Statistics of the Geometry of Object Populations

Stephen M. Pizer, Kenan Professor Medical Image Display \& Analysis Group

University of North Carolina website: midag.cs.unc.edu
Co-authors: P. Thomas Fletcher, Conglin Lu, Sarang Joshi, Erik Dam, Roland Pilgram, Qiong Han

Need Probability $\mathrm{p}(\mathbf{Z})$ of Objects in

Populations with $\underline{\underline{z}}=$ Deformation(Mean)

\rtimes Let $\underline{\underline{z}}$ be transformation from mean, localized into object sections
\rtimes Uses for $\mathrm{p}(\underline{\mathrm{z}})$
\nearrow Sampling $\mathrm{p}(\underline{\mathrm{z}})$ to communicate anatomic variability in atlases
\star Log prior in posterior optimizing
 deformable model segmentation
त Optimize $\log \mathrm{p}(\underline{Z})+\log \mathrm{p}(\mathbf{I} \mathbb{Z})$
\rtimes Compare two populations
\star Medical science: localities where p (z|healthy) \& p (z|diseased) differ
\gtrsim Diagnostic: Is particular patient's geometry diseased? $\mathrm{p}(\underline{\mathrm{z}}$ |healthy, $\underline{\mathrm{I}})$ vs. $\mathrm{p}(\underline{\mathrm{z}}$ diseased, I$)$

Needs of Probability Representation

 $\mathrm{p}(\underline{Z})$$\pi$ Accurate estimation of $\mathrm{p}(\underline{\mathrm{z}})$ using limited samples
入 Positional correspondence
入 Multiple scale levels (beat HDLSS), incl. obj. ensembles
\nearrow Rich and intuitive characterization of geometric effects
\nearrow Local translations, but also local rotations, magnifications
„ Null probabilities for geometrically illegal objects
\nearrow Statistics on geometric transformations
\rtimes Localization
\nearrow Residues in multiscale framework

Represent the Egg, not the Eggshell

入 The eggshell: object boundary primitives
л B -reps
入 Transformations of primitives: local displacement
त The egg: object interior primitives
λ M-reps
त Transformations of primitives: local displacement, local bending \& twisting (rotations), local swelling/contraction

Geometric power of medial atom as basis for describing a geometric transformation

入 Medial atom parameters carry position, metric, two orientations
त $\mathrm{T} \in \mathfrak{R}^{3} \times \mathfrak{R}^{+} \times \mathrm{S}^{2} \times \mathrm{S}^{2}$
\nearrow From base atom: Hub translation x Spoke magnification in common x spoke $_{1}$ rotation x spoke $_{2}$ rotation
$\pi \mathrm{S}^{2}=\mathrm{SO}(3) / \mathrm{SO}(2)$
$\gtrsim \mathrm{M}$-rep is n -tuple of medial atoms
त T^{n}, n local $\mathrm{T}^{\prime} \mathrm{s}$, a symmetric space

\star

Medial atom or m-rep as a geometric

 transformation, a point on a symmetric space$\pi T \in \Re^{3} \times \Re^{+} \times S^{2} \times S^{2}$
\nearrow Some m-rep parameters are not linear \rtimes Rotations
\nearrow Magnifications
入 High-dimensional, curved space:
入 Quotients of Lie groups

\nearrow Standard linear statistics do not achieve legality

M-reps as Points in Curved Space, Geodesics

- Deformation as paths of local rotation, swelling, \& displacement
- i.e., on symmetric space's surface
- Geodesics: minimum energy
- Geometric
- Physical
- E.g., tweening from key frames in animation

A to B to A to C to A

Animation - Demo

Principal Geodesic Analysis

[Fletcher] - go to Fletcher presentation

\nearrow Calculated via tangent hyperplanes through mean and "exponential" \& "logarithmic maps"
入 Demo for object ensemble, for object

Example: 4 heart models, each made up of 7 objects [Pilgram]

Segmentation of a Kidney by Deformable M-reps ($\sim 10 \mathrm{sec}$.)

Optimize $\mathrm{p}(\underline{\mathrm{z}} \mid \underline{\mathrm{I}})$, thus $\log \mathrm{p}(\underline{\mathrm{z}})+\log \mathrm{p}(\mathrm{I} \mid \underline{\mathbb{Z}})$

Efficiency is Critical for Objects

\gtrsim Typically more than 10^{4} primitives
\nearrow Time efficiency
\nearrow Optimizing probability
\nearrow Simulated physical behavior (e.g., motion)
\rtimes Statistical efficiency: number of training samples needed
\nearrow Inter-sample spatial correspondence
\rtimes Rich local geometric transformations
\star Both efficiencies require multiple scales (levels of locality)
$\pi \mathrm{O}(\mathrm{N})$ not $\mathrm{O}\left(\mathrm{N}^{2}\right)$

Scale Situations in Various Sampled Geometric Analysis Approaches

Global coef for
each level of detail Examples: boundary spherical harmonics, global principal components

Multidetail feature Detail residues

boundary points, dense position displacements, medial atoms
m-rep object hierarchy, wavelets

Location

Residues at the Object, Atom and Boundary Scale Levels

\nearrow Object transformations are transformations of all the object's atoms taken as a group
\nearrow Atom residues are $\in \mathfrak{R}^{3} \times \mathfrak{R}^{+} \times S^{2} \times S^{2}$
入 Boundary residues (part of m-rep) are normalized displacements from medially implied boundary positions

atom residue

boundary residue

Markov Random Field Models for Primitives with Neighbor Relations

\nearrow Markov assumptions
λ Inter-scale residues $\left(\Delta \mathrm{T}^{\mathrm{m}}=\right.$ $\mathrm{T}^{\mathrm{m}}-\mathrm{T}^{\mathrm{m}-1}$ models the residue at scale level m)

$$
\begin{aligned}
& \operatorname{Prob}\left(\mathbf{T}^{\mathrm{m}} \mid\left\{\mathbf{T}^{\mathrm{s}}, \mathrm{~s}<\mathrm{m}\right\}\right) \\
& =\operatorname{Prob}\left(\mathbf{T}^{\mathrm{m}} \mid \mathbf{T}^{\mathrm{m}-1}\right)=\operatorname{Prob}\left(\mathbf{T}^{\mathrm{m}}-\mathbf{T}^{\mathrm{m}-1}\right)
\end{aligned}
$$

λ At entity i,model $\operatorname{Prob}\left(\Delta \mathbf{T}^{\mathrm{m}} \mathrm{m}_{\mathrm{i}}\right)$, where

$$
\mathbf{T}_{\mathrm{i},}=\operatorname{Pred}\left(\mathbf{T}^{\mathrm{m}}(\mathbb{N}(\mathrm{i}, \mathrm{j})\}\right)+\Delta \mathbf{T}_{(\mathrm{i}, \mathrm{i})}
$$

\nearrow Both have moderate dimension

atom level
boundary leve quad-mesh neighbor relations

Deformation Parameters by Scale Level for M-reps

Object ensemble Object
Main figure Subfigure

Medial atom
Boundary vertex

Sim. Transf \& PGC coef's Sim. Transf \& PGC coef's Sim. Transf \& PGC coef's Sim. Transf. in host (u,v,t) \& PGC coef's
Atom parameters

Displacement along normal (medial atom spoke)

Training M－rep Probabilities ［Fletcher，Han，Dam］

ォ Start with
$\nearrow \mathrm{N}$ binary images of segmentations
$\lambda \#$ of figures and medial atom grid size of each figure
ォ Fit m－reps to images
ォ Regularize m－reps and refit
入 Align using Lie group distances
入 Compute mean and principal geodesics at top scale
\star Fit PGCs to cases and refit residues

A seven－object heart
（in future 3 multifigure objects：
pericardium，right，left）

Hippocampus medial atom（residue） statistics（［Lu］

入 Global over hippocampus vs．by locality
ォ Residue
入 From next larger scale（vs．from neighbors）

ォ Demo

Mean and PGCs for Liver [Lu]

Our Approach to Statistical Analysis of Object Geometry

入 Use m-reps:medial representation together with boundary displacement \nearrow primitive transformations decomposable into translations, rotations, magnifications [Pizer, IJCV 2003 and Joshi, TMI 2002]
入 Build Markov random field models for residues
\nearrow inter-scale residues between scale levels
\nearrow intra-scale residues among neighboring primitives at each scale level
[Lu, Scale Space 2003]
λ Residue models of geometric transformations and the metrics on them are defined and analyzed via geodesics on symmetric space [Fletcher, CVPR \& IPMI 2003

Other Applications of Lie Group and Lie Group Quotient Statistics

入 Statistics of tensors（from DTI）［Fletcher］
入 Statistics of neural fiber bundle geometry［Gerig］
入 Statistics of joystick gestures［Feasel］
\nearrow Extension to diffeomorphism group
λ Incl．as small scale residue within m －reps
\nearrow Any statistical pattern recognition method， previously on linear space
\nearrow Discrimination
π Fisher linear discriminant
„ Support vector machines
π Kernel methods
„ Feature selection with locality［Yushkevich］
入 Clustering

Future Work

\nearrow MRF models at other scale levels
\Rightarrow complete probabilistic model on all scale levels
„ Test adequacy of close-neighbor Markov assumption
„ Connect image and geometric scale spaces
ㄱ Localized feature selection
\nearrow On 3D medial
\nearrow With multiscale residues

入 Statistics of multiple multifigure objects

For background to this talk see tutorial at website: midag.cs.unc.edu/projects/object-shape/tutorial/index.htm http://midag.cs.unc.edu/pubs/presentations/Pizer_SPIE.ppt http://midag.cs.unc.edu/pubs/presentations/Joshi_SPIE.ppt http://midag.cs.unc.edu/pubs/presentations/Gerig_SPIE.ppt
or papers at midag.cs.unc.edu bibliography

