

Undergraduate Research

- Research Interests
 - Data Mining for United States Patent and Trademark Office
 - Data Mining for Customer Behavior Modeling
 - Medical Imaging
 - Collaborators: Department of Radiology, Northwestern Memorial Hospital, Chicago, IL
 - Dr. David Channin, Director of the Department of Radiology
 - Dr. Alice Averbukh, Research Associate
- Project
 - Classification of Tissues Using Texture Information in CT studies

• Problem Statement

 The classification of human organs using raw data (pixels) from abdominal and chest CT images

Classification of Tissues

- While traditional texture metrics have concentrated on 2D texture, 3D imaging modalities are becoming more and more prevalent, providing the possibility of examining texture as a volumetric phenomenon
- We expect that texture derived from volumetric data will have better discriminating power than 2D texture derived from slice data, thus increasing the organ classification accuracy

DEPAULC'I

Segmentation

- Data: 344 DICOM images
- Segmented organs: liver, kidneys, spleen, backbone, & heart
- Segmentation algorithm: Active Contour Mappings (Snakes)
 - -A boundary-based segmentation algorithm
 - -Input for the algorithm: a number of initial points & five main parameters that influence the way the boundary is formed
 - -The values of the five parameters simulate the action of two forces:
 - -Internal: designed to keep the snake smooth during the deformation
 - -External: designed to move the snake towards the boundary

Segmentation

Texture Models

• What is texture?

- *Texture* is a measure of the variation of the intensity of a surface, quantifying properties such as smoothness, coarseness, and regularity
- Texture is a connected set of pixels satisfying a given gray level property which occurs repeatedly in an image region constitutes a textured region

Texture Models:

- Co-occurrence Matrices
- Run-Length Matrices

Co-occurrence Matrices

Co-occurrence Matrices

- **2D Co-occurrence Matrix (Haralick 1973)**
 - Capture the spatial dependence of gray-level values within an image
 - A 2D co-occurrence matrix, P, is an n x n matrix, where n is the number of gray-levels within an image
 - The matrix acts as an accumulator so that P[*i*, *j*] counts the number of pixel pairs having the intensities *i* and *j*

DEPAULC"

Feature Extraction

• 2D Co-occurrence Matrix (cont.)

 In order to quantify this spatial dependence of gray-level values, we calculate various textural features proposed by Haralick:

Feature Extraction

- Entropy
- Energy (Angular Second Moment)
- Contrast
- Homogeneity
- SumMean (Mean)

- Variance
- Correlation
- Maximum Probability
- Inverse Difference
 Moment
- Cluster Tendency

DEPAULC"

For each slice per organ we average the feature values derived from the 20 matrices, leaving us with a single value per feature per slice:

Entropy	Energy	Contrast	Homogeneity	SumMean	Variance	Correlation	Maximum Probability	Inverse Difference Moment	Cluster Tendency
3.892828	.034692	2.764427	.6345745	11.662886	7.308909	.110921	.112929	.44697	26.471211

Feature Extraction

2D dependence matrices that are able to capture the spatial dependence of gray-level values in a set of three-dimensional data (i.e. a set of CT scans for a given patient = single 3D input)

Volumetric Results

Entropy	Energy	Contrast	Homogeneity	SumMean	Variance	Correlation	Maximum Probability	Inverse Difference Moment	Cluster Tendency
3.80848	0.03709	4.93375	0.54080079	11.07523	3.98559	0.0986871	0.096027	0.4021295	11.008588

DEPAULC'T

- For each organ, we took the corresponding average feature value and plotted it on the 2D graph (does it fall within min and max?):
 - 14-12-10-Frequency 8 6 4-2-Mean = 0.042983678161 Std. Dev. = 0.01458000127 0.0500000000 0.0100000000 0.0300000000 0.0700000000 0.080000000 = 40 0.0600000000 0.020000000 0.0400000000 Energy (Mean)

 Using the five number summary for 2D data, we defined another range (does the volumetric value fall within Q1 and Q3?):

		Energy (Mean)
Minimum		0.01230
Maximum		0.07021
Percentiles	25.00000	0.03211
	50.00000	0.04226
	75.00000	0.05375

Volumetric Data

Patient 1 - 0.03295

Patient 2 - 0.03746

Energy (Mean)

The distribution of the volumetric co-occurrence descriptors with respect to the 2D data

2D and 3D Results

	# of Organs	$Q_1 - Q_3$	Min - Max
Entropy	5	2	5
Energy	5	2	5
Contrast	5	1	3
Homogeneity	5	1	3
SumMean	5	4	5
Variance	5	5	5
Correlation	5	2	4
Maximum Probability	5	2	5
Inverse Difference Moment	5	1	3
Cluster Tendency	5	5	5
TOTAL	50	25	43

Con DEPAULCT

The distribution of the volumetric co-occurrence descriptors per organ

2D and 3D Results

	# of Desc.	$Q_1 - Q_3$	Min - Max
Backbone	10	4	10
Heart	10	4	7
Kidney	10	3	6
Liver	10	8	10
Spleen	10	6	10
TOTAL	50	25	43

BEPAULCTI

DEPAULCT

Run-length encoding

 Run-length encoding is used to represent strings of symbols in an image matrix

Run-Length Encoding for

Texture Characterization

- For a given image *a gray level run* is defined as a set of consecutive, collinear pixels having the same gray level
- Length of the run is the number of pixels in the run

0000111100111

- Galloway proposed the use of a run-length matrix for texture feature extraction
- Run-length statistics capture the coarseness of a texture in a specific direction

The run-length matrix p (i, j) is defined by specifying direction and then count the occurrence of runs for each gray levels and length in this direction

Definition of Run-Length Matrices

- (i) Dimension corresponds to the gray level (bin values) and has a length equal to the maximum gray level (bin values) n
- (j) dimension corresponds to the run length and has length equal to the maximum run length (bin values)

0

1 1 2 2 1 1 3 3 1 1 2 2 1 1 2 3 1 1 3 1 2 2 1 1 1 1 3 2 2 2 2 3 1 1 2 2

j i	1	2	3	4	5	6
1	1	8	0	0	0	0
2	2	4	1	0	0	0
3	4	1	0	0	0	0

DEPAULC'I

• Run-length matrix (cont.)

• Eleven texture descriptors are calculated to capture the texture properties and differentiate among different textures

Feature Extraction

- short run emphasis (SRE)
- long run emphasis (LRE)
- high gray-level run emphasis (HGRE)
- low gray-level run emphasis (LGRE)
- Short Run Low Gray-Level Emphasis (SRLGE)
- Short Run High Gray-Level Emphasis (SRHGE)
- Long Run Low Gray-Level Emphasis (LRLGE)
- Long Run High Gray-Level Emphasis (HRHGE)
- Gray-Level Non-uniformity (GLNU)
- Run Length Non-uniformity (RLNU)
- Run Percentage (RPC)

DEPAULC'

• For each slice per organ we calculated the feature values derived from the four matrices, leaving us with a single value per feature per slice:

SRE	LRE	LG	RE	Б	IGRE	SRLGE
0.794662	1.9866	925 0.00)49275	20	9.80237	0.00399
SRHGE	LRHGE	LRLGE	GLN	U	RLNU	RPC
163.619125	434.95482	0.0093575	218.62	LO575	584.86212	75 0.769425

2D dependence matrices that are able to capture the spatial dependence of gray-level values in a set of three-dimensional data (i.e. a set of CT scans for a given patient = single 3D input)

- For each organ, we took the corresponding average feature value and plotted it on the 2D graph
- Using the five number summary for 2D data, we defined another range

Histogram

• The distribution of the volumetric run-length descriptors with respect to the 2D data

	# of Organs	Q1-Q3	Min-Max
sre	5	0	0
lre	5	1	3
lgre	5	5	5
hgre	5	5	5
srlge	5	0	4
srhge	5	2	3
lrhge	5	1	2
lrlge	5	1	2
rpc	5	0	2
total	45	15	26

• The distribution of the volumetric run-length descriptors per organ

	# of Desc.	Q1-Q3	Min-Max
backbone	9	3	5
heart	9	2	6
kidney	9	2	2
liver	9	6	8
spleen	9	2	5
total	45	15	26

Classification

DEPAULCTI

• Motivation:

Investigate the feasibility of automated classification of human organ tissues in a chest and abdominal CT image

• Stage 1: Texture feature extraction

Calculate numerical texture descriptors for each region $[D_1, D_2,...D_{21}]$ Data: 340*4 = 1360 regions of interests Segmented organs: liver, kidneys, spleen, backbone, & heart

Classification

Stage 2: Classifier creation

Data: 911 training set (66.6%), 449 testing set (33.3%)

Decision Tree: A decision tree is a flow-chat-like structure that resembles a tree

Classifier Creation

DEPAULCTI

Decision rules highlight the most relevant descriptors for the classification of chest and abdominal image

Classifier Creation

```
IF ((HGRE <= 0.3788) AND
(CLUSTER > 0.0383095 ) AND
(GLNU <= 0.03184) AND
(LRE <= 0.123405))
THEN
Node = 17
Prediction = Backbone
Probability = 1.000000
```

• Classification accuracy parameters

- sensitivity
- specificity
- precision
- accuracy

DEPAULC

Organ/Tissue Classification

Results

Decision Tree Accuracy on Testing Data

(Co-occurrence, Run-length, and Combined):

ORGAN	Sensitivity	Specificity	Precision	Accuracy
Backbone	96% / <mark>98%</mark> / 98%	99% / <mark>100%</mark> / 99%	99% / <mark>99%</mark> / 99%	98% / <mark>99%</mark> / 99%
Liver	64% / <mark>57%</mark> / 78%	96% / <mark>98%</mark> / 95%	75% / 84% / 71%	92% / <mark>92%</mark> / 92%
Heart	79% / <mark>82% / 75%</mark>	96% / <mark>95%</mark> / 98%	80% / <mark>77%</mark> / 90%	94% / <mark>93%</mark> / 95%
Kidney	89% / <mark>89%</mark> / 89%	96% / <mark>93%</mark> / 96%	80% / <mark>67%</mark> / 77%	94% / <mark>92%</mark> / 95%
Spleen	60% / 44% / 60%	93% / 93% / 95%	53% / 45% / 63%	89% / <mark>87%</mark> / 91%

Conclusion and Future Work Spread CTI

Conclusion

- Using only 21 descriptors it is possible to classify different organ tissues in the CT images
- Combining some other texture models will increase the performance of the classifier

Future Work

- Improve snake segmentation
- Compare the classification result with result obtained using neural network technique
- Use texture descriptors derived from volumetric data to aid the classification in CT image