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Abstract—Clinically, the ultrasound findings are evaluated by its sonographic characteristics and then assigned
to assessment categories according to the definitions of Breast Imaging Reporting and Data System (BI-RADS)
developed by the American College of Radiology. In this study, a computer-aided classification (CAC) system was
proposed to classify the masses into assessment categories 3, 4 and 5, which simulated the clinical diagnosis of
radiologists. Compared with current computer-aided diagnosis systems, the proposed CAC system classifies the
indeterminate cases into BI-RADS category 4 for further diagnosis. Six hundred twenty-six cases were collected
from three ultrasound systems and confirmed by pathology and retrospectively classified into categories 3, 4 and
5 by radiologists. The multinomial logistic regression model was trained as the CAC system for predicting the
assessment category from the computerized BI-RADS features and from a set of machine-dependent factors. By
using the machine-dependent factors to indicate the adopted ultrasound systems, the same regression model
could be applied for the cases acquired from different ultrasound systems. A basic CAC system was trained by
using the classification result of radiologists. A weighted CAC system, to improve the capacity of the basic CAC
system in differentiating benign from malignant lesions, was trained by adding the pathologic result. Between the
radiologists and the basic CAC system, a substantial agreement was indicated by Cohen’s kappa statistic and the
differences in either the performance indices or the AZ of receiver operating characteristic (ROC) analysis were
not statistically significant. For the weighted CAC system, the performance indices accuracy, sensitivity,
specificity, positive predictive value (PPV) and negative predictive value (NPV) were 73.00% (457 of 626), 98.17%
(215 of 219), 59.46% (242 of 407), 56.58% (215 of 380) and 98.37% (242 of 246), respectively; the AZ was 0.94;
and the correlation with the radiologists was also substantial agreement. The indices accuracy and specificity of
weighted CAC system, compared with those of the radiologists, were improved by 5.91% and 8.85%, respectively
and the indices of sensitivity and NPV, compared with those of a conventional CAD system, were improved by
10.5% and 5.21%, respectively; all improvements were statistically significant. To classify the mass into
BI-RADS assessment categories by the CAC system is feasible. Moreover, the proposed CAC system is flexible
because it can be used to diagnose the cases acquired from different ultrasound systems. (E-mail:
rfchang@csie.ntu.edu.tw) © 2007 World Federation for Ultrasound in Medicine & Biology.
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INTRODUCTION

Breast cancer is the leading cause of death among
women worldwide (Parkin et al. 2005; Jemal et al. 2006).
Due to early detection, intervention and postoperative
treatment, mortality rates of breast cancer have been
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decreased. The screening by mammography has largely
contributed to the early detection of breast cancer. Ul-
trasound, as an adjunct technique to mammography, can
also increase the overall sensitivity of conventional
breast imaging (Rizzatto 2001; Baker and Soo 2002).
Stavros et al. (1995) proposed several useful sonographic
features to describe a mass, such as ellipsoid shape,
number of lobulations, ratio of width to anteroposterior
dimension, marked hypoechoic region, punctuated calci-

fication and posterior shadowing that help radiologists to
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accurately classify the masses as benign, indeterminate
and malignant (sensitivity of 98.4% and negative predic-
tive value [NPV] of 99.5%).

With the rapid development of computer applica-
tions, many researches have been carried out to develop
a computer-aided diagnosis (CAD) system for differen-
tiating malignant from benign masses (Chen et al. 1999,
2002, 2003; Horsch et al. 2002; Kuo et al. 2002; Joo et
al. 2004; Drukker et al. 2004, 2005). To describe the
characteristics of mass in a computer system, the sono-
graphic features developed in previous clinical studies,
such as the features developed by Stavros et al. (1995),
are, therefore, quantified as “computerized features.”
Kim et al. (2005) evaluated the correlation between the
computerized schemes and the grading of radiologists for
six sonographic features. The computerized features are
roughly classified into two types: morphologic features
and acoustic features. The morphologic feature describes
the formation of a mass, such as shape, orientation and
marginal features (Chen et al. 2003; Joo et al. 2004) and
the acoustic feature describes the correlation or the dis-
similarity of pixels, such as lesion boundary, echo pat-
tern and posterior shadowing features (Chen et al. 1999,
2002; Horsch et al. 2002). However, the pixel correction
is always affected by the settings of the adopted ultra-
sound system. Hence, the acoustic features will be
closely related to the ultrasound system from which
images are acquired. Therefore, an unanticipated diag-
nosis may be made if the acoustic features are used to
diagnose the cases acquired from different ultrasound
systems in a CAD system. To apply the same CAD
system for different ultrasound machines, Kuo et al.
(2002) proposed a feature-adjustment scheme that in-
cludes the resolution, gray value distribution and quan-
tization adjustments for different machines. A CAD sys-
tem with feature-adjustment scheme was better than a
system without adjustment scheme. The improvement in
accuracy, specificity and positive predictive value (PPV)
was statistically significant. Drukker et al. (2005) used
four features selected by the computer from 46 features
for two different data sets, indicating that the perfor-
mance of their CAD system was robust for different
ultrasound system used.

The Breast Imaging Reporting and Data System
(BI-RADS) developed by the American College of Ra-
diology (ACR 2003) standardizes the descriptions of
sonographic characteristics and the assessment of the
findings to facilitate communication and to improve the
outcomes of monitoring (Obenauer et al. 2005; Eberl et
al. 2006). To help radiologists grade the diagnosed
masses, the sonographic descriptions are grouped into six
classes: orientation, margin, lesion boundary, echo pat-
tern and posterior acoustic characteristics. On the basis

of these features, radiologists grade each mass as benign
(category 2), probably benign (category 3), suspicious
abnormality (category 4) and highly suggestive of ma-
lignancy (category 5). Because tumors in categories 3, 4
and 5 always require further evaluation, many studies
focus on the reliability of radiologists’ grading for these
tumors (Arger et al. 2001; Zonderland et al. 2004; Hong
et al. 2005; Costantini et al. 2006). Buchbinder et al.
(2004) focused the capacity of a computer-aided classi-
fication (CAC) system on the lesions assigned to BI-
RADS category 3 by at least two of four radiologists.
Their CAC system scored 38 of 42 malignant lesions that
were initially assigned to category 3 as category 4 or 5;
that is, the CAC system accurately upgraded the category
in 90% of the 42 lesions.

In this study, a CAC system is proposed to classify
the masses into the BI-RADS assessment categories 3, 4
and 5. The organization of which is shown in Fig. 1. The
BI-RADS sonographic characteristics, shape, orienta-
tion, margin, lesion boundary, echo pattern and posterior
acoustic features, are quantified by eight computerized
features for characterizing the mass in the proposed CAC
system. Besides, the adopted ultrasound systems repre-
sented by a set of machine-dependent factors, dummy
variables (Hosmer and Lemeshow 2000), are also re-
garded as mass features. By these machine-dependent
factors, the same CAC system could be applied for cases
that were acquired from different ultrasound systems.
Then, the classification results of radiologists are used to
train a basic CAC system by the multinomial logistic
regression (Hosmer and Lemeshow 2000). For increas-
ing the diagnostic potential of the basic CAC system, a
weighting strategy, using the pathologic information, is
proposed to help the training process in constructing a
weighted CAC system.

MATERIALS AND METHODS

This study was approved by the local ethics com-
mittee and informed consent was obtained from all pa-

Fig. 1. The organization of proposed CAC system. The basic
CAC system is trained by the radiologists’ assessment, but the
weighted CAC system is trained by associating the radiolo-

gists’ assessment with the pathologic information.
tients included in the study. A total of 626 images were
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obtained using ATL HDI 5000 (Advanced Technological
Laboratory, Bothell, WA, USA) from June to July 2004,
iU-22 (Philips Medical Systems, Bothell, WA, USA)
from March to April 2004 and Voluson 730 expert (GE
Medical systems, Kretz Ultrasound, Zipf, Austria) from
April 2003 to February 2004. In all the scanning pro-
cesses, the linear-array transducers were used, the im-
ages were captured at the largest diameters of the masses.
Acoustic standoff pad was not used in these processes.

All diagnoses were proven by pathology either with
fine-needle aspiration cytology (FNAC) or with core
needle biopsy. The numbers of FNAC and cutting biop-
sies were 61 and 565, respectively. Two radiologists with
6 and 13 years experience were involved in the data
collection. They concurrently retrospectively analyzed
the static ultrasound images, assigned an ACR final
assessment category and drew the margin of mass using
a paint program (Microsoft Paint, version 5.2, Microsoft
Inc, Seattle, WA, USA) by consensus. To avoid the
influences on assigning the category and on deciding the
mass margin, the radiologists were blind to the patho-
logic results. According to the classification result of the
radiologists, the machine types and the pathologic result,
the distribution of all adopted cases is summarized in
Table 1.

Computerized BI-RADS features
In the masses category of ACR BI-RADS, the de-

scriptive terms for evaluating the dominant features of
mass are standardized as a lexicon and are grouped into
six classes: shape, orientation, margin, lesion boundary,
echo pattern and posterior acoustic features. For describ-
ing the shape and orientation of a mass, the correspond-
ing best-fit ellipse is regarded as a baseline. Then, the
semiminor axis and the angle of best-fit ellipse and the
similarity between two shapes are defined as the com-
puterized features. A distance map is transformed from

Table 1. The distribution of all acquired cases is summarized
by the classification results of radiologists, the machine

types, and the pathological results

Radiologists

Machine Type

Total

HDI 5000
Voluson

730
Philips
iU-22

B M B M B M

Category 3 115 4 63 1 28 0 211
Category 4 68 39 103 38 27 17 292
Category 5 0 46 3 60 0 14 123
Total 272 268 86 626
Note: B is the number of benign cases. M is the number of malignant
cases.
the selected region-of-interest (ROI) and used to calcu-
late the number of undulated and angular characteristics
on the mass margin. Moreover, the outer and inner bands
around the mass boundary are partitioned by the distance
map and the difference between the two bands is used to
evaluate the degree of abrupt interface across the lesion
boundary. The echo pattern is evaluated by the average
gray intensity and by the contrast within the mass. The
difference between the two average gray intensities, the
mass and the area behind the mass, is used to measure the
posterior acoustic feature. Assume that a mass, circum-
scribed by a continuous closed boundary B with NB

pixels, is represented as region R containing NR pixels;
its BI-RADS sonographic features are quantified by the
following eight computerized features.

A. Shape. A best-fit ellipse (Jain 1989) roughly
describes the mass contour as shown in Fig. 2. Two
shape features, Sb and SPR, are then computed from the
best-fit ellipse to quantify the mass shape. The feature Sb

is defined by the length of the semiminor axis b of the
best-fit ellipse, and the similarity, SPR, between the mass
contour and the best-fit ellipse can be measured by their
perimeter ratio as

SPR �
NB

PE
(1)

where PE is the perimeter of best-fit ellipse.

B. Orientation. The angle of major axis of the above
best-fit ellipse is used to determine the mass orientation
as shown in Fig. 2b. In general, the mass orientation is

defined at the angles of 0 to
�

2
. But, the orientation of the

mass shown in Fig. 3 is the smaller � � �, not �.
However, the angle of major axis of the best-fit ellipse is
�. Hence, the orientation feature, OE, of mass is adjusted

Fig. 2. The best-fit ellipse is found to roughly describe the mass
shape. (a) A malignant mass. (b) The corresponding best-fit

ellipse of (a).
to be in the range 0 to
�

2
as
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OE ��
� if 0 � � �

�

2

� � � if
�

2
� � � �

� � � if � � � �
3�

2

2� � � otherwise

(2)

where � is the angle of the best best-fit ellipse.

C. Margin. The distance map (Jain 1989) is used to
quantify the undulated and angular characteristics of the
mass margin. For any pixel P(x, y) of ROI, its eight
neighbors are defined as

N8(P) �

�(x � 1, y � 1), (x, y � 1), (x � 1, y � 1), (x � 1, y),

(x � 1, y), (x � 1, y � 1), (x, y � 1), (x � 1, y � 1) �.

(3)

The distance between the pixel P in ROI and the bound-
ary is recursively defined as

distance(P) � min(distance(N8(P))) � 1 (4)

where min(distance(N8(P))) is the minimum of the
known distances of P’s eight-neighbors. As the initial
condition, the distances of mass boundary pixels are all
set to 0. Different types of distance maps are shown in
Fig. 4.

After computing the distance map, the maximum
inscribed circle of the mass is found to segment the
lobulate areas as shown in Fig. 5. The maximum distance
within the lobulate area is used to estimate the degree of
protuberance and to eliminate slighter undulation. When
the interior maximum distance is less than three, the area
is defined as slightly undulated and is ignored as shown
in Fig. 5b. The undulation feature U is then defined by

Fig. 3. The orientation of best-fit ellipse is close to the direction
of mass. Occasionally, the supplementary angle is more appro-

priate to measure the parallel degree.
the number of lobulate areas observed. Furthermore, the
local maxima within each lobulate area are found and
grouped to compute the angular feature as shown in Fig.
6. The angular feature A is defined by the number of
groups. Finally, the margin feature MUA is defined as

MUA � U � A. (5)

D. Lesion boundary. The outer and inner bands
around the mass boundary are used to quantify the de-
gree of sharp demarcation. The distance map of a mass is
also used to define the outer and the inner bands. As
shown in Fig. 7, the outer and inner bands are defined by
the pixels with a distance less than 10. The average gray
intensities of these two bands with distance k can be then,
respectively, defined as

avg _ outer �
1

Nout
�

distance(P)�1

k

I(P) and

avg _ inner �
1

Nin
�

distance(P)�1

k

I(P) (6)

Fig. 4. The selected ROI is transformed into a distance map. (a)
A benign mass. (b) A malignant mass. The formed maps of (a)
and (b) are shown in (c) and (d), respectively. In both figures,
the distance of each pixel in the mass is represented by the gray

intensity and the black color denotes the largest distance.

Fig. 5. The number of lobulate areas outside the maximum
inscribed circle is defined as the undulation characteristic of
margin class.
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where I(P) is the gray intensity of P, Nout is the number
of pixels in the outer band and Nin is the number of pixels
in the inner band. The lesion boundary feature LBD is
then defined as

LBD � avg _ outer � avg _ inner. (7)

In this study, the bandwidth is set to 3 by experiments.

E. Echo pattern. The average gray intensity EPI is
defined as

EPI �
1

NR
�
P�R

I(P) (8)

where I(P) is the gray intensity of mass pixel P. The
histogram technique (Jain 1989) is useful for observing
the distribution of gray intensities of a mass as shown in
Fig. 8. For calculating the contrast within a mass, 25%
brighter mass pixels are decided by a dynamic threshold
to form the brighter group using the histogram. For
example, the threshold is set to 51 and the brighter pixels
contain 28.22% of mass pixels in Fig. 8a. The average
gray intensity for the brighter group is then defined as:

avg _ bg �
1

NBP
�

P�R and I(P)�k

I(P) (9)

where k is the dynamic threshold, I(P) is the gray inten-
sity of mass pixel P and NBP is the number of brighter
pixels. The contrast feature EPC is then defined as:

avg _ bg � EPI

Fig. 6. The local maxima on the distance map are efficient for
detecting the angular features. (a) A malignant mass. (b) The
formed distance map of (a). (c) The local maxima on the map.
(d) The local maxima in the lobulate areas are grouped and
marked by ellipses. Ten angular features are observed here.
EPC �
EPI

. (10)
F. Posterior acoustic features. First, the area under
the mass is identified for quantifying the posterior acous-
tic features. The width of the posterior area pw is two
thirds of the mass width, mw and the height of posterior
area, ph, is mass height, mh (but not exceeding 100
pixels). An example for defining the posterior area is
shown in Fig. 9. Then, the average gray intensity of
posterior acoustic area is defined as

avg _ pa �
1

NPA
�

P�PA

I(P) (11)

where I(P) is the gray intensity of pixel P and NPA is the
number of pixels in the posterior acoustic area PA. The
difference between the average gray intensity of the mass
and that of the posterior acoustic area is used to evaluate
the posterior acoustic characteristic PSD as

PSD � avg _ pa � EPI (12)

where EPI is defined in eqn 8.

Machine-dependent factors
In the regression model, the dummy variable (Hos-

mer and Lemeshow 2000) is used to distinguish the
subgroups of experimental cases and to correct the sub-
group effect. A set of the dummy variables is useful to
represent multiple subgroups in a single formula rather
than to construct several formulas for each subgroup. In
this study, a set of dummy variables, machine-dependent
factors, is defined that represent the adopted ultrasound
systems to apply the constructed CAC system to the
cases acquired from various ultrasound systems. The
machine-dependent factor Mi of case c is defined as

Mi(c) ��1 if c is acquired from machine i

0 otherwise
,

i � 1, 2, . . . , n (13)

where the experimental cases were collected from n

Fig. 7. The contour line can be used to find an outside and an
inside band around the mass boundary. The degree of sharp
demarcation on lesion boundary could be estimated by the

difference between the average gray levels of these two bands.
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machines and the zero represents “not acquired from
machine i”. Using the reference cell coding (Hosmer and
Lemeshow 2000), one of the adopted ultrasound systems
was regarded as the reference group and its correspond-
ing factor was omitted. The cases acquired from the
reference group were then indicated by setting the re-
maining n-1 factors to zero. In this approach, the choice
of the reference group is decided by the logistic regres-
sion model during the construction of the classification
system. Thus, the occurrence probability P for a desired
output could be predicted as:

logit(p) � c0 � c1f1 � c2f2 � . . . � cmfm � cm�1M1

� cm�2M2 � . . . � cm�n�1Mn�1 (14)

where ci are the weighting coefficients for the corre-
sponding m computerized BI-RADS features and n-1

Fig. 8. The frequency of gray intensities within the mas
hi

Fig. 9. The posterior acoustic area is defined relative to the
shape of mass. (a) A malignant mass with width mw and height
mh. (b) The defined posterior acoustic area with height ph.
machine-dependent factors, and machine n is regarded as
the reference group.

The occurrence probability for any case acquired
from machine n, i.e., the reference group, can be pre-
dicted from a simplified function of eqn 14 as

logit(p) � c0 � c1f1 � c2f2 � . . . � cmfm (15)

because Mi � 0 for i � 1,2, . . ., n � 1. Moreover, this
function can be regarded as a baseline for estimating the
occurrence probability of a case acquired from another
machine. Compared with this simplified function, for any
case acquired from machine k, k 	 n, the occurrence
probability is predicted as

logit(p) � c0 � c1f1 � c2f2 � . . . � cmfm � cm�k. (16)

Evidently, this machine-specific occurrence probability
for machine k is decided by the features in eqn 15 and by
the extra weight cm�k. This weight can be regarded as a
treatment for adjusting the differences of computerized
BI-RADS features of the machine k and those of the
reference machine. The evaluations of features in differ-
ent machines are then synchronized by these machine-
dependent factors. Furthermore, the classification system
is simply expended by addition of factors when new
machines are adopted.

Weighting strategy
Using the logistic regression model, a classification

system is constructed mathematically by relating the
probability of assessment categories on the computerized
BI-RADS features and the machine-dependent factors.
When the classification results of radiologists are used to
train the regression model, a basic CAC system is con-

resented by the histogram. (a) A benign mass. (b) The
.

s is rep
structed. For improving the potential of the basic CAC
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system for distinguishing the benign from malignant
masses, the pathologic information is used to help the
training process. Intuitively, the cases were classified to
category 3 by radiologists because of the typical charac-
teristics of benign masses, whereas the cases in category
5 have typical characteristics of malignant masses.
Therefore, three possible strategies can be used to weight
the cases in category 3, in category 5 or in both. The
improvements in the diagnostic performances of the
weighted CAC systems on specificity are insignificant
when the strategy weighting category 5 or that weighting
both categories 3 and 5 is used. However, the strategy
weighting only category 3 increase the specificity with-
out reducing the sensitivity. That is, this strategy classi-
fies more benign cases into category 3 thus, reducing the
number of unnecessary biopsies for benign cases. Hence,
this strategy, weighting only category 3, is used. In the
weight strategy, the benign cases are replicated once and
the malignant cases are removed.

Experiment methods and performance evaluations
The k-fold cross-validation method (Stone 1974) is

used to verify the classification performance of the CAC
system. All the adopted cases are randomly partitioned
into k subsets with similar size according to the machine
type and the pathologic result. Note that the classification
results of the radiologists are not used to partition the
cases. Each subset is regarded as test set exactly once and
classified by a CAC system trained by the other subsets.
In, this study, k is set to 10. The agreement between the
radiologists and CAC system was evaluated by Cohen’s
kappa statistic (Landis and Koch 1977). In kappa statis-
tic, the agreement was considered slight if the k value
was 0.20 or greater agreement; fair, if the value was in
the range 0.21 to 0.40; moderate, if the value was in the
range 0.41 to 0.60; substantial, if the value was in the
range 0.61 to 0.80; and, almost perfect, if the value was
in the range 0.81 to 1.00.

Table 2. The mean values and standard deviations (mea
results and in the Categories 3, 4, and 5 of classi

Feature

Pathology

Benign Malignant

Sb 31.23 � 15.71 64.98 � 25.91
SPR 1.01 � 0.08 1.16 � 0.16
OE 11.57 � 12.32 19.68 � 20.74
MUA 4.05 � 1.62 8.42 � 2.98
LBD 23.94 � 10.39 13.03 � 6.61
EPI 47.84 � 14.51 39.09 � 13.52
EPC 0.46 � 0.20 0.57 � 0.26
PSD 43.19 � 22.59 26.63 � 27.11
The classification results of CAC system were eval-
uated by the pathologic results, benign or malignant. At
first, the likelihood of malignancy in each category is
defined as

P(Ci) �
N(CiM)

N(Ci)
(17)

where N(Ci) is the number of cases in the category Ci and
N(CiM) is the number of malignant cases in the category
Ci. A good CAC system should have P(C5) � P(C4) �
P(C3). Moreover, five indices, accuracy, sensitivity,
specificity, positive predictive value (PPV) and negative
predictive value (NPV) are used to evaluate the diagnos-
tic performance and are defined as

Accuracy � (TP � TN) ⁄ (TP � TN � FP � FN),

Sensitivity � TP ⁄ (TP � FN),

Specificity � TN ⁄ (TN � FP),

PPV � TP ⁄ (TP � FP), and

NPV � TN ⁄ (TN � FN)

(18)

where TP is the number of malignant cases correctly

D) in the benign and malignant groups of pathological
results of radiologists on each proposed feature

Radiologists’ BI-RADS classification

Category 3 Category 4 Category 5

2.30 � 9.38 45.67 � 18.56 72.38 � 27.37
1.01 � 0.09 1.04 � 0.12 1.19 � 0.16
0.53 � 11.43 15.26 � 16.98 19.05 � 19.70
3.43 � 1.36 5.49 � 2.17 9.47 � 3.05
8.39 � 10.26 17.42 � 8.49 12.36 � 5.09
9.51 � 15.68 45.27 � 14.03 35.50 � 9.86
0.45 � 0.21 0.50 � 0.21 0.59 � 0.27
5.69 � 22.83 36.87 � 25.11 24.44 � 25.33

Table 3. Difference between the benign and malignant
groups and the intercategory differences, which were both

verified by Student’s t-test. Before the calculations of
Student’s t-test, the Levene’s test had been used for verifying

the equality of variances

Feature

p-value

Benign and
Malignant Category 3 and 4 Category 4 and 5

Sb �0.001 �0.001 �0.001
SPR �0.001 �0.001 �0.001
OE �0.001 �0.001 0.064
MUA �0.001 �0.001 �0.001
LBD �0.001 �0.001 �0.001
EPI �0.001 0.002 �0.001
EPC �0.001 0.005 �0.001
n � S
fication

2

1

2
4

PSD �0.001 �0.001 �0.001
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classified as positive; TN, benign cases correctly classi-
fied as negative; FP, benign cases falsely classified as
positive and FN, malignant cases falsely classified as
negative. The overall diagnostic performance of classi-
fication results is measured by the area index of ROC
curve (Park et al. 2004). When comparing two area
indices, a larger index roughly indicates a better perfor-
mance. Moreover, the significance of the difference be-
tween the two area indices could be evaluated by the
z-test. The ROCKIT software (C. Metz, University of
Chicago, Chicago, IL, USA) is used in the ROC analysis.

RESULTS AND DISCUSSION

Radiologists’ classification result
The total of 626 experimental cases included 219

malignant and 407 benign lesions. Malignant masses
included infiltrating ductal carcinoma (n � 199), infil-
trating lobular carcinoma (n � 7) and ductal carcinoma
in situ (DCIS) (n � 13). Benign lesions included fibro-
adenoma (n � 253) and fibrocystic changes (n � 154).
The age of the patients ranged from 17 to 74 y (mean
age, 48 y) and tumor diameter ranged from 0.5 to 4.2 cm
(mean size, 1.5 cm). The in situ carcinomas were further
classified as malignant. According to the data summa-
rized in Table 1, the classification results of radiologists

Table 4. The classification results of basic CAC sy

Radiologists

Computerized classi

Category 3 Categor

B M B

Category 3 177 2 29
Category 4 42 1 152
Category 5 0 0 1
Total 222 291
LM 1.35% 37.46

Note: B is the number of benign cases. M is the number of malign

Table 5. The classification results of weighted CAC

Radiologists

Computerized classi

Category 3 Categor

B M B

Category 3 187 2 19
Category 4 55 2 139
Category 5 0 0 1
Total 246 266
LM 1.63% 40.23
Note: B is the number of benign cases. M is the number of malignant case
are evaluated as follows. The likelihood of malignancy
according to the classification results of radiologists is
2.37% (5 of 211), 32.19% (94 of 292) and 97.56% (120
of 123) for categories 3, 4 and 5, respectively. The
performance indices are as follows: accuracy, 67.09%
(420 of 626); sensitivity, 97.72% (214 of 219); specific-
ity, 50.61% (206 of 407); PPV, 51.57% (214 of 415); and
NPV, 97.63% (206 of 211).

Data analysis of the proposed BI-RADS features
For each proposed computerized BI-RADS feature,

the mean values and the standard deviations in the be-
nign and malignant groups of pathologic result and in the
categories 3, 4 and 5 of the classification result of radi-
ologists are listed in the Table 2. The distribution of
mean values on each proposed feature conforms to the
clinical experiences in either increasing or decreasing
order, regardless of the pathologic results or the classi-
fication results of radiologists. For example, clinically,
the mass with a larger orientation angle corresponds to a
higher likelihood of malignancy. The mean values of the
orientation feature OE in the benign and malignant
groups and in the different classification categories all
conform to such expectation. Moreover, the benign
masses are statistically different from the malignant

ompared with the results obtained by radiologists

result

Total LM

Category 5

B M

0 1 211 2.37%
4 23 292 32.19%
2 83 123 97.56%

113 626
94.69%

s. LM is the likelihood of malignancy.

compared with the results obtained by radiologists

result

Total LM

Category 5

B M

0 1 211 2.37%
4 22 292 32.19%
2 85 123 97.56%

114 626
94.74%
stem c

fication

y 4

M

2
70
37

%

system

fication

y 4

M

2
70
35

%

s. LM is the likelihood of malignancy.
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masses on each computerized BI-RADS feature because
their corresponding P-values are less than .001 at 95%
confidence interval as listed in Table 3. For all the
features, the mean differences between categories 3 and
4 are also statistically significant. The cases in the cate-
gory 3 are also statistically different from those in cate-
gory 4. The only insignificant feature is the difference in
the orientation feature OE between categories 4 and 5
concerning.

Basic CAC system
The classification results of basic CAC system are

summarized and listed in Table 4. The agreement be-
tween the basic CAC system and the radiologists are
substantially in agreement with the k value � 0.644. The
likelihood of malignancy in categories 3, 4 and 5 on the
basis of the CAC results are 1.35% (3 of 222), 37.46%
(109 of 291) and 94.69% (107 of 113), respectively. The
performance indices, accuracy, sensitivity, specificity,
PPV and NPV, of the basic CAC system are 69.49%
(435 of 626), 98.63% (216 of 219), 53.81% (219 of 407),
53.47% (216 of 404) and 98.65% (219 of 222), respec-
tively. All performance indices showed slight improve-
ment when compared with performance indices that were
based on results of radiologists, but the differences were
not statistically significant according to the chi-square
statistic. The diagnostic capabilities of two classification
results are further evaluated by the ROC curves as shown
in Fig. 10. The area index AZ for the basic CAC system
is 0.9435 and that for radiologists is 0.9431. The differ-
ence between two AZ values is not significant using the
z-test.

Weighted CAC system
The classification results of weighted CAC system

Table 6. The performance indices of radiologists and of two
proposed CAC systems. For each performance index, the

significances of differences between the radiologists and the
basic CAC system and between the radiologists and the
weighted CAC system are verified using the p-value of


-square statistic

Index Radiologists

CAC system

Basic Weighted

Score p-value Score p-value

Accuracy 67.09% 69.49% 0.3623 73.00% 0.0224
Sensitivity 97.72% 98.63% 0.4754 98.17% 0.7363
Specificity 50.61% 53.81% 0.3617 59.46% 0.0112
PPV 51.57% 53.47% 0.5864 56.58% 0.1566
NPV 97.63% 98.65% 0.4316 98.37% 0.5684
are also compared with the classification result of radi-
ologists as summarized in Table 5. The agreement be-
tween the weighted CAC system and the radiologists are
also in substantial agreement, with the k value � 0.644.
The likelihood of malignancy in Categories 3, 4 and 5
based on the results of weighted CAC system is 1.63% (4
of 246), 40.23% (107 of 266) and 94.74% (108 of 114),
respectively. The performance indices, accuracy, sensi-
tivity, specificity, PPV and NPV, of the weighted CAC
result are 73.00% (457 of 626), 98.17% (215 of 219),
59.46% (242 of 407), 56.58% (215 of 380) and 98.37%
(242 of 246), respectively. Compared with the classifi-
cation results of radiologists, all performance indices of
this weighted CAC system clearly improved. Especially,
the accuracy and specificity rates increased 5.91% and
8.85%, respectively, and all these improvements are sta-
tistically significant, with P-values � .0224 and .0112
using the chi-square statistic. Moreover, the high NPV
rate of 98.37% indicates that only a few malignant cases
are misclassified into category 3. That is, more benign
cases are correctly classified into category 3 and the
weighted strategy is very helpful. Furthermore, the AZ of
this system is 0.9448 as shown in Fig. 10. Its AZ is also
very close to that of radiologists and their difference is
not significant using the z-test. The detailed performance
results of the basic and weighted CAC systems are sum-
marized in the Table 6.

Performance comparisons of conventional CAD and
weighted CAC systems

A conventional CAD system, which classifies the
cases into malignant and benign, is constructed by the

Fig. 10. The ROC curves for radiologists, basic CAC system,

weighted CAC system and CAD system.



Computer aided classification system for breast ultrasound ● W-C. SHEN et al. 1697
logistic regression model and is compared with the pro-
posed weighted CAC system. The AZ of the CAD system
is 0.9550 as shown in Fig. 10. When the diagnosis
threshold is set to 0.4 for deciding whether the case is
malignant or not, the diagnostic results and the diagnos-
tic performances are listed in Tables 7 and 8.

Following the BI-RADS classifications, the malig-
nant cases in categories 4 and 5 are considered true
positive, and the benign cases in category 3 are consid-
ered true negative. The diagnostic results of the weighted
CAC system are listed under the column “Original” in
Tables 7 and 8. The indices sensitivity and NPV of the
weighted CAC system, compared with the CAD system,
are improved and the other three performance indices are
diminished. The weighted CAC system is not better than
the conventional CAD system because the indeterminate
cases of category 4 are directly considered malignant. In
the column “Adjustment” in Tables 7 and 8, the cases of
category 4 are excluded from the performance evalua-
tion. When the indeterminate cases were excluded, the
diagnostic performances of weighted CAC system are
obviously better than those of the CAD system and all
improvements are statistically significant. This is the
main advantage of the proposed CAC system because the

Table 7. The diagnostic results of the CAD system
“Adjustment,” the results of category 4 are excluded f

the full resul

Pathology

CAD

Benign Malignant

Benign TN 368 FP 39 T
Malignant FN 27 TP 192 F
Total 626

Table 8. The performance indices of CAD and weighted
CAC systems are summarized from Table 7. The original

and the adjustment results are compared with the CAD
system, and the significances of differences are validated

using the p-values of 
-square statistic

Index CAD

Weighted CAC system

Original Adjustment

Score p-value Score p-value

Accuracy 89.46% 73.00% �0.001 97.22% �0.001
Sensitivity 87.67% 98.17% �0.001 96.43% 0.0097
Specificity 90.42% 59.46% �0.001 97.58% 0.0004
PPV 83.12% 56.58% �0.001 94.74% 0.0026

NPV 93.16% 98.37% 0.0028 98.37% 0.0028
current CAD system always classified the mass into
benign and malignant. However, the indeterminate cases
are classified into category 4 in the CAC system for
further proof rather than giving a definite diagnostic
result.

CONCLUSION AND FUTURE STUDIES

The proposed computerized BI-RADS features are
proven to effectively quantify the sonographic character-
istics of the mass and assist the construction of a CAC
system. The differences in the performance indices and
in the ROC analysis between the radiologists and the
basic CAC system are not statistically significant. Clas-
sification of cases by the basic CAC system was similar
to that done by radiologists. Because the classification of
radiologists is not always correct, a weighted strategy is
proposed to help the training of the multinomial logistic
regression model, which improves the accuracy and sen-
sitivity of the basic CAC system. Moreover, in clinical
practice, the indeterminate cases of category 4 need
further follow-up, and this follow-up potential is not
provided by current CAD systems. However, the pro-
posed CAC system has this potential to find the indeter-
minate cases. Furthermore, using the dummy technique,
the proposed CAC system is found to be robust, even if
the cases were acquired from different ultrasound sys-
tems and can be expanded when a new system is intro-
duced.

In the proposed weighted CAC system, the radiol-
ogists circumscribe the mass boundary and it classifies
only 59.46% (242 of 407) of the benign cases into
category 3. In the future, a good automatic segmentation
will make the CAC system more useful. Furthermore,
increasing the capacities to distinguish the benign from
malignant masses, more advanced features could be de-
veloped, and other classification methods have to be
explored in the future study.

red with the weighted CAC system. In the column
e performance evaluation, and in column “Original,”
summarized

Weighted CAC system

iginal (C3,C4,C5) Adjustment (C3,C5)

Malignant Benign Malignant

FP 165 TN 242 FP 6
TP 215 FN 4 TP 108

626 360
compa
rom th
ts are

Or

Benign

N 242
N 4
Acknowledgments—This work was supported by National Science
Council, Taiwan (Grant NSC 95-2221-E-002-446).



1698 Ultrasound in Medicine and Biology Volume 33, Number 11, 2007
REFERENCES

Arger PH, Sehgal CM, Conant EF, Zuckerman J, Rowling SE, Patton JA.
Interreader variability and predictive value of US descriptions of solid
breast masses: Pilot study. Acad Radiol 2001;8(4):335–342.

Baker JA, Soo MS. Breast US: Assessment of technical quality and
image interpretation. Radiology 2002;223(1):229–238.

American College of Radiology (ACR). Breast imaging reporting and
data system. Third Edition. Reston,VA: American College of Ra-
diology, 2003

Buchbinder SS, Leichter IS, Lederman RB, Novak B, Bamberger PN,
Sklair-Levy M, Yarmish G, Fields SI. Computer-aided classifica-
tion of BI-RADS category 3 breast lesions. Radiology 2004;230(3):
820–823.

Chen CM, Chou YH, Han KC, Hung GS, Tiu CM, Chiou HJ, Chiou
SY. Breast lesions on sonograms: Computer-aided diagnosis with
nearly setting-independent features and artificial neural networks.
Radiology 2003;226(2):504–514.

Chen DR, Chang RF, Huang YL. Computer-aided diagnosis applied to
US of solid breast nodules by using neural networks. Radiology
1999;213(2):407–412.

Chen DR, Chang RF, Kuo WJ, Chen MC, Huang YL. Diagnosis of
breast tumors with sonographic texture analysis using wavelet
transform and neural networks. Ultrasound Med Biol 2002;28(10):
1301–1310.

Costantini M, Belli P, Lombardi R, Franceschini G, Mule A, Bonomo
L. Characterization of solid breast masses: Use of the sonographic
breast imaging reporting and data system lexicon. J Ultrasound
Med 2006;25(5):649–659.

Drukker K, Giger ML, Metz CE. Robustness of computerized lesion
detection and classification scheme across different breast US plat-
forms. Radiology 2005;237(3):834–840.

Drukker K, Giger ML, Vyborny CJ, Mendelson EB. Computerized
detection and classification of cancer on breast ultrasound. Acad
Radiol 2004;11(5):526–535.

Eberl MM, Fox CH, Edge SB, Carter CA, Mahoney MC. BI-RADS
classification for management of abnormal mammograms. J Am
Board Fam Med 2006;19(2):161–164.

Hong AS, Rosen EL, Soo MS, Baker JA. BI-RADS for sonography:

Positive and negative predictive values of sonographic features.
AJR Am J Roentgenol 2005;184(4):1260–1265.
Horsch K, Giger ML, Venta LA, Vyborny CJ. Computerized diagnosis
of breast lesions on ultrasound. Med Phys 2002;29(2):157–164.

Hosmer DW, Lemeshow S. Applied logistic regression. 2nd edition.
New York: Wiley, 2000.

Jain AK. Fundamentals of digital image processing. Upper Saddle
River, NJ: Prentice-Hall, 1989.

Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ.
Cancer statistics, 2006. CA Cancer J Clin 2006;56(2):106–130.

Joo S, Yang YS, Moon WK, Kim HC. Computer-aided diagnosis of
solid breast nodules: Use of an artificial neural network based on
multiple sonographic features. IEEE Trans Med Imaging 2004;
23(10):1292–1300.

Kim KG, Cho SW, Min SJ, Kim JH, Min BG, Bae KT. Computerized
scheme for assessing ultrasonographic features of breast masses.
Acad Radiol 2005;12(1):58–66.

Kuo WJ, Chang RF, Moon WK, Lee CC, Chen DR. Computer-aided
diagnosis of breast tumors with different US systems. Acad Radiol
2002;9(7):793–799.

Landis JR, Koch GG, The measurement of observer agreement fro
categorical data. Biometrics 1977;33:159–174.

Obenauer S, Hermann KP, Grabbe E. Applications and literature re-
view of the BI-RADS classification. Eur Radiol 2005;15(5):1027–
1036.

Park SH, Goo JM, Jo CH. Receiver operating characteristic (ROC)
curve: Practical review for radiologists. Korean J Radiol 2004;5(1):
11–18.

Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002.
CA Cancer J Clin 2005;55(2):74–108.

Rizzatto GJ. Towards a more sophisticated use of breast ultrasound.
Eur Radiol 2001;11(12):2425–2435.

Stavros AT, Thickman D, Rapp CL, Dennis MA, Parker SH, Sisney
GA. Solid breast nodules: Use of sonography to distinguish be-
tween benign and malignant lesions. Radiology 1995;196(1):123–
134.

Stone M. Cross-validatory choice and assessment of statistical predic-
tors. J R Stat Soc, Series B 1974;36(1):111–147.

Zonderland HM, Pope TL, Jr., Nieborg AJ. The positive predictive
value of the breast imaging reporting and data system (BI-RADS)
as a method of quality assessment in breast imaging in a hospital

population. Eur Radiol 2004;14(10):1743–1750.


	COMPUTER AIDED CLASSIFICATION SYSTEM FOR BREAST ULTRASOUND BASED ON BREAST IMAGING REPORTING AND DATA SYSTEM (BI-RADS)
	INTRODUCTION
	MATERIALS AND METHODS
	Computerized BI-RADS features
	A. Shape
	B. Orientation
	C. Margin
	D. Lesion boundary
	E. Echo pattern
	F. Posterior acoustic features

	Machine-dependent factors
	Weighting strategy
	Experiment methods and performance evaluations

	RESULTS AND DISCUSSION
	Radiologists’ classification result
	Data analysis of the proposed BI-RADS features
	Basic CAC system
	Weighted CAC system
	Performance comparisons of conventional CAD and weighted CAC systems

	CONCLUSION AND FUTURE STUDIES
	Acknowledgments
	REFERENCES


