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Great Dialog, Karel Nepras, 1966 (Prague National Gallery)
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Motivation
§ Most approaches to object recognition assume a 

one-to-one correspondence between image fatures 
and model features.

§ This restriction pushes object recognition toward 
exemplar-based recognition.

§ But different exemplars belonging to the same 
category may not share a single low-level feature 
(e.g., interest point, contour, region, etc.). 

§ Only at higher-levels of abstraction does within-
class one-to-one feature correspondence occur.
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Illustrations
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Goals:

§ Cognitive vision systems must be capable of 
categorization.

§ One-to-one generic object recognition frameworks 
will require that low-level features be “lifted”  to 
more abstract features.

§ Many-to-many frameworks are more powerful and 
less restrictive than their one-to-one counterparts.

§ Either way, abstraction mechanisms cannot be 
avoided.
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In This Talk
Three frameworks for many-to-many matching:
1. Model-based abstraction from examples.
2. Spectral abstractions of graph structure for 

matching hierarchical structures.
3. Embedding graphs to geometric spaces, where 

many-to-many matching is easier. 
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Abstraction Problem Definition

Keselman and Dickinson (CVPR 2001)
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Problem Formulation



11

1. Restrict our problem to finding the LCA of two 
lattices (examples).

2. Compute the LCA of all O(n²) pairs of lattices to 
form an approximation to the true intersection 
lattice. We call this the closure graph.

3. Compute the median of the closure graph to yield 
the global LCA.

Solution Overview
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Computing the intersection of two lattices
is still intractable.

However, we do know one element
of the intersection set!

The LCA of Two Lattices
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Recursive Decomposition 
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We call this the boundary segment graph.

A cut in the original region adjacency graph is a
path through its dual boundary segment graph.

First, form a dual
graph representation:

The Search for Corresponding 
Cuts
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Boundary segment
graphs

Association graph

Combining the Dual Graphs
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Demonstration
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The LCA of Multiple Exemplars

1. Compute closure under the pair-wise 
LCA operation, removing duplicates.

2. Compute edge weights as graph edit 
(region merge) distances.

3. Robust LCA of all inputs is node 
which minimizes the sum of shortest 
paths from initial region adjacency 
graphs.

12
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Demonstration
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Matching Spectral Abstractions 
of Graph Structure
§ Image features and their relations can be 

conveniently represented by labeled graphs.
§ When features are multi-scale, or when part/whole 

relations exist between features, resulting graphs can 
be represented as directed acyclic graphs.

§ Object recognition can therefore be formulated as 
hierarchical graph matching.

§ Using spectral graph theory, we embed discrete 
graphs into low-dimensional continuous spaces.



Shock Graphs

Siddiqi, Shokoufandeh, Dickinson, Zucker (ICCV ‘98, IJCV ‘99)
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The eigenvalues of a graph’s adjacency matrix 
encode the connectivity structure in the graph.

But, are they unique? No, but cospectral graphs are 
not that common.

And are they stable to noise and minor structural 
perturbation? Yes! Let’s have a look.

The Eigenspace of a Graph
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Perturbing a Graph
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Theorem (Wilkinson, 1965):

If A and A + E are n £ n symmetric matrices, then for 
all k 2 {1,L,n}, λ1 ¸ λ2 ¸ L λn:

For H (perturbed graph) and G (original graph), the  above 
theorem yields (after manipulation):

The eigenvalues of a graph are therefore stable under 
minor perturbations in graph structure.

1( ) ( ( )) ( )k H k G E? A ? A ? A− Ψ ≤
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Establishing Stability
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The Eigenvalues are Stable
Now What?

…
We could compute the 
graph’s eigenvalues, sort 
them, and let them become 
the components of a vector 
assigned to the graph. 

[ ]n??? ,,, 21 …

But:
1. Dimensionality grows with size of graph.
2. Eigenvalues are global! Therefore, can’t accommodate 

occlusion or clutter.
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Forming a Structural Signature
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Why Sum the k largest Eigenvalues?
1. Summing reduces dimensionality.
2. Largest eigenvalues most informative.
3. Sums are “normalized” according to richness (ki) of branching 

structure.
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Consider a bipartite graph matching formulation, in which the 
edges in the query and model graphs are discarded.

Hierarchical structure is seemingly lost, but can be encoded in 
the edge weights:

( )),(),(),( jidajida geom2struct1ejiW +−=

Matching using the Spectral 
Abstraction
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Sample Matches
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View-Based 3-D Recognition
§ Shock graphs are computed from a regularly tessellated 

viewing sphere centered around a CAD model of a 3-D object.
§ The TSV of every node of every shock graph is stored in a 

database supporting nearest-neighbour search.
§ A query shock graph returns the 50 model shock graphs 

receiving the most votes.
§ These 50 candidates are verified using our shock graph 

matching algorithm.
§ We conducted over 25,000 trials, varying number of objects, 

sampling resolution, and degree of occlusion.

Macrini, Shokoufandeh, Dickinson, Siddiqi, Zucker (ICPR ‘02)
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Sampling the Viewing Sphere



Recognition performance as a function of increasing number 
of objects (with 128 views per new object). 



Recognition performance as a function of sampling 
resolution (for a fixed number of objects (11)).



Recognition performance as a function of degree of occlusion 
(missing data) for occluded queries.



34

Matching Blob and Ridge 
Abstractions

Shokoufandeh, Dickinson, Jönsson, Bretzner, Lindeberg (ECCV ‘02)



Example: Gesture Recognition

12.35 5.73 6.02 7.35 10.25 11.15 9.12 

4.05 6.88 5.22 3.27 2.84 4.18 5.95 

5.37 3.13 8.40 4.47 7.56 4.21 2.72 

15.18 9.02 5.44 13.19 10.18 15.95 13.22 

21.84 11.01 12.17 15.88 9.21 17.75 16.37 

10.43 3.41 4.19 4.00 7.26 5.69 4.96 
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Blob Correspondence



Example: Face Detection
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Many-to-Many Matching using 
Graph Embedding

Demirci, Shokoufandeh, Keselman, Dickinson, Bretzner (Scale-Space '03)

Keselman, Shokoufandeh, Demirci, Dickinson (CVPR ‘03) 

Demirci, Shokoufandeh, Dickinson, Keselman, Bretzner (ECCV  '04)
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Matching Graphs as Weighted 
Point Sets in Euclidean Spaces

Embedding
In

Vector Space 

Distance 
between 

Distributions
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Embedding Graphs into 
Euclidean Spaces

§ To embed a graph into a Euclidean space, we 
view the graph as a metric space (distances on 
pairs of nodes are defined by lengths of shortest 
paths) and use existing algorithms for 
embedding metric spaces into Euclidean spaces.

§ The embedding will be low-distortion
(distances between pairs of graph nodes will 
change little).
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Embedding Graphs into 
Euclidean Spaces
§ To embed a graph into a Euclidean space, we view the 

graph as a metric space (distances on pairs of nodes are 
defined by lengths of shortest paths) and use existing 
algorithms for embedding metric spaces into Euclidean 
spaces.

§ The embedding will be low-distortion (distances 
between pairs of graph nodes will change little).

§ Terminology:
o Metric space: arbitrary set of points with a distance function d

satisfying: d(x,x)=0; d(x,y)>0, if x≠ y; d(x,y)=d(y,x) [symmetry]
d(x,z) ≤ d(x,y)+d(x,z) [the triangle inequality].

o A Euclidean space is also a metric space: d(x,y) = ||x-y||.
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Low Distortion Embedding of 
Graphs into Euclidean Spaces

To embed a metric space into a Euclidean space 
with low distortion, we use existing algorithms:
§ Embed the metric space into a tree metric 

with low distortion (Agarwala et al., 1999).
§ Embed tree metric into a Euclidean space 

with low distortion (Matousek, 1999).
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Low Distortion Embedding of 
Graphs into Euclidean Spaces
§ To embed a metric space into a Euclidean space 

with low distortion, we use existing algorithms:
o Embed the metric space into a tree metric with low 

distortion (Agarwala et al., 1999).
o Embed tree metric into a Euclidean space with low 

distortion (Matousek, 1999).
§ Terminology:

o Tree metric space: metric that can be realized by a tree (points of 
the original metric space can be mapped into nodes of a tree so 
that original distances are shortest path distances on the tree).

o Not every metric can be realized by a tree (e.g., consider 3 
points, with distance of 1 between each pair).

o Not every metric tree can be embedded without distortion into a 
Euclidean space (e.g., consider a rooted tree with 3 leaves, with 
distance of 1 between the root and the leaves).



Step 1: Construct a Metric Tree

original graph
complete graph with 
edge weights equal to 
Euclidean distance 
between region centroids
note that any distance function can 
be chosen  

resulting low-distortion 
tree metric with 
additional vertices 
(Agarwala et al., 1999).
For example, D(3,5) above equals 
weight of edge (3,5) in graph to 
left. But, D(0,1) above (21.7) is 
slightly less than edge (0,1) (21.8) 
at left. Distances are preserved with 
low distortion.   
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Construction of Matousek’s
Embedding (Matousek, 1999).

• these 10 (3+7) paths represent the 
components of a 10-dimensional 
vector, our embedding: the 3 level-1 
paths are the first 3 coordinates, and 
the 7 level-2 paths are the remaining 
7 coordinates.
• each vertex is characterized by its 
path from the root
• non-zero components of the vector 
correspond to the length of traversed 
path segments
• coordinates are chosen with
distortion at most 
• constructed in linear time

Example: will traverse 3 edges 
of the 2nd level-1 path, and 3 
edges of the 4th level-2 path
[0,w2,0,0,0,0,w7,0,0,0] 

||loglog V ′
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Encoding Scale-Space Features
Problem: undirected graph embedding has failed to 
account for the hierarchical, non-metric relations 
common to scale-space structures.

Solution: move the non-metric relational information 
into the nodes by computing, as node attributes, two 
sets of distributions on the incoming and outgoing 
relations.

(Shokoufandeh, Dickinson, Jönsson, Bretzner, Lindeberg (ECCV ‘02)
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Scale-Space “Context” as a 
Node Attribute

1. Two relational contexts of a node can be computed, based on outgoing 
and incoming edges, respectively.

2. A node’s relations to its parents, its children, and its siblings all help to 
define its location in the scale space.

Example Relations Relational Context
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Aligning the Distributions 
(Embeddings)
Problem:

Two point distributions must be mapped into the same 
Euclidean space before being matched (registration step).

Solution:
§ Project the two distributions onto the first K (minimum 

dimension of two distributions) right singular vectors of their 
covariance matrices. 

§ This equalizes their dimensions while losing minimal 
information.

§ This is a global transformation and serves only to initialize 
an iterative procedure that will align the two distributions in 
the presence of noise and occlusion.
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Matching the Distributions using the 
Earth Mover’s Distance (EMD)
§ Evaluates dissimilarity between two multi-

dimensional distributions in some feature space 
by lifting geometric distance from individual 
features to full distributions (Cohen and Guibas, 
1999).

§ Analogous to moving dirt from piles to holes.
§ Extended EMD formulation allows one point set 

to undergo a transformation.
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Matching the Distributions using the 
Earth Mover’s Distance (EMD)
§ Evaluates dissimilarity between two multi-dimensional 

distributions in some feature space by lifting geometric 
distance from individual features to full distributions 
(Cohen and Guibas, 1999).

§ Analogous to moving dirt from piles to holes.
§ Extended EMD formulation allows one point set to 

undergo a transformation (Cohen and Guibas, 1999).
§ An optimal transformation is computed via an iterative 

EM-like algorithm called FT (Flow/Transformation).
§ The optimal transformation depends on the initial one.
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Final Algorithm
§ Given two vertex-labeled graphs,
§ find low-distortion embeddings of the graphs 

into low-dimensional Euclidean spaces.
§ register one distribution with respect to the 

other (using projection) to minimize the 
original EMD between them.

§ apply the FT iteration to minimize the 
extended EMD.

§ Points matched when minimizing the EMD yield 
a weighted, many-to-many matching of nodes.



52

Demonstration

corresponding feature groups are indicated by the same color
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Experiments
COIL-20 (Columbia University Image Library) database 
consisting of 72 views per object. 
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Experiments (cont’d)
For each view:

n compute the multi-scale blob decomposition,
n construct a tree metric for the complete edge-

weighted blob graph,
n embed each tree into a Euclidean space with 

low distortion.
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Experiments (cont’d)
§ For the 72 views of each object, every second 

view serves as a query view, with remaining 36 
views added to the database. 

§ Compute the distance between each query view 
and each database view. 

§ Ideally, for view i of object j, recognition trial is 
correct if closest view is vi+1,j or vi-1,j.
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Results
§ In all but 10.7% of the experiments, the closest 

match selected by our algorithm was a 
neighboring view.

§ Among the mismatches, the closest view 
belonged to the correct object 80% of the time. 

§ These results ignore the effects of symmetry, and 
can be considered worst-case.
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Non-Hierarchical Graphs
§ Non-hierarchical graphs can be easily 

accommodated within the framework, and differ 
only in that their relational distributions are not 
oriented.

§ As in the hierarchical case, node feature values 
map to point attribute vectors in the embedded 
space.
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Experiments

silhouette and its medial axis medial axis tree - edges encode 
Euclidean distance between nodes 
while darker nodes reflect larger radii

silhouette recognition based on skeleton graph matching
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Database
9 objects, 180 views per objects, 1620 silhouettes
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Results

§ 19 equidistant views per object were selected 
as query views

§ for each query, closest view in the database 
found by linear search.

§ In only 5.74% of the trials, the closest view 
was not a neighboring view.
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Example Correspondence
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Occlusion Experiments
§ Each view, in turn, is used as a query.

§ Each query was perturbed by deleting a randomly 
selected, connected subset of the skeleton points 
whose size was between 5% and 25% of the total 
points.

§ Average correct recognition performance was 90%.

§ These results are conservative and don’t account for 
symmetry.
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Conclusions
§ The assumption of one-to-one correspondence is 

a restrictive one that’s appropriate for exemplar-
based recognition.

§ Within-class variation, scale, articulation, and 
segmentation errors require a more general 
framework that supports many-to-many feature 
matching.

§ Graphs capture both feature properties and 
relational information, leading to a many-to-many 
graph matching formulation.
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Conclusions (cont’d)
§ Model-based abstraction can be formulated as 

finding a many-to-many mapping between regions 
of exemplars belonging to a single class. 

§ Hierarchical graph matching can be formulated as 
matching low-dimensional spectral descriptions of 
entire subgraphs, yielding a many-to-many 
mapping.

§ Many-to-many, directed and undirected graph 
matching can be reformulated as a geometric point 
distribution matching problem.


