

Tutorial 2: Image Feature Extraction

Daniela Stan Raicu Assistant Professor, CTI Visual Computing Workshop: Image Processing DePaul University May 21st, 2004

Why Image Processing?

- "A picture is worth a 1000 words"
- Alternative form of communication
- Popular medium of information on the Internet
- Not everything can be described in text; not everything can be described in images

Feature Extraction - method of capturing visual content of images for indexing & retrieval.

Feature Extraction

The issue of choosing the features to be extracted should be guided by the following concerns:

Feature Extraction

 \succ the features should carry enough information about the image and should not require any domain-specific knowledge for their extraction.

> they should be easy to compute in order for the approach to be feasible for a large image collection and rapid retrieval.

➤ they should relate well with the human perceptual characteristics since users will finally determine the suitability of the retrieved images. DEPAULC"

Because of perception subjectivity, there does not exist a single best representation for a feature.

Feature Extraction

Color feature is one of the most widely used feature in Image Retrieval. **Color Histogram** is the most used in color feature representation.

Visual Computing Workshop

DEPAULC'I

Color as low-level feature representation:

Closely related to human visual perception

≻HSV color model

>Encode the spatial distribution of features in images

Color Feature Extraction

	1			2.2		
l						
						\mathbb{R}^{n}
J						
					1	
		1				
•			•••			
ľ	1					5

- Fixed partitioning scheme
- > each image divided into M ´ N overlapping blocks

3 separate local histograms (H,S,V) are calculated for every block

Compact to provide efficient storage and retrieval

>The location of area-peak for every local histogram determines the value of the corresponding histogram.

Two examples of original images and their approximations:

Two examples of original images and their approximations:

Color - wise Similarity Retrieva

0017.tif sim=1

1726.tif sim=1

0466.tif sim=1

1532.tif sim=0.75691

1156.tif sim=0.73691

1724.tif sim=0.77635

0450.tif sim=0.77512

0042.tif sim=0.74022

1193.tif_sim=0.63713

1725.tif_sim=0.7264

0457.tif sim=0.69947

0517.tif sim=0.72324

1876.tif sim=0.57141

1727.tif sim=0.71533

0456.tif sim=0.68313

1875.tif_sim=0.70182

1158.tif sim=0.57029

0141.tif sim=0.70591

0360.tif_sim=0.6687

Texture Feature Extraction

- Textures can be rough or smooth, vertical or horizontal etc
- Generally they capture patterns in the image data (or lack of them), e.g. *repetitiveness* and *granularity*

- Texture features:
 - Statistical measures:
 - Entropy
 - Homogeneity
 - Contrast
 - Wavelets
 - Fractals

Shape Feature Extraction

Methods:

Retrieval Results