectomy) (Fig. 1d). Thus, traditional shape
based segmentation techniques are not enough to segment the
liver efficiently.

Our strategy for overcoming these difficulties involves a seg-
mentation method which does not utilize a common parameter
set found from all patient data sets. Instead, the method is ca-
pable of adapting the parameter set to each patient. The main
reason for this approach is that the ranges of the parameter val-
ues differ significantly from patient to patient, and these wide
ranges decrease the efficiency of the method when one utilizes
a common parameter set for all patients.

Thus, we propose a method which examines and adapts its
parameters according to each patient. We call this approach
as patient-oriented segmentation. For qualifying ‘patient ori-
ented’, the algorithm learns data set characteristics in parallel to
segmentation process, and adapts its parameters to these char-
acteristics. To our knowledge, there is no method in the litera-
ture that works in this manner and at the same time addresses
all the challenging aspects mentioned above.

In the literature, different automatic and semi-automatic
methods have been developed and performed for the segmen-
tation of the liver from CTA series. These methods include

but not limited to morphological techniques [3–6], deformable
models [7–12], and neural networks [13–15]. However, neither
in semi-automatic, nor in automatic algorithms, the problems
of atypical liver shapes, different modality characteristics and
data sets with low contrast adjacent tissues is handled together.
Therefore, they do not deal with the all variations in CTA
images at the same time.

Morphological techniques combined with gray level thresh-
olding are used in [3] while in [4,5] these are combined with
a parametrically deformable contour model which is used for
boundary refinement. Although the method proposed in [4] is
reported to be successful in most of the cases, a mean gray
level value assumption is made for the liver at the intermediate
levels of the algorithm. This assumption limits its use when the
liver is more attenuating (brighter) due to the contrast media.
Deformable contour models are also used by [7,8]. However
the need for setting some seed points and parameters such as
maximum gradient or time threshold makes it hard to use for
radiologists. In [9], an automatic algorithm is proposed using
deformable models; however this method does not provide cor-
rect results for atypical liver shapes. Another automatic tech-
nique is proposed in [11], in which a 3D active shape model
is built from 32 samples using an optimization approach based
on the minimum description length. The combination of de-
formable models and statistical priors [12] seems to be effec-
tive for fully automatic techniques where initial parameters for
the statistical shape model (SSM) are determined with an evo-
lutionary algorithm and a modified active shape method is used
to refine the detected parameters. As in [11], the method of [12]
also requires the training of the SSM with a data set to model
the expected shape and appearance of the liver so resulting in
a dependency on the set of CTA series used in the training.

Artificial neural networks are used for gray level classifica-
tion in [13] and for feature based recognition in [14] which
are discussed in detail in this study. The technique proposed
in [13] is semi-automatic and require more than one manually
segmented image as training data prior to the automated pro-
cess. The method in [14] is not patient oriented and training
is done with a limited set of images. Due to the high variation
of image characteristics, a larger and more diverse database
is recommended to generalize this system for reliable perfor-
mance. A contextual neural network with a high segmentation
performance is proposed in [15], but the results show that it
fails where the gray level of the desired region is too close to
the adjacent tissues. In [16], texture of the abdominal organs
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is used for segmentation. Although this approach is successful
in general for abdominal organs, it fails in the segmentation of
liver and spleen, especially in atypical liver case, since their
texture is similar in CTA data sets. Recently, Seo et al. [17]
proposed a fully automatic algorithm by determining the spine
first and then by using it as a reference point for segmenting
the liver using morphological operators, multimodal threshold-
ing and a decision rule. However, this approach is tested with
a very limited set of CT series.

This paper proposes a robust and efficient method that can
automatically segment the liver of transplantation donor can-
didates in any CTA series. The success rate is calculated as
94.91% over a data set of diverse CTA series of 20 patients ac-
cording to the evaluation of the expert radiologist experienced
on pre-evaluation of transplantation donors for more than 100
cases. The robustness of the method follows from its capability
of dealing with the contrast variations and atypical liver shapes.
These capabilities are provided by the patient oriented struc-
ture which learns the characteristics of a patient data set for
each slice in parallel to the segmentation process and adapts
its parameters according to these characteristics. Our iterative
segmentation algorithm uses classification of pixels (using an
unsupervised clustering method i.e. K-Means) together with
adjacent slice information. A more complex classifier (multi-
layer perceptron network—MLP) is developed for the data sets
where the K-Means clustering gives insufficient results. The
efficiency in terms of the time requirement and the overall
segmentation performance is achieved by introducing a novel
modular classification system consisting of a simple classifica-
tion system (i.e. K-Means based) and a complex one (i.e. MLP
based) which are combined with a data-dependent and auto-
mated switching mechanism that decides to apply one of them.
The switching is based on the detection of “low contrast” data
set or atypical liver shape. If none of these is detected then K-
Means based classification system is applied on a single fea-
ture (i.e. the gray level value of each pixel), otherwise MLP
based classification system is utilized with three features (i.e.
mean, standard deviation and distance transform). The devel-
oped method gives sufficient performance for different modal-
ities, varying contrast, dissected liver regions and atypical liver
shapes. Results indicate that we have effectively overcome the
challenging difficulties explained before. This performance is
achieved with the proposed modular classification system as
well as introducing the distance transform as a feature for each
slice and then using this information in the succeeding slice to
reveal three dimensional properties of the liver which cannot
be obtained by the set of slices processed individually. In other
words, the approach in the paper provides the ability of deal-
ing with the contrast variations and atypical liver shapes first
by recognizing the existence of these problems, by choosing
appropriate classification method, and then by solving the seg-
mentation problem using inter-slice information provided by
the distance transform. To our knowledge, there is no method
in the literature which handles all these difficulties at the same
time.

The rest of the paper is organized as follows. The properties
of the patient data sets are presented in Section 2. The first step

of the three step segmentation system, preprocessing, covers
the removal of adjacent tissues to the liver (i.e. fat tissue, right
kidney, spine and ribs) is explained in Section 3. The classi-
fication of the liver with modular classification system by us-
ing either K-Means or a neural network structure depending on
the data set properties (i.e. contrast, atypical liver shape) and
the features used for classification are established in Section 4
as the second step of the segmentation system. The last step,
post-processing that consists of the removal of the misclassi-
fied objects and identification of disjointed parts of the liver is
explained in Section 5. The evaluation of the system is given
in Section 6. Finally, future plans for the improvement of the
system are discussed in Section 7.

2. Patient data sets

Our data sets were acquired after contrast agent injection
at portal phase using a Philips Secura CT with two detectors
and a Philips Mx8000 CTA with 4 detectors, both equipped
with the spiral CTA option and located in Dokuz Eylül Univer-
sity Radiology Department. Spiral CTA acquires data continu-
ously, in a spiral path, as the patient is transported at a constant
speed through the gantry. This technique scans the entire liver
in 15–30 s and offers several advantages for both liver tumor
detection and 3D visualization. Its speed also reduces or elimi-
nates respiratory misregistration between slices. Now CT scan-
ners with 64 or more detectors are available and it is possible
to have higher quality images with single-breath-hold volumet-
ric data acquisition. They also permits very thin-section cover-
age of large anatomic areas at speeds 3–7 times faster than the
previously used helical CT scanners.

Twenty data sets (CTA series), which were obtained by these
scanners, consist of 12 bit DICOM images with a resolution of
512 × 512. The data sets were chosen randomly from the Pic-
ture Archiving and Communication System (PACS). All of the
20 CTA series have 3–3.2 mm slice thickness and this corre-
sponds to a slice number around 90 (minimum 77, maximum
105 slices).

Our segmentation system is designed to work with 8 bit
images to support all image types. Therefore 12 bit DICOM
images are reduced to 8 bit using window center and window
width information, which are stored in Meta information header
of the original DICOM images. Although a simple proportional
scaling ([0, 4095] → [0, 255]) would be the most obvious
way of such a conversion, windowing is used to reduce the
undersampling effect. By using windowing, the full contrast of
the output display range is expanded over actually useful part
of the input density range [18].

Twenty patient data sets are divided into two groups based on
their volumetric histograms, namely ‘high contrast’ and ‘low
contrast’. It is observed that some data sets have three lobes in
their volumetric histograms (Fig. 2a) where these lobes corre-
spond to the fat tissue, darker soft tissues (i.e. muscles, stomach,
intestines) and brighter soft tissues (i.e. heart, kidney, spleen)
from left to right, respectively. The liver belongs to both sec-
ond and third lobes with varying ratios due to contrast media it
absorbs and modality settings. These data sets are called ‘high
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Fig. 2. Two examples of volumetric histograms: (a) volumetric histogram of
a ‘high contrast’ CTA series one image of which is shown in Fig. 1c (three
lobes); and (b) volumetric histogram of a ‘low contrast’ CTA series one
image of which is shown in Fig. 1b (two lobes) (for illustration purposes the
values of 0 and 255 are not drawn in the histograms).

contrast’ because the gray level value of the liver is different
than the adjacent tissues and organs (Fig. 1c). In ‘low contrast’
data sets, dark and bright soft tissues form only one lobe, thus
the volumetric histograms have two lobes in total (Fig. 2b). In
these data sets, it is harder to segment the liver because of the
gray level similarity with adjacent organs (Fig. 1a). In 20 patient
data sets, it is found that 15 data sets belong to ‘high contrast’
group while five data sets belong to ‘low contrast group. The
developed algorithm first determines the group of the data set
and applies different classification and post-processing meth-
ods based on this decision.

3. Segmentation of the liver

The developed segmentation algorithm is designed to have
three stages. The first stage is preprocessing which consists of

the removal of the irrelevant tissues (the fat tissue, the spine, the
right kidney and the ribs) from the original images and finding
the smallest possible region of interest (ROI), where the liver
tissue is known to exist. The second step of the segmentation
procedure is the segmentation of the liver. This step consists
of two parts: (1) Automatic selection and segmentation of an
‘initial image’. (2) The segmentation of the remaining slices
one by one starting from the ‘initial image’. The third step,
post-processing, includes necessary operations to remove small
mis-segmented objects and to smooth boundaries. Moreover,
identification of all components of the liver when the liver
dissects into two or more regions is also done at this post-
processing stage.

Before starting the process, the user selects a slice which is
called ‘initial kidney image’. The ‘initial kidney image’ is the
slice where the liver and the right kidney exist together for the
last time in the data set. Starting from this image, the algorithm
for removing the right kidney runs through the data set until
the right kidney disappears in all slices.

In the proposed algorithm, the default selection of ‘initial
kidney image’ is the last slice of the CTA series. Although this
assumption is mostly true, an interface with the user is also
provided for the cases in which the right kidney does not exist
at the last slice. This selection can also be done with no need
to user interface in an automatically yet complicated fashion.
For simplicity, we prefer to use this particular one-touch user
interface, that is, selection of ‘initial kidney image’. Needless
to say, this is a rather simple task for the user.

3.1. Pre-processing

After the selection of the ‘initial kidney image’, the pre-
processing starts by removing irrelevant tissues and organs in-
cluding the fat tissue, the spine, the ribs and the right kidney.
It is worth to point that all steps of the preprocessing stage are
applied to the original images and the result of each step is
removed from the rest of the images at the end of the stage.

3.1.1. Removing the fat tissue
To remove the fat tissue from a patient data set that con-

sists of several CTA images (Fig. 3a), an adaptive threshold-
ing method has been applied. In the volumetric histogram of a
CTA series, the first lobe of the histogram corresponds to the
fat tissue if there is enough fat tissue in the patient. To locate
this lobe global minimum/minima of the histogram have to be
found. For this reason, an averaging filter is applied to eliminate
high frequency components of the histogram. Then the gradi-
ent of the smoothed histogram is calculated and global mini-
mum/minima are found where the gradient histogram changes
from negative to positive. Finally, a proper threshold value is
found as the gray level value of the first global minimum. The
tissues, which are removed with the application of the deter-
mined threshold value, are shown in Fig. 3b.

In young or/and fit patients, the fat tissue might be so less
that it does not correspond to a lobe in the volumetric his-
togram. In other words, the first lobes in Fig. 2a and b might be
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Fig. 3. Automatic determination of the threshold to remove fat tissue: (a) original abdominal CTA image; and (b) thresholded fat tissue.

suppressed due to this affect. To prevent wrong determination
of the threshold value in these data sets, the maximum gray
level value for the fat tissue threshold is limited to 100.

3.1.2. Removing the spine and the ribs
In the literature, the common method to remove the spine

and the ribs is thresholding because of their high Hounsfield
values. However, this method can also remove some vessels in-
side the liver or some other enhanced tissues (i.e. the kidneys)
due to the brightening affect of the contrast media. These unex-
pected removals might cause the segmentation process to fail
or the loss of important information from the liver. Therefore,
thresholding is combined with anatomy knowledge to remove
the spine and the ribs in the developed method.

First, an empirically determined threshold value (T = 245)

has been applied to the image (Fig. 4a) to remove fat, skin and
muscle tissues. The resulting image consists of the spine, the
ribs and contrast enhanced tissues (i.e. liver vessels, kidneys)
(Fig. 4b). Then, the spine and the ribs must be removed from
the thresholded images without loosing any information of con-
trast enhanced tissues. Since it is known that the spine and the
ribs surround the contrast enhanced tissues, a topology based
method is used. First, the row and column projections are cal-
culated from the thresholded image. The column projection is
used to find the columns where the ribs start (from left and
right) by using the first and last non-zero values on it. The row
projection is used to determine the row where the spine and ribs
start (from the bottom) by using the first non-zero value on it.
The middle point of the corresponding row and the values de-
termined as the starting point of the ribs are then used to make
a frame through the spine direction (Fig. 4b). By dilating this
frame, the ribs and the spine are excluded (Fig. 4c). To segment
the spine and the ribs by combining these two images, binary
morphological image reconstruction (BIMIR) [19] is used.

BIMIR is based on two images, a marker and a mask. Pro-
cessing is based on the concept of the connectivity of these
images. BIMIR processes the marker image, based on the char-
acteristics of the mask image. The high gray level values in the

marker image specify where the processing begins. The pro-
cessing continues until the gray level values stop changing. If
g is the mask and f is the marker, the reconstruction of g from
f is defined by the following iterative procedure:

1. initialization of h1 to be the marker image f ,
2. creation of the structuring element, S,
3. repeat: hk+1 = (hk�S) ∩ g until hk+1 = hk ,

where the dilation operation, �, is defined as

hk�S = {z|(S)z ∩ A �= ]}
Conceptually, BIMIR can be thought as repeated dilations

of the marker image until the contour of the marker image fits
under the mask image. In this way, the peaks in the marker
image “spread out”, or dilate.

Intersecting framed image and the thresholded image by us-
ing ‘AND’ operation, the marker image is generated. Using the
thresholded image as the mask in the BIMIR, the spine and the
ribs are obtained (Fig. 4d). The advantage of using BIMIR is
that it is possible to reconstruct of a rib correctly even if some
parts of it remain outside the frame as in Fig. 4c.

3.1.3. Removing the right kidney
The right kidney is an adjacent organ to the liver which

can have different gray level values due to the contrast media
(Fig. 1a–c). Moreover, its shape and location differs from pa-
tient to patient. Also the shape of the kidney varies through the
slices of a CTA series (Fig. 1a and b). Because of the partial
volume affects, sometimes the border between the right kidney
and the liver almost vanishes (Fig. 5a). Therefore, the elimina-
tion of the kidney should be done prior to the segmentation of
the liver to increase segmentation performance.

After removing the ribs and the spine, the detection of the
right kidney starts from the ‘initial kidney image’, which is
the slice where the liver and the right kidney exist together for
the last time in a data set (Fig. 5b). This user selected slice is
mostly the last slice for a CTA series, however, sometimes the
kidney ends before the liver. Kidney detection process starts
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Fig. 4. Removing the spine and the ribs: (a) original image; (b) frame drawn by using the coordinates of the spine and the ribs calculated from the projections;
(c) dilation of the frame and the exclusion of the ribs and the spine; and (d) combining thresholded image with the image obtained from the outer side of the
frame in (c) using morphological image reconstruction.

Fig. 5. The right kidney and the liver: (a) at the preceding slices where they cannot be separated easily, and (b) at the succeeding slices where the border
between them is more clear.

from ‘initial kidney image’ and continues through the beginning
of the series until the right kidney is removed from the data
set. The reason for the direction of the process is the gray level
value similarity and unclear boundary between the liver and
the right kidney at the slices, where the right kidney begins to
appear (Fig. 5a). In such images, the liver and the right kidney
could not be separated even by complicated methods. The only
way to segment the kidney in those conditions is to use the
information obtained from a slice where the liver and the right
kidney can be separated easier (Fig. 5b).

The removal of the right kidney starts with the classifica-
tion of the ‘initial kidney image’ into five clusters by using the
K-Means algorithm. K-Means algorithm [20] partitions the pix-
els in the image into n clusters by using an iterative procedure.
The aim is to minimize the sum, over all clusters, of the within-
cluster sums of gray level value-to-cluster centers:

J =
k∑

j=1

n∑
i=1

‖x(j)
i − cj‖2

where ‖x(j)
i − cj‖2 is a chosen distance measure between a

gray level value x
(j)
i and the cluster center cj is an indicator of

the distance of the n data points from their respective cluster
centers. In our system, Euclidean distance metric and batch

update method [21] are used where every iteration consists of
reassigning gray level values to their nearest cluster centers, all
at once, followed by recalculation of cluster centers.

The initial centers of the clusters are chosen to be 30 (for the
background), 255 (for the spine and the ribs), threshold found
for the fat tissue (generally around 80) and two equidistant
gray level values between 255 and the threshold found for the
fat tissue. After the application of the K-Means method, it is
observed that the kidneys are always assigned to the brightest
cluster together with the spine and other very bright tissues
(Fig. 6 (top right)).

Then, a seed region is generated at the right of the spine,
which is found during the removal of the spine and the ribs
(Fig. 6 (top left)). The seed region is determined at a location,
where at least some part of the kidney is most likely to exist,
by using anatomical information.

To segment the kidney from this result, BIMIR is used. In
the ‘initial kidney image’ the marker is the seed region and
the mask is the image that consists of pixels which belong to
the brightest cluster The largest connected component after the
BIMIR operation forms the kidney (Fig. 6—output image).

The kidneys at the other slices are then detected iteratively.
For each preceding slice, the skeleton of the previously seg-
mented kidney is used as the new marker image. And the image
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Fig. 6. Determination of the kidney: initially, seed region inside the red
frame is used as the marker image and the image after K-Means clustering
(brightest cluster) is used as the mask image. Application of BIMIR using
these images gives the right kidney. Then, skeleton of the detected kidney
(marker image) and clustering result of the next image (mask image) is used
to detect the kidney in the next image.

of the pixels that belong to the brightest cluster of the cur-
rent slice is used as the mask image. Using BIMIR algorithm
gives the kidney structure of the current slice. This procedure is
illustrated in Fig. 6.

The skeleton of a kidney is calculated using iterative skele-
tonization (thinning), which is a method to reduce all objects
in an image to lines, without changing the essential structure of
the image [22]. It removes the pixels on the boundaries of the
objects but does not allow objects to break apart. The pixels
remaining make up the image skeleton.

Since the skeleton of the previously segmented kidney can
be thought as an iteratively eroded image, BIMIR restore
exactly the shape of the kidney in the current slice without
depending on the similarity between the shapes and the struc-
turing element. By using this method kidneys are detected
automatically until the kidney area drops to a user defined
value (default = 500 pixels).

Dataset

Switching

Classifier

Check if the
appropriate

classifier is in use

C1 C2 CnCn-1

Fig. 7. Proposed modular classification system which constitutes a new kind
of system of classifiers. In our case, N is equal to two since we have K-Means
and MLP classifiers.

This method works efficiently for varying gray level values,
shapes and positions of the kidney. It also gives sufficient results
invariant of contrast and even when the kidney has lesions. This
method; skeletonization combined with BIMIR, is also used in
the iterative segmentation of the liver.

3.1.4. ROI selection
For reducing the computation complexity and for increas-

ing the performance of the segmentation algorithm, as much
irrelevant information as possible should be removed from the
image at the preprocessing. From the anatomy knowledge, we
know that the liver is surrounded by the ribs from the left, right
and bottom, thus the pixels at the outer side of the ribs can
be removed. Also the unnecessary parts from the top (starting
from the first non-zero pixel) can be removed. The remaining
ROI decreases the image size by 40% in average and reduces
the computational complexity significantly.

These four steps of the preprocessing are done for the com-
plete series of CTA images. At the end of the preprocessing,
the fat tissue, the bones, the ribs, and the right kidney are re-
moved from the original images and these images are resized
using the ROI mentioned above. An example of a preprocessed
image is shown in Fig. 7a. In what follows, we applied the
segmentation algorithm to these preprocessed images.

3.2. Classification of the liver

The second step of the segmentation procedure is the seg-
mentation of the liver. This step consists of two parts: (1) Auto-
matic selection and segmentation of an ‘initial image’. (2) The
segmentation of the remaining slices one by one starting from
the ‘initial image’.
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Fig. 8. Switching mechanism and selection of the appropriate classifier for automatic detection of an atypical liver shape and a low contrast image characteristic.

The ‘initial image’ is a slice where the liver boundary does
not overlap with any adjacent organ boundaries, especially the
heart and the right kidney. It is selected automatically by choos-
ing the slice that comes just before the first appearance of the
right kidney which is determined during the kidney removal
stage. After the preprocessing stage, the segmentation algo-
rithm starts from this ‘initial image’ and then runs through the
end of the data set. Then starting from the ‘initial image’ again,
it runs through the beginning of the data set to complete the
segmentation process. After the segmentation of the initial im-
age, liver structures at other slices are segmented iteratively.

For this purpose, we introduce a novel modular classifica-
tion system consisting of a simple classification system (i.e.
K-Means based) and a complex one (i.e. MLP based) which
are combined with a data-dependent and automated switching
mechanism that decides to apply one of them. The introduced

modular classification system with data-dependent and auto-
mated switching mechanism constitutes a new kind of system
of classifiers, some of which are simple and therefore efficient
in time-memory requirements with good generalization ability
and the others are complex providing a high classification per-
formance, such that depending on the data set, herein the CTA
series, one of the classifiers become active.

The switching is based on the detection of “low contrast”
data set or atypical liver shape. The switching mechanism does
indeed perform a classification task that assigns the CTA series,
based on the histogram evaluation and in some cases also ac-
cording to intermediate results of the K-Means based classifier,
into one of the following three categories: (a) low contrast (MLP
is employed for this category), (b) high contrast (K-Means is
employed for this category), and (c) high contrast—atypical
liver shape (MLP is employed for this category). In other words,
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Fig. 9. Initial image segmentation: (a) the preprocessed ‘initial image’; (b) clustering result; and (c) the biggest component in the slice.

the switching mechanism selects MLP classifier instead of the
K-Means classifier where the K-Means clustering method does
not give sufficient results (i.e. if the liver has atypical shape
(Fig. 1d) or the gray level difference of adjacent tissues is very
low (Fig. 1b). For this reason we develop a process for auto-
matic detection of an atypical liver shape and a low contrast
image characteristic (Fig. 8).

In this manner low contrast image characteristics are detected
by determining the number of lobes in the volume histogram
(discussed in Sections 2 and 3.1). If the histogram has three
lobes, the algorithm proceeds with K-Means. Otherwise (if it
has two lobes) the algorithm switches to MLP.

The other criterion in the selection of the classifier to use is
the atypical liver case. Existence of atypical liver shape means
that the liver elongates (stretches) to the left side of the ab-
domen and becomes adjacent to the spleen which has mostly
the same gray value range as the liver (Fig. 1d). In those cases,
the boundary between the spleen and the liver is uncertain even
for human eye. Therefore, the algorithm may not detect the
boundary between the spleen and the liver and segments them
together. This causes a dramatic increase in the area of the seg-
mented object. To detect atypical liver shape, we find the area
of the segmented object for each slice. Since the change in
the area should be smooth for successive slices the algorithm
switches to MLP if there is a sudden increase in the area.

It is worth to point that, the result of both classifiers (i.e.
K-Means and MLP) gives rough results and these results are
refined at the post-processing stage (i.e. removal of the small
mis-segmented objects, identification of all components of the
liver when the liver dissects into two or more regions). How-
ever, when MLP is used as the classifier, the necessary post-
processing operations is significantly less than the operations
used after K-Means classifier.

3.2.1. Initial image segmentation
As previously mentioned, ‘initial image’ is a slice that should

satisfy three constraints. First of all, the liver should have
a relatively big area in the slice but it does not have to be
the biggest organ. Second, it should consist of one connected
component and third, the liver boundary should not overlap
with any adjacent organs, (i.e. the heart and the right kid-
ney). An example of an initial image is given in Fig. 4a. After

preprocessing (Fig. 9a), the image can be classified into three
clusters: background, bright organs and dark organs. Exclud-
ing the background pixels from the process, the two clusters
are found using the Otsu’s method [23] by finding the optimal
threshold to separate dark organs (stomach and muscle) and
brighter organs (liver, spleen, and heart).

Otsu’s method chooses the threshold value k that maximizes
the between-class variance �2

B which is defined as

�2
B = w0.(�0 − �T )2 − w1.(�1 − �T )2

where

w0 =
k−1∑
q=0

pq(rq), w1 =
255∑
q=k

pq(rq), �T =
255∑
q=0

q · pq(rq),

�0 =
k−1∑
q=0

q · pq(rq)/w0, and �1 =
255∑
q=k

q · pq(rq)/w1

Here pq(rq) is the discrete probability density function, as
in pq(rq) = nq/n where n is the total number of pixels in the
image, and nq is the number of pixels that have intensity level
rq(q = 0, 1, . . . , 255).

Selecting the cluster which has the foreground organs (i.e. the
right side of the threshold) (Fig. 9b) and then taking the biggest
connected component in the slice results with the segmented
liver structure (Fig. 9c).

It is important to point that this method gives sufficient results
only under the constraints given for the ‘initial image’. For our
data sets, the slices, which are located around the one third of
the series (i.e. 30th slice of 90 slice CTA series), are determined
to be suitable for being ‘initial image’. However, it is also
possible to select any slice in the series, which satisfies the
necessary conditions, as ‘initial image’.

3.2.2. Segmentation with K-Means
After segmenting the initial image, the algorithm first runs

downwards to the last slice and then upwards to the first slice
starting from the initial image.

It is clear that the preprocessed images contain the liver, the
tissues and the organs that have similar or darker gray level
values than those of the liver because the brighter tissues and
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organs are removed at the preprocessing phase (except the
bright tissues inside the liver).

By using the K-Means method an unsupervised clustering is
applied to these preprocessed images for classifying the organs
into two clusters. At this step, the initial cluster centers are
determined as follows: For the ‘initial image’, the first cluster
center is given as the minimum gray level value of that image
(excluding the background). The second cluster center is deter-
mined as the mean value of the segmented initial image. Then
for the other slices, the centers found in the preceding slice are
used as the initial centers.

The brighter cluster at the clustering result is preserved since
it always consists of the liver. The identification of the liver
including its dissected parts and removal of the incorrectly seg-
mented objects is done at the post processing stage.

3.2.3. Segmentation with MLP
Although segmentation of the liver using the K-Means clus-

tering method generally gives sufficient results, it fails when
the liver has atypical shape (Fig. 1d) or the gray level value dif-
ference between the liver and the adjacent tissues are very low
(Fig. 1b). To obtain acceptable results also for these cases, a fea-
ture based segmentation process is developed. In feature based
segmentation, first, K-Means is tested as the classifier. How-
ever, the segmentation results were not adequate hence a more
complex classifier, MLP is used instead. The overall structure
of the segmentation process using MLP is shown in Fig. 10.

In segmentation with the MLP, the preprocessed ‘initial im-
age’ and the segmented ‘initial image’ are used for initial train-
ing of the network. From the preprocessed ‘initial image’ two
features (Mean and standard deviation) are calculated. Then,
the distance transform is applied to the segmented ‘initial im-
age’ and the pixel values after the transform are taken as an
additional (third) feature.

The features are calculated in a window of size 9×9 centered
for a given pixel. Although some sudden changes in the image
(i.e. edges) can be identified more accurately with a smaller
window size, the optimal size for identifying the liver region
is decided to be 9 × 9 after extensive experimentation by con-
cerning to prevent finding details inside the liver area and to
get better information about the orientation of the liver. Also
in [13,14], 5 × 5 window size is presented to be optimal for
256 × 256 and 240 × 320 images, therefore using 9 × 9 for
512 × 512 images is appropriate.

To represent the homogeneous regions (i.e. Liver parenchyma)
in the current slice, we use the mean feature (Fig. 11a). For a
pixel the mean gray level value is calculated by

xij = 1

N
×

⎛
⎝

i+4∑
i−4

j+4∑
j−4

xij

⎞
⎠

To represent the edges (i.e. liver boundary) we use the standard
deviation feature (Fig. 11b) which is calculated as

�ij = 1

N
×

⎛
⎝

i+4∑
i−4

j+4∑
j−4

(xij − x)

⎞
⎠

where xij is the mean value of the pixel×located at the position
i, j and �ij is the standard deviation of the pixel located at the
same position. N is the total number of pixels in the window
which is equal to 81 in our approach.

Finally, the distance transform feature is used to represent the
previously segmented image. The distance transform provides
a metric that measures the separation of the pixels in the image.
The metric is calculated to measure the total Euclidean distance
along the horizontal, vertical, and diagonal directions (Fig. 12a).

In our algorithm, the distance transform gives information
about the liver location at the adjacent (preceding/succeeding)
slice. Since the liver size and location does not change dramat-
ically between adjacent slices, the distance transform of a seg-
mented liver (Fig. 12b) gives quite important information about
the liver location at the adjacent (preceding/succeeding) slice.

The distribution of the features in the feature space is shown
in Fig. 13. The lighter data points (x : [0 0.1], y : [0 1])
correspond to the pixels that belong to the liver in the figure.
From Fig. 13a, it is observed that the most discriminative feature
is the distance transform. However the distance transform is not
sufficient to discriminate the data inside the circle in Fig. 13b.
It is observed that the data inside the circle becomes separable
by using the mean and standard deviation features.

After the extraction of features, first, these three features, dis-
tance transform, mean and standard deviation, are used as the
inputs of the K-Means clustering algorithm. Although, there
is a slight increase in the performance of classification, it is
observed that atypical liver cases and ‘low contrast’ CTA se-
ries cannot be segmented properly. Therefore, a more complex
classifier is needed and MLP is chosen as the classifier.

The network is trained initially by using the segmented initial
image as the desired output and the calculated three features
as the training data. At the network output, each input pixel is
classified as belonging to the liver region or lying outside the
liver region on the basis of these features.

After this initial training, weights are updated and iteration
proceeds to the next slice. Mean and standard deviation fea-
tures are calculated for the preprocessed next slice (which is the
current slice to be segmented) and the distance transform is cal-
culated from the previously segmented image. By using these
features and the weights (obtained from the previous slice), the
current slice is segmented. After the segmentation of the cur-
rent slice, the network is trained again by using the features
(mean, standard deviation and the distance transform calculated
for the segmented images of current slice) as the input and the
new segmented image as the desired output. After the training
and calculation of the weights, the algorithm proceeds with the
next slice and this iterative procedure continues until all im-
ages are processed. Using the previously adjusted weights as
the initial weights of the next training phase, the training time
is reduced significantly.

The MLP structure used for the segmentation consists of
three neurons at the input layer, which corresponds to the num-
ber of input features. There are eight neurons at the hidden
layer, each of which has a bias input that ranges between ±1.
The biases are updated along with weights during error back-
propagation [21]. The output layer consists of one neuron. The
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Fig. 10. (a) Segmentation process by using MLP; and (b) preprocessing of all images is followed by the selection and segmentation of the initial image. The
initial training is done by using the segmented initial image as the desired output and the feature vectors obtained from initial and segmented initial images
as training data, (c) then, the algorithms proceeds to next slices and at each slice previously found weights are used for classification with MLP. The weights
are updated using the current segmented image as the desired output and the feature vectors obtained from the current slice as training data. In the figure �i ,
�i , and di corresponds to mean, standard deviation and the distance transform features obtained from slice I, respectively where i = j − 1, j − 2, . . . , 2, 1 for
up-segmentation and i = j + 1, j + 2, . . . , N − 1, N for bottom segmentation with N is the number of slices.

output of the network lies between 0 and 1 for each pixel and
it is thresholded by 0.5. Then, for an input region belonging to
the liver class, the output is designed to be unity whereas for all
other the output is designed to be zero. This network structure is
determined to be the optimum after extensive experimentation
and due to a compromise between efficiency and reliability.

3.3. Analysis and comparison of features and classifiers

In [14], five optimum features are reported as follows: mean
gray level, standard deviation, skewness, entropy, homogene-
ity. However, these statistical descriptors are not sufficient to
differentiate two organs/tissues that have similar texture and/or
statistical properties. This drawback limits the usage of these

features in atypical liver shapes where the border between the
spleen and the liver vanishes. Since the spleen has almost the
same texture and statistical properties as liver, it becomes very
difficult to segment the liver without the spleen. Moreover, in
‘low contrast’ CTA series, the statistical properties of mus-
cle tissues and vasculature (i.e. aorta, inferior vena cava) get
closer to the liver which also hardens the correct segmentation
of the liver by only using these features without any spatial
information.

To overcome these problems, the distance transform is se-
lected as an additional feature. Our approach in the selection
of the distance transform is to simulate the decision process
of a radiologist. For instance, in the case of atypical liver
shapes, the unclear border between the liver and the spleen is
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Fig. 11. Feature images: (a) mean; and (b) standard deviation.

Fig. 12. Distance transform process: (a) distance transform of a binary image in which only the pixel at the center has value 1; and (b) distance transform of
a segmented slice.

determined by the radiologist by following the slices (especially
the ones just before and after) where the border is more visi-
ble. Similarly, the distance transform feature provides a metric
to represent the liver at the previously segmented slice which
gives information about the liver location at the adjacent (pre-
ceding/succeeding) slice. Although this feature is affected by
the slice spacing of CTA data, the slice thickness (ST) of the
data sets used in this study is 3.2 mm, which is a rather big
value considering the emerging technology of CT modalities.
Even with this thick ST, the information provided by the dis-
tance transform is enough to handle atypical liver shapes and
‘low contrast’ data sets.

In the following figure, an example case is presented to show
the advantages of using distance transform for detection of the
liver. Fig. 14 shows a set of images that are selected from a CTA
series where the liver has atypical shape (Fig. 1d). Fig. 14a–d

shows the outputs of the K-Means classifier while Fig. 14e–h
represents the outputs of the MLP classifier. The slice numbers
are 33, 31, 28, and 24 from left to right where the slice 33 is
the initial image to be segmented. As shown in Figs. 14a and e;
both MLP and K-Means are successful in classifying the liver
without any connectivity with other objects. However, as the
segmentation process continues through the beginning of the
CTA series, the liver gets closer to the spleen (Fig. 14b and c)
and they finally they merge (Fig. 14d). Since the texture and
gray level variation of the liver and the spleen are very similar, it
is necessary to use the information obtained from the previously
segmented slices. The distance transform allows the usage of
this information as it limits the search area to a region that is
slightly bigger than the previously segmented liver region. As
shown in Fig. 14f–h, the distance transform prevents the spleen
to appear at the output of the classifier.
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Fig. 13. Feature space from two different views: (a) the most discriminative feature is the distance transform since most of the data is separable along the distance
transform space; and (b) however, it is not sufficient to discriminate the data inside the circle and additional features (i.e. mean, standard deviation) are required.

Fig. 14. The effect of the distance transform in segmentation of atypical liver. Each figure shows the output of the classification results with K-Means or MLP
without any post-processing: (a) the ‘initial image’ can be segmented by K-Means (Slice 33); (b) as the slice by slice segmentation proceeds, the spleen, which
has almost the same texture and statistical properties as liver, becomes closer to the liver (Slice 31); (c) as spleen and liver gets closer, their border cannot be
identified clearly since they belong to the same cluster due to the similar characteristics (Slice 28); (d) when the borders of the liver and the spleen intersects,
the clustering is not enough to classify these two organs (Slice 24); (e) the ‘initial image’ can also be segmented by MLP (Slice 33); (f, g) as the slice by
slice segmentation proceeds, the distance transform limits the classifier output to a region close to the location of previously segmented liver (Slices 31–28);
and (h) the effect of distance transform prevents the misclassification of the spleen even when the border between the liver and the spleen vanishes (Slice 24).

Here, it is worth to point that the distance transform is com-
bined with the features proposed in [14] as another experiment.
However, after extensive simulation studies no noticeable in-
crease is observed in the performance of segmentation when
skewness, entropy, and homogeneity are included in the feature
set. But these three features increase the computational burden
and slow down the process dramatically. Therefore, skewness,
entropy, and homogeneity features are not used during classi-
fication.

Another important issue is the training of the neural network
since it has significant effect on the performance and computa-
tion time. The technique proposed in [13] requires more than
one manually segmented image as training data which is un-
desired for automated processes. In [14], training is done with

a limited set of images and due to the high variation of im-
age characteristics, a larger and more diverse database is rec-
ommended to generalize this system for reliable performance.
After the adjustment of the network weights using the training
set, these fixed weights are used for segmentation of other data
sets. However, this approach is error prone and needs new train-
ing sets for the data sets with new image characteristics such as
different modalities and modality settings. Moreover, our sim-
ulations show that using a fixed hyper-plane (network weights)
to segment all images in a CTA series, decreases the segmen-
tation performance. This means that a new set of weights for
each image increases the segmentation performance and the
weights should be adjusted during the segmentation of differ-
ent slices of the same CTA series. To provide this adjustment,
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Fig. 15. Post-processing stage for a slice: results of: (a) K-Means clustering; (b) median filtering; (c) erosion; (d) skeletonization of the previously segmented
liver; (e) BIMIR using median filtering result as the marker and skeleton as the mask; and (f) dilation to restore the contours that have not been completely
removed by the erosion.

the weights of the proposed network are updated at each slice.
This is done by using the original form of a slice as the input
and the segmentation result as the desired output of the train-
ing. Initialized by the “initial image”, the previously adjusted
weights are used in the segmentation of the next slice. The
same weights are also used as the initial weights of the next
training phase which reduce the training time significantly. A
similar training methodology is proposed in [15], where a con-
textual neural network with a high segmentation performance
is proposed. But the results show that it fails where the gray
level of the desired region is too close to the adjacent tissues
since the proposed method is designed for the segmentation of
all abdominal organs.

3.4. Post-processing

The results obtained from the segmentation algorithms are
roughly segmented liver structures (Fig. 15a). To remove small
mis-segmented objects and for boundary smoothing, a post-
processing is needed. Moreover, identification of all compo-
nents of the liver when the liver dissects into two or more re-
gions is also done at the post-processing stage.

Post processing is handled differently for the slices before
and after the “initial image” slice because of the different image
characteristics.

In the post processing phase of the slices after the ‘initial
image’, a series of nonlinear filtering and morphological op-
erations is applied to separate weakly connected components

in the clustered binary image. First, a median filter is applied
to remove the white spots appear at the background and black
spots appear inside the liver (Fig. 15b). Then, erosion opera-
tion is applied to eliminate the small unconnected objects that
do not sit within the structuring element (Fig. 15c). Next the
skeleton of the previously segmented liver is obtained using
skeletonization (Fig. 15d). By using BIMIR, in which the skele-
ton is used as the marker image and K-Means or MLP result
as the mask image, the liver is identified (Fig. 15e). Usage of
skeletonization also provides the important information about
the separated parts of the liver when it dissects into two or more
regions (Fig. 15d). The algorithm searches for the second and
the third components automatically for the slices after the ‘ini-
tial image’. After that, dilation operation is applied to restore
the contours that have not been completely removed by the ero-
sion (Fig. 15f). Finally a Gaussian filter is applied to the edges
to smooth the contours.

The difference between post processing of the slices before
and after the initial image is due to the existence of heart tissue
in the slices before the initial image. For the slices before the
initial image, the liver area from the previously segmented slice
is not dilated because the heart can also be included due to gray
level similarity of it with the liver. Another difference is that
the algorithm looks for only one connected component for the
first slices.

Post processing is handled differently also for the low and
high contrast data sets. In low contrast data sets; nonlinear
filtering is applied in a different way such that the value after
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Fig. 16. (a) Affect of median filtering and (b) affect of modified nonlinear
filtering.

the median is taken instead of the median value. This kind of
filtering increases the connectivity of the liver by eliminating
more dark spots than median filtering (Fig. 16a and b).

4. Evaluation

The segmentation results are evaluated by using the area
error rate (AER) [17]. AER is defined as the area difference
between the region segmented by the algorithm (RA) and the
region segmented manually (RM). Defining a union region RU
as RA ∪ RM and an intersection region RI as RA ∩ RM, AER
is equal to:

AER = RU − RI

RM
× 100%

AER is similar to the criteria volumetric overlap error (VOE)
which is used in [25]. VOE is defined as

VOE = RU − RI

RU
× 100%

VOE is 0 for a perfect segmentation and has 100 as the lowest
possible value, when there is no overlap at all between segmen-
tation and reference. AER also takes zero values for a perfect
segmentation however the lowest possible value is not limited
to 100. In our evaluation, AER is calculated directly (without
any boundary modification) between the manually and auto-
matically segmented images. The manually segmented images
are segmented by an expert radiologist from Dokuz Eylül Uni-
versity (DEU) Radiology Department.

The slice by slice average AER for 20 data sets (‘5’ low
contrast and 15 ‘high contrast’, three of which have atypical
liver shape) with the K-Means algorithm is shown in Fig. 17a.
It is observed that the algorithm shows better performance for
the slices at the middle and at the end of the data sets. The high
AER values for the slices at the beginning of the data sets are
due to unclear boundary between the heart and the liver. The
average AER for the complete data set is calculated as 12.15%
by using the K-Means algorithm.

As explained in Section 3.2 the overall algorithm switches
automatically from K-Means to MLP when it is needed. To
illustrate the effect of this switch on the segmentation perfor-
mance we performed several experiments. Fig. 17b shows the
average AER for each patient data set when the system just
uses the K-Means. The high AER values in data sets 8, 9 and
15 are due to atypical liver shapes.

As mentioned above, the main points where the K-Means al-
gorithm fail are the first slices where the heart and the liver can
hardly be segmented even with the human eye, the patient data
sets with atypical liver shapes (Fig. 18a) and the separation of
the tissues in ‘low contrast’ data set where the gray level value
of the adjacent tissue (organ or vessel) is very close to the liver
(Fig. 18c and e). The algorithm with the neural network, MLP,
classifier solves these problems and performs better segmenta-
tion in those cases (Fig. 18b, d, and f). These high AER values
are reduced from 41.20% to 12.73% in data set 8, 18.20% to
9.95% in data set 9, and 29.8% to 11.30% in data set 15 by
using MLP. The high AER values in 2, 12 and 13 are due to
low contrast between the liver and its adjacent tissues, organs.
These high AER values are reduced from 14.7% to 10.16%
in data set 2, 17.40% to 11.6% in data set 12, and 17.1% to
10.24% in data set 13 by using MLP.

However, the time required for the algorithm with K-Means
classifier is less than MLP. Therefore, it is necessary to use the
overall system, which takes the advantage of both classifiers,
to obtain the optimum results.

Moreover, it is clear that, AER is very sensitive to the pixel
differences between automatically and manually segmented im-
ages. Therefore even 1 or 2 pixel difference between these
images increases the error rate significantly especially at the
boundaries even when no modification is needed. Therefore,
a qualitative evaluation is also made by an expert radiologist.
The evaluation of the expert is based on his idea if a slice needs
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Fig. 17. (a) Average AER calculated for the slices, which have identical number, in all data sets. (i.e. the error percentage for the 40th slice represents the
average AER of 40th slices in all data sets); and (b) average AER calculated for each data set if just K-Means algorithm is used.

Fig. 18. (a) Segmentation results for Fig. 1d: algorithm result with K-Means; (b) algorithm result with MLP; (c) segmentation results for Fig. 1b: algorithm
result with K-Means; (d) algorithm result with MLP; (e) segmentation results for Fig. 1a: algorithm result with K-Means; and (f) algorithm result with MLP.
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modification or not. Then the AER is calculated for the slices
that need modification. Fig. 19 shows the average AER calcu-
lated for the slices that need modification for each patient data
set by using the overall system. The results show that the av-
erage AER is reduced significantly to 5.09% with a minimum
of 2.4% and a maximum of 7.63.

As a last analysis we calculated volume measurement of
the liver for comparing the segmentation performances of the
algorithms (K-Means, MLP and overall) and the success rate
of our approach is (Fig. 20a). To measure the volume of the
segmented parts, pixel spacing and slice thickness values are
used from DICOM Meta information. The error range of the
volumes obtained with the K-Means algorithm is between 20

Fig. 19. AER calculated for all data sets but using only the slices that are
determined by the expert as further modification is needed

Fig. 20. Volume measurement results of segmented parts: (a) comparison of volumes obtained by MLP and K-Means with manually segmented; and (b) overall
system performance.

and 210 mm3. The percentage errors of these measurements are
found between 0.7% and 16.26% with a mean error of 4.7%.
The same analysis for MLP show that the error range of the
volumes obtained with the K-Means algorithm is from 40 to
160 mm3 and from 2% to 12.8% with a mean of 7.5%. The
results again show that the MLP shows better performance at
the data sets with a typical liver shape (8, 9, and 15) and low
contrast adjacent tissues (2, 12, and 13) although the K-Means
is better in overall average error.

The overall system performance is shown in (Fig. 20b). The
error range of the volumes obtained with the algorithm is from
20 to 140 mm3. The percentage errors of these measurements
are found between 0.7% and 12.8% with a mean error of 6.4%.

The Java version of the program with the K-Means algorithm
runs for 12–17 min in a standard PC with 2 GB Ram and 3 GHz
processor and requires 750 MB of memory [24]. The Matlab�

version runs more slowly and takes around half an hour with
K-Means classifier. The algorithm with the MLP classifier ends
approximately in 45 min both in Matlab� and in Java. On the
other hand it takes around 60–90 min for an experienced user
to segment liver from 100 slices manually and it requires user
experience both on the liver and the software which should con-
sist of the necessary tools for manual segmentation of the liver.
In comparison with manual segmentation tool that is currently
in use, our algorithm is clinically feasible and much more ef-
ficient in terms of time and efficiency.

5. Discussion and future work

The paper proposes a robust and efficient method that can
automatically segment the liver of transplantation donor can-
didates in any CTA series. The success rate is calculated as
94.91% over a data set of diverse CTA series of 20 patients
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according to the evaluation of the expert radiologist experienced
on pre-evaluation of transplantation donors for more than 100
cases.

In this study, a robust algorithm, that can automatically seg-
ment the liver in any CTA series, is established. The robust-
ness of the method follows from its capability of dealing with
the contrast variations and atypical liver shapes and this capa-
bility is provided by the patient oriented structure of the al-
gorithm. For qualifying ‘patient oriented’, the algorithm learns
the data set characteristics in parallel to segmentation process,
and adapts its parameters to these characteristics. This strategy
involves a segmentation method which does not utilize a com-
mon parameter set found from all patient data sets. Instead, the
method is capable of adapting the parameter set to each patient.
So the wide ranges of the parameter values are covered and the
developed system is sensitive to all variations in a data set by
adopting its parameters due to the data set characteristics.

The ability of dealing with the contrast variations and atyp-
ical liver shapes first by recognizing the existence of these
problems and then by solving the segmentation problem us-
ing inter-slice information provided by the distance transform.
To our knowledge, there is no method in the literature which
handles all these difficulties at the same time. This ability is
gained:

(i) by introducing the distance transform as a feature for each
slice and then using this information in the succeeding
slice to reveal three dimensional properties of the liver
which cannot be obtained by the set of slices processed
individually,

(ii) by devoting different (MLP) classifiers for different slices
each of which is fed by three features such as mean, stan-
dard deviation and distance transform as opposed to the
automatic organ segmentation methods available in the lit-
erature which use a single classifier for the whole set of
slices, some uses statistical features extracted from three
dimensional data [16] and some uses five features for each
slice [14],

(iii) by reducing the number of features and by initializing each
(MLP) classifier’s weights with the weights of the previous
one, so getting a good efficiency in terms of time and
memory requirements,

(iv) firstly by segmenting the initial slice in an unsupervised
way, secondly by using the segmented image as the target
in the (supervised) training of the classifier devoted to the
initial slice, and finally by segmenting each slice in a su-
pervised way with its associated classifier whose weights
are obtained via training the classifier of the preceding
slice which uses the segmented image of that slice as the
target. (Such an approach makes the design of the over-
all classification system fully unsupervised that depends
on the given CTA series only without requiring any given
training set of CTA series. This is a very interesting fea-
ture of the overall classification system preventing the gen-
eralization errors originated from the dependence of the
classifiers’ performance on the used training set of CTA
series.)

Results show that several problems in liver segmentation are
addressed including gray level value similarity of adjacent or-
gans, partial volume effects, atypical liver shapes and different
modality settings. The method’s ability of adaptation to data set
characteristics increases the tolerance capability of the system
and makes it feasible for clinical usage.

Although some of them produce very effective results in CT
series, the deformable model based and gray level value based
techniques generally produce segmentation results with holes
inside the liver volume in CTA series even when the outer
border is found correctly, because of the fact that the internal
structure of the liver is acquired heterogeneous due to contrast
media injection in CTA series. This results with incorrect mea-
surement of the liver volume which is also handled properly
with the proposed method.

The proposed algorithm has also been applied to the data
sets provided in [25]. Although these data sets are acquired
with CT, the series obtained for patient data sets with no tu-
mors are segmented with high performance. This result also
shows the benefit of patient oriented approach which is affected
minimally from modality settings and does not need a training
set prior to the application. In the data sets with tumors, it is
observed that the segmented area generally includes the liver
without including the tumor area. This is an expected result
since the proposed algorithm is designed to segment healthy
liver parenchyma for the evaluation of transplantation donors
who should not have any tumors in their liver

Together with the data sets provided in [25,26], the pro-
posed method has been tested with the CT and CTA series
acquired from four different modalities. The successful results
obtained by all these modalities also show that the proposed
method does not have dependence on the modality.

The disadvantage of the proposed method is its dependency
to the correct segmentation of the ‘initial image’. If the au-
tomatically selected initial image does not satisfy the neces-
sary requirements, the user should select an appropriate slice
or might need to manually segment the initial image.

Since the algorithm is developed for the pre-evaluation of the
transplantation donor candidates, the series that are acquired
with rotated patient position (i.e. data sets 1 and 2 in [25])
cannot be segmented.

Areas that may further be examined include speeding up
the process by improving the programming structure, more
robust detection of the ‘initial image’ and the ‘initial kidney
image’.

6. Summary

Our regular article submission consists of the authors’ orig-
inal work about the implementation of an algorithm for auto-
matic segmentation of liver in contrast enhanced CT images.
Due to gray level similarity of adjacent organs, injection of
contrast media and partial volume effects; robust segmentation
of the liver is a very difficult task. Moreover, high variations
in liver position, different image characteristics of different CT
modalities and atypical liver shapes make the segmentation pro-
cess even harder.
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Our strategy for overcoming these difficulties involves a seg-
mentation method which does not utilize a common parameter
set found from all patient data sets. Instead, the method is ca-
pable of adapting the parameter set to each patient. The main
reason for this approach is that the ranges of the parameter val-
ues differ significantly from patient to patient, and these wide
ranges decrease the efficiency of the method when one utilizes
a common parameter set for all patients.

Thus, we propose a method which examines and adapts its
parameters according to each patient. We call this approach
as patient-oriented segmentation. For qualifying ‘patient ori-
ented’, the algorithm learns dataset characteristics in parallel to
segmentation process, and adapts its parameters to these char-
acteristics. To our knowledge, there is no method in the litera-
ture that works in this manner and at the same time addresses
all the challenging aspects mentioned above.

Our iterative segmentation algorithm combines classifica-
tion of pixels (using an unsupervised clustering method i.e.
K-Means) with adjacent slice information (obtained by skele-
tonization) via morphological reconstruction. A more complex
classifier (multi-layer perceptron network—MLP) is developed
for the data sets where the K-Means clustering gives insuf-
ficient results. Here, the neural network is designed to use
features extracted from the current and adjacent (previously
segmented) slices and therefore intrinsically robust to gray
level and shape variations. The decision between using either
K-Means or MLP is also done automatically by the algorithm.
The developed algorithm gives sufficient performance for dif-
ferent modalities, varying contrast, dissected liver regions and
atypical liver shapes. Results indicate that we have effectively
overcome the challenging difficulties explained before and our
algorithm is clinically feasible.
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