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Abstract. We propose a framework for fast and automated initial-
ization of segmentation algorithms in Computed Tomography images.
Based on the idea that time-consuming voxel classification should be
done only on spatially constrained areas, we build classifiers at body and
slice levels which quickly define a constrained region of interest. Voxel
classification is then performed by a divide-and-conquer strategy using a
probabilistic-boosting tree. In addition, this framework can incorporate
additional information on the volume, if available, such as the position
of another organ to improve its accuracy and robustness. The framework
is applied to seed extraction in kidneys and liver.

1 Introduction

Statistical model-based segmentation algorithms such as active contours [1], re-
gion competition [2] or graph cuts [3] are considered powerful and effective, and
are widely used in medical image segmentation [4,5]. They share a commmon
particularity, namely, they need to be provided with one or multiple seeds, or
an initial contour. This initialization step is often performed manually, hence
preventing them to be fully automated.

A possible approach to automate the process is machine learning. Being able to
combine abstractly various sources of information, machine learning techniques
(bagging trees [6], neural networks [7], support vector machines [8], boosting
trees [9], etc. ) have a major role in computer assisted diagnosis (CAD). For the
purpose of seed extraction from Computed Tomography (CT) 3D scans, direct
application of learning algorithms either at image or voxel level is bound to fail.
At image level, one would need a large training set of CT scans (hundreds),
which is not easily available. At voxel level, inter-organ similarities and intra-
organ variability prevent learning to be fast and robust. Moreover, the amount
of voxels pin a 3D scan makes a direct approach computationally expensive,
both in the training stage and in the detection phase. Even with divide-and-
conquer strategies on the voxel population, detectors are hard to train and their
robustness is questionable.

However, the organization of the body structures is well defined and remains
mostly consistent from one patient to another. Modelization of this high-level
knowledge of dependencies between organs and tissues can help reduce the com-
plexity of the seed extraction problem. Large parts of the body/scan can be dis-
carded, hence leading to a faster and better decision boundary. Previous works
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in this direction includes use of deformable models [10], or computation of prob-
ability maps based on a previous segmentation of the lungs [11].

In this paper, we present a framework for fully automated multi-organ detec-
tion in abdominal CT images, based on the Adaboost algorithm. We propose
to progressively incorporate spatial knowledge in the learning process, first by
classifying horizontal slices, then by discarding slice areas based on prediction of
the organ of interest’s position, and finally by performing a voxel classification.
This leads to an important reduction of both training and detection time as
well as an improved accuracy. At each step, features are defined and normalized
when possible, so that they are independent of the actual intensity dynamic
and patient characteristics. Detectors are therefore robust to variations due to
unhealthy organs or contrast agents. We also define filters which takes into ac-
cound predefined landmarks, if available, such as results from a previous run of
the algorithm on a different organ.

Section 2 details the framework learning procedures, section 3 describes the
features used at each step, section 4 shows how detection can be improved with
the prior knowledge of landmarks, while section 5 presents some of our results.

2 Learning

2.1 Adaboost

Adaboost, invented by Freund and Schapire [12] and its variants have been suc-
cessfully applied to many problems in vision and machine learning. Friedman
and al. [13] have shown that Adaboost approach the posterior p(y|x) by se-
lecting and combining a set of weak classifiers into a strong classifier. At each
iteration, it increases the weights of the previously misclassified samples, so that
the next selected weak classifier will perform better on ”hard” examples. The
final hypothesis is a weighted linear combination of the T hypotheses whose
weights are inversely proportional to their training errors: H(x) =

∑T
t=1 αtht(x)

with ht(x) being a weak classifier and αt its weight. A classifier trained with
the standard procedure is used for slice classification. In the detection phase,
only voxels which belong to slices detected as positives are passed to the voxel
classifier. However, using standard Adaboost at voxel level is questionable for
different reasons:

– although Adaboost asymptotically converges to the target distribution, it
needs to pick hundreds of weak classifiers, thus being computationally ex-
pensive. Since a 3D CT image contains millions of pixels with great diversity,
picking a single sampled training set would make training a matter of weeks,
and detection a matter of minutes.

– the order in which features are selected is not preserved although it may
correspond to high level semantics and be useful for the understanding of
patterns.
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– the re-weighting scheme of Adaboost may cause samples previously correctly
classified to be misclassified again. In the case of a rare event detection
problem, we want to be able to discard a large amount of samples in the
early stages, so that later stages deal with samples that are similar to the
targeted data.

These issues are naturally addressed by a divide-and-conquer (e.g. tree or cas-
cade) approach.

2.2 Probabilistic Boosting Tree (PBT)

Voxel classification is performed using a Two-class Probabilistic Boosting Tree
(PBT) as presented in [14]. The PBT procedure automatically constructs a tree
in which each node is a standard Adaboost classifier (a combination of weak
classifiers) that can deal with complex distributions while being resistant to
overfitting. Training samples are then divided into two new sets according to
their response to the learnt classifier and used to train a left sub-tree and a right
sub-tree. Confusing data are passed further down, leading to the expansion of
the tree. PBT naturally embbeds clustering and has applications in classifica-
tion, detection, recognition and segmentation [15]. Table 1 details the learning
process.

The detection phase is consistent with the learning phase. At each node, a
sample is passed down to the right subtree if its response to the node’s strong
classifier is positive (meaning that the voxel belongs to the organ of interest),
to the left subtree if not, until it reaches a leaf. The probability returned is the
ratio of positives samples that reached this leaf in the training process.

3 Defining Features for Seed Detection

Since seed detection is a voxel classification problem, training has ultimately
to be made at voxel level. A voxel-based training faces the following problems:
huge amount of voxels, intensity similarities between organs and tissues, varia-
tions between acquisitions, lack of organ tissue homogeneity within and among
different image slices both in shape and texture, abnormalities of unhealthy tis-
sues, absence of the organ of interest from the considered scan.

Most of these problems can be addressed by an ad hoc reduction of the number
of potential seeds. Since very general anatomical considerations (on one of the
body, beneath the diaphragm, ...)help predicting an organ position, we propose
to constrain a spatial domain of interest using boosted classifiers at body and
slice level. To be independent of scale factors, a normalized coordinate system
of the patient’s body is defined for the two axial dimensions. Because CT scans
do not always represent the same part of a patient’s body in the vertical dimen-
sion, we cannot have the same normalization in z. The axial dimensions on one
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Table 1. PBT procedure used to learn the voxel classifier. The only difference with the
procedure presented in [14] is the sampling stage (2) introduced to speed up trainings.

Procedure for training of a tree with maximum depth of L:

1. Given: a set of images {(X1, Y1), ..., (Xn, Yn)}. Xk is a region of interest of
a particular image. Yk is the corresponding ground truth. Training set is
S = {(x1, y1), ..., (xp, yp)}, where xi ∈ Xk and yi = 0, 1 for negative and
positive respectively.

2. Sample a training set Ssampled of labeled examples
{(x′

1, y
′
1), ..., (x′

n, y′
n)} with respect to the number of positives

and negatives in S. wi is the weight of the training sample.
3. Initialize weights wi = 1

2m
, 1

2l
for yi = 0, 1 respectively, where m and l are the

number of negatives and positives respectively.
4. Normalize weights in Ssampled.
5. In Ssampled, train a strong classifier using the standard Adaboost procedure.

Exit early if the training error at classifier εt > θ (e.g. θ = 0.45).
6. If the current tree depth is L, then exits.
7. Initialize two empty sets Sleft and Sright.
8. For each sample in S compute the probability q(1|(xk, ik)) and q(−1|(xk, ik))

using the learned strong classifier learned on Ssampled.
9. if q(1|xi) > 1

2 then (xi, yi, 1) → Sright else (xi, yi, 1) → Sleft

10. Repeat the procedure recursively for Sleft and Sright.

hand and the vertical dimension on the other hand are treated differently. Our
approach consists of three steps:

1. Slice classification: a classifier that gives a probability that a particular slice
intersects with the organ of interest is trained. A permissive decision thresh-
old is set to obtain an almost perfect recall.

2. Slice area selection: given an easily computed segmentation of the body, a
scaled coordinate system is defined for each slice, so that regions are defined
univocally in every slice. By looking up the organ coordinates in the train-
ing images, we identify regions where the organ of interest has very little
chance to be observed. This process discards roughly 70 % of a slice pixel
for vertically oriented organs such as kidneys.

3. Voxel classification: a voxel classifier is trained, on a large neighborhood of
the organ.

Center Op,k and dimensions wp,k, hp,k are determined for each slice Sp,k in
volume Vp using a slice-by-slice segmentation of the body (obtained by a simple
contour-tracing algorithm). These are used to define on each slice a coordinate
system, with the center of the slice as its origin and the X and Y axes as its basis
axes. Coordinates are normalized by the slice dimensions, so that every voxel in
the slice has coordinates between −1 and 1, regardless of the patient’s size or
corpulence (Fig. 1).
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Fig. 1. Left: CT slice with coordinate system and reference segmentation used for
kidneys. A similar coordinate system is defined for every slice. Right: observation map
for both kidneys obtained using 20 volumes. Bottom left corner is (-1,-1), upper right
is (1,1) in the slice coordinate system.

3.1 Slice Classification

Vertical normalization would require to have the patient’s size or two easily de-
tected anatomical landmarks in the CT scan, which cannot be guaranteed. We
propose to train an Adaboost classifier that determines the probability for a slice
to intersect with the organ of interest. Features (Table 2) are designed to iden-
tify spatial organization, similarities in shape, appearance, symmetry, relative
intensities compared to those of the entire body, comparisons with neighbours,
entropy, etc. They are computed both for the entire slice and for sub-windows.
Since they are slice-level features, they may be more computationally expensive
than voxel features. Features are fed to a two-class Adaboost procedure, together
with a training set of slices. Slices are labeled positive if they intersect with the
organ of interest, negative if they do not. After regularization based on the fact
that organs are connex, the obtained detectors discard a vast majority of slices,
while having a nearly perfect recall.

3.2 Slice Area Selection

Using this coordinate system we report the 2D normalized coordinates of every
voxel that belongs to the organ of interest in each training image on an “oc-
curence map”, from which the consistency of the organ’s position in the slice
is observable. Based on this map we define a domain where voxels are likely to
be positive, according to the number of positive observations at their locations.
A permissive bounding box is defined on each slice using the observation map.
For kidneys, this step discards at once 4

5 of voxels. Of course, the smaller the
horizontal sections of the organ are, the more voxels are discarded.

3.3 Features Used for Voxel Classification

We use the three dimensional version of the Haar filters combined with the use
of an integral image [16]. The computational cost of computing Haar filters is
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Table 2. Examples of features used for slice classification. They are designed as cues
of symmetry (h3), shape (h1, h5), appearance(h2, h6). Features are computed for the
entire slice and for rectangular subwindows.

– h1(Sp,k) = card{x/x inSp,k}
4wp,khp,k

– h2(Sp,k) =percentage of air voxels in Sp,k

– h3(Sp,k) = card{x∈Sp,k/−→x .
−→
i p,k>0}

card{x∈Sp,k/−→x .
−→
i p,k<0}

– h4(Sp,k) = −→
i p,k.

−→
i p,k−1

– h5(Sp,k) = wp,k+1
wp,k−1

– h6(Sp,k) = Entropy(Sp,k)

Sp,k is a slice, Cp,k = (Op,k,
−→
i p,k,

−→
j p,k) the slice coordinate system.

constant since we only need to sum up the values of corners of the Haar filter in
the integral volume. Training is made on voxels contained in the bounding boxes
defined by vertical pruning, using a variant of Probabilistic Boosting Tree.

4 Hierarchical Detection

Furthermore, a better accuracy can be achieved by using a segmentation (ground-
truth) of a different organ in the training process for the organ of interest, or any
anatomical landmark. This information (position, shape) can be incorporated at
each of the three previously presented stages:

– Slice area selection: by placing the center of the coordinate system at the
center of the ground-truth, we can define another “occurence map” by re-
porting the coordinates of every voxel that belongs to the organ of interest
in each scan of the training set.

– Slice characterization: features using the size and the position of the reference
structure are introduced in the learning process.

– Voxel classification: purely geometrical features using the position of the
center of the reference structure are introduced in the learning process

Dependencies of relative positions, sizes, shapes and histograms between or-
gans are, if present, automatically selected by the learning process, assum-
ing features are relevant enough. Being specific to the patient and the ac-
quisition, this information can serve as a reference for the rest of the image.
An incremental detection process which relies on the segmentation of previ-
ously segmented organs to perform the seed detection of the next one can be
defined.
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Fig. 2. Training and validation curves for the left kidney, with and without prior knowl-
edge of the right kidney position (left) and liver (right). Straight line is the first bisector.

5 Results and Discussion

Our database is composed of 50 CT volumes from various patients and institu-
tions. 20 of them, randomly chosen, are used for training, the 30 remaining for
testing. Ground-truths are obtained by a supervised level set algorithm. Detectors
are trained for left kidney, with and without prior knowledge of the right kidney’s
barycenter position. Figure 2 shows results curves for each detector. Since our task
is detection rather than segmentation, we do not expect an excellent recall but a
good precision. Precision at level of confidence α is defined by:

p(α) =
true positives

true positives + false positives
=

card{(x, 1)/H(x) > α}
card{(x, y)/H(x) > α}

where 0 ≤ α ≤ 1 is a threshold and 0 ≤ H(x) ≤ 1 the response of the H classifier
for the x sample.

A retrieval rate of 30% of the organ voxels is possible with a precision higher
than 90 % for both liver and kidneys, which proved sufficient to initialize a
level set algorithm. In the case of a kidney, a random guess in the entire im-
age would have a precision and a recall lower than 1 %. As expected, knowl-
edge of another organ position improves the average accuracy. Moreover, since
positively detected voxels are spatially constrained, geometrical post-processing
should in the future lead to an increased precision. Detection time on a stan-
dard computer is around 400 000 voxels per second. Robustness is acceptable
given the size of our training set and better results could be achieved with larger
datasets.

In this paper, a framework for automated seed extraction is introduced.
Learning is carried out in a hierarchical way by divide-and-conquer strategies.
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Experiments are reported on liver and kidney. Results show that it is a valid and
robust approach to automatically extract seeds in multiple organs. Furthermore,
observed recall rates and intrinsic spatial concentration of the retrieved seeds
suggest that feature improvement and larger databases could lead to application
in segmentation. Future work also includes extending the method to more organs
and simultaneous seed extraction in several organs.
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