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Content-Based Information Retrieval
(CBIR)

An inherently difficult problem because
“what Is actually in adocument” isa

Capute S function of both the document and the

user. The ideal situation for perfect

retrieval occurs when the document

representation of the retrieval system and

document representation of the user arein

complete match.




Types of CBIR Queries

e Levd 1
— Find pictures with round red objectsin
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o Leve 2 (Descriptive queries)

— Find images containing multistory
buildings

e Leve 3
— Find images showing tranquility




Current Content-Based Retrieval
Methods

Keyword-based retrieval (KBR)
& Engineeing Similarity-based retrieval (SBR)
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Keyword-Based Retrieval

Good for finding images containing instances of
desired objects (descriptive queries)
Manual cataloging
High expressive power
Can be used to describe any aspect of image
content at various levels of complexity
Subject to user differences

Two people choose the same main keyword for a single
well-known object only about once in five times
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Similarity-Based Retrieval

Avoids issues related to manual cataloging
Suitable for computerized indexing

Able to capture the compositional aspectsto alimited
extent

Good for Level 1 queries
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Similarity-Based Retrieval
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Major Limitation of the SBR
Approach

Signal versus descriptive/semantic content
PR similarity (Semantic gap)
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How to Reduce the Semantic Gap?

o Stuff detectors
o e Image category detectors/ feature

Computer Science

& Engineering aSSOC| atl ons

o Exploiting other information sources
— Surrounding text / Image captions
— Associated audio
— Cross-modal association
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Stuff Detectors

Stuff detectors are object detectors.
Current computer vision methods allow to
build a small set of special detectors, each
designed to detect the presence of a
particular type of “stuff.” Examples of
some stuff detectors include

- faces
- traffic signs
- trees
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Face Detector
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Traffic Sign Detector
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Image Category Detectors

These detectors try to determine the broad
category of image content by building
Image classifiers. These detectors are
different from stuff detectors which locate
specific types of objects within an image.
Here, the Image as awhole is assigned a
descriptive keyword.
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Semi-Automatic

Low-leve gener ation of " oor ned vieual
e features: Color Semantic Concepts Concept: ‘sunset’
Computer Science ‘
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Feature
Extraction

Pixel Data

Thereationship between image data, low-level features, and high-level concepts (image
categories) can be visualized using the triangle relationship between data, infor mation, and
knowledge: low-level features (information) are extracted purely from pixel data, and
knowledge (learned visual concepts) is discovered from the most important low-level features
and image contexts.




An Example of Image
Category Classification
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Sample images classified as ‘ sunset’ by arule-based image
classifier, elD system
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Codebook Based Image
Category Detection

Good for mass noun entities, for example grass,
water, sand etc.

Entity specific codebook designed through vector
guantization

A confidence value is attached to each codeword
In the entity specific codebook

|mage category Is decided by encoding agiven
Image through different entity specific codebooks
and integrating the resulting confidence values



Vector Quantization Based |mage Category
Oakland

Classifier
Smoke Agent
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Sky Agent

Water Agent




Exploiting Text Surrounding
lmages

o Keywords extracted from text
surrounding Images can provide a
way of reducing semantic gap

e The mage search engine Google, for
example, has cataloged over 450
million iImages using the surrounding
text to extract keywords
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Google Result for “Prayer”
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|nformation Sourcesin a
Multimedia Stream
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Video Analysis for CBIR

What should be the analysis level ?
A frame? A shot? A scene?

Ela Scene components

& Engineering

Objects (who), action or event (what), and place or
context (where)

Compositional components
Camera shot, angle, and movement

Subjective components
Emotion and mood




Integrated Analysis Approach for
Video

Video and image analysis
face detection, tracking, and recognition
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audio segmentation and classification
speech/speaker recognition
text understanding

Closed caption text analysis
Transcript understanding
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Audio Analysis for Video Indexing

Audio segmentation and classification
Speaker identification
— Keyword spotting

& Engnesring Speech recognition
Text understanding
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Cross-Modal Retrieval

L ocate or retrieve documents of all
modalities in response to a query in any
modality




Opportunistic Vs Cross-Modal
|ntegration

e Opportunistic Approach
— The data from different modalitiesis

Department of
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are used/merged on a need basis

e Cross-Modal Association Approach

— The data from different modalitiesis
processed together to discover and
exploit associations between different
modalities




Cross-Modal Association Approach

e Operatesin the joint feature space

» Works by identifying and measuring
INtrinsic associations between different
modalities
— For example, facial features with speech

— Uses feature sets that preserve/represent best
such relationships




Work Related to CMA

e FaceSync by Slaney and Covell
(NIPS 2000)

— Synchronizing visual and speech
streams using canonical correlation

* Monologue detection by lyenger and
Nock (ICASSP 2003)




Possible CMA Approaches

e Model-based approaches

- — Gaussian distribution, linear correlation

& Engneeing models, etc.

— Learn fast and provide best results when
using appropriate models

* Modée-free approaches
— Neural networks
— Require little prior knowledge




CMA Using Linear Correlation
Models

 Linear correlation model
— Appropriate model for many applications
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* Possible models
— Latent semantic indexing (LSI)
— Cross-modal factor analysis (CFA)
— Canonical correlation analysis (CCA)




D) L atent Semantic Indexing
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o Popular in text information retrieval as an effective tool to
relate keywords

Semm——_— °+ Extended to the multimedia domain, for example, to
Computer Science

& Engineering discover semantic associations between low-level
multimedia features and keywords/captions

* Provides dimensionality reduction

e LSI may not provide the best representation of cross-modal
relationships as the computation of the linear
transformation is affected by intra-class distribution




>y CCA: A Possible Solution for
CMA

* The nature of CMA isto examine the relationships
between two feature subsets

— distribution of patterns and noise within each subset should not
be afactor
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el ©  \\/ith linear correlation model, the problem isto find the
optimal transformation space

— best represents the coupled patterns between two subsets
o CCA optimization criteria

— Given coupled samples from two feature subset: X
and Y, we seek A and B that

max{correlation( XA YB) = correl ation()? ,\7)}




Canonical Correlation Analysis

A=C "V B=C, Y&

yy
Where,

D C, =E{(X- m)(X-m)"}

& Engineering

ny = E{ (Y B my)(Y B my)T}
ny = E{(X B mx)(Y B my)T}
K =C, V2 C,,C,, 12 _ ) gy T

Restriction:
no two features in each subset are correlated




Dy Cross-Modal Factor Analysis;
Another Possibility

e Optimization criteria
— we seek transformation A and B that minimize
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We can prove that this Is equivalent to maximizing :

trace( XAB'Y")

T —
where X Y—SWNW@W




Cross-Modal Factor Analysis

e Transform X and Y using A and B

e Pearson correlation or mutual information
can then be used




-4 Cross-Modal Factor Analysis
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CFA vs. CCA

o Transformation matrixes given by CFA are
orthogonal, while not necessary for CCA

sl  CFA isinfavor of correlation patterns with
& Ergnesting high variations, while CCA Is more sensitive
to patterns with low variations due to the

calculations of C)&W and C;y1/2

e CFA does not have the de-correlation
restriction on the features




Advantages of Cross-Modal
Retrieval

Greater choice for input modalities

— generating and sending query of a more
appropriate modality

Handle absent (corrupted) modalities

More flexible browsing of multimedia
databases

Potential to combine with existing single-
modality approaches
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Example 1: Retrieval of Explosion
Scenes

e Audio guery - 4 second explosion
clips

* Visual database: 452 explosion clips
and 3870 non-explosion clips

— many are low quality without
soundtracks

e Audio features
— 12 MFCCs




xample 1: Retrieval of Explosion
Scenes (2)

e Visua features:

— 150 HSI area-peak values from 5x10
overlapped image blocks

e Only 8 most important features after the
transformation are kept




Retrieval examples of explosion
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Performance Comparison

Hit Rate CFA CCA LS
Top 5 62% 61% 21%
Top 10 41% 42% 21%
Top 20 37% 32% 20%




Example 2: Retrieval of Talking

| ~ Faces
e Audio query - single syllable audio clip

— 12 MFCCsas audio features

* Visual features are 40x32 pixels from detected
el foce areas

& Engineering Retrieval Results

The actual |mage \
sequence used : 0.936
i frai/




Example 2: Retrieval of Talking
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Talking Head Detection

Omni-Face
Detection » Audiovisual

Cross-modal
Department of
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& Engineering Feature MFCC Association
Extraction
Audio |
Classification

Visual features. 40x32 image pixels
Audio features. 12 MFCCs







Performance Comparison

* Detection accuracy:

— CFA: 91.1%
S CCA: 73.9%
—LSl: 66.1%

« CCA Ismore prone to noise due to Iits sensitivity
to patterns with low variations




Summary & Conclusion

e Level 1 queriesare no problem

e Level 2 queries can be dealt with somewhat
S success using multiple information sources,

Computer Science
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Image classifiers. Emerging techniques such
as active learning are likely to play a greater
role

« CMA offers asystematic approach for
exploiting associations and extending the
capabilities of multimedia information
retrieval systems
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