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Abstract. The recognition community has long avoided bridging the
representational gap between traditional, low-level image features and
generic models. Instead, the gap has been eliminated by either bringing
the image closer to the models, using simple scenes containing idealized,
textureless objects, or by bringing the models closer to the images, using
3-D CAD model templates or 2-D appearance model templates. In this
paper, we attempt to bridge the representational gap for the domain of
model acquisition. Specifically, we address the problem of automatically
acquiring a generic 2-D view-based class model from a set of images, each
containing an exemplar object belonging to that class. We introduce a
novel graph-theoretical formulation of the problem, and demonstrate the
approach on real imagery.

1 Introduction

1.1 Motivation

The goal of generic object recognition is to recognize a novel exemplar from a
known set of object classes. For example, given a generic model of a coffee cup,
a generic object recognition system should be able to recognize “never before
seen” coffee cups whose local appearance and local geometry vary significantly.
Under such circumstances, traditional CAD-based recognition approaches (e.g.,
[25,29,22]) and the recently popular appearance-based recognition approaches
(e.g., [44,31,27]) will fail, since they require a priori knowledge of an imaged
object’s exact geometry and appearance, respectively. Unfortunately, progress
in generic object recognition has been slow, as two enormous challenges face the
designers of generic object recognition systems: 1) creating a suitable generic
model for a class of objects; and 2) recovering from an image a set of features
that reflects the coarse structure of the object. The actual matching of a set of
salient, coarse image features to a generic model composed of similarly-defined
features is a much less challenging problem.

The first challenge, which we will call generic model acquisition, has been
traditionally performed manually. Beginning with generalized cylinders (e.g., [4,
1,33,6]), and later through superquadrics (e.g., [34, 20, 42,24, 43, 28]) and geons



(e-g., [3,12,14,13,2,37,47,18,10, 5]), 3-D generic model acquisition required the
designer to not only identify what features were common to a set of object exem-
plars belonging to a class, but to construct a model, i.e., class prototype, in terms
of those features. The task seems quite intuitive: most cups, for example, have
some kind of handle part attached to the side of a larger container-like part, so
choose some parameterized part vocabulary that can accommodate the within-
class part deformations, and put the pieces together. Although such models are
generic (and easily recognizable!), such intuitive, high-level representations are
extremely difficult (under the best of conditions) to recover from a real image.

The generic object recognition community has long been plagued by this
representational gap between features that can be robustly segmented from an
image and the features that make up a generic model. Although progress in
segmentation, perceptual grouping, and scale-space methods have narrowed this
gap somewhat, generic recognition is as elusive now as it was in its prime in the
1970’s. Back then, those interested in generic object recognition eliminated the
gap by bringing the objects they imaged closer to their models, by removing
surface markings and structural detail, controlling lighting conditions, and re-
ducing scene clutter. Since then, the recognition community has eliminated the
gap by steadily bringing the models closer to the imaged objects, first result-
ing in models that were exact 3-D reproductions (CAD-based templates) of the
imaged objects, followed by today’s 2-D appearance-based templates.

Interestingly enough, both approaches to eliminating this gap are driven by
the same limiting assumption: there exists a one-to-one correspondence between
a “salient” feature in the image (e.g., a long, high-contrast line or curve, a well-
defined homogeneous region, a corner or curvature discontinuity or, in the case
of an appearance-based model, the values of a set of image pixels) and a feature
in the model. This assumption is fundamentally flawed, for saliency in the image
does not equal saliency in the model. Under this assumption, object recognition
will continue to be exemplar-based, and generic recognition will continue to be
contrived.

Returning to our two challenges, we first seek a (compile-time) method for
automatically acquiring a generic model that bridges the representational gap
between the output of an image segmentation module and the “parts” of a
generic model. Next, from an image of a real exemplar, we seek a (run-time
or recognition-time) method that will recover a high-level “abstraction” that
contains the coarse features that make up some model. In this paper, we address
the first challenge — that of generic model acquisition.

1.2 An Illustrative Example

Assume that we are presented with a collection of images, such that each image
contains a single exemplar, all exemplars belong to a single known class, and that

! Take a look at the object models of Marr and Nishihara [30], Nevatia and Binford
[33], Brooks [6], Pentland [34], or Biederman [3], and you will easily recognize the
classes represented by these models.



the viewpoint with respect to the exemplar in each image is similar. Fig. 1(a)
illustrates a simple example in which three different images, each containing a
block in a similar orientation, are presented to the system. Our task is to find
the common structure in these images, under the assumption that structure that
is common across many exemplars of a known class must be definitive of that
class. Fig. 1(b) illustrates the class “abstraction” that is derived from the input
examples. In this case, the domain of input examples is rich enough to “intersect
out” irrelevant structure (or appearance) of the block. However, had many or all
the exemplars had vertical stripes, the approach might be expected to include
vertical stripes in that view of the abstracted model.
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Fig. 1. Illustrative Example of Generic Model Acquisition: (a) input exemplars belong-
ing to a single known class; (b) generic model abstracted from examples.

Any discussion of model acquisition must be grounded in image features. In
our case, each input image will be region-segmented to yield a region adjacency
graph. Similarly, the output of the model acquisition process will yield a region
adjacency graph containing the “meta-regions” that define a particular view of
the generic model. Other views of the exemplars would similarly yield other views
of the generic model. The integration of these views into an optimal partitioning
of the viewing sphere, or the recovery of 3-D parts from these views (e.g., see [12,
14,13]) is beyond the scope of this paper. For now, the result will be a collection
of 2-D views that describe a generic 3-D object. This collection would then be
added to the view-based object database used at recognition time.

1.3 Related Work

Automatic model acquisition from images has long been associated with object
recognition systems. One of the advantages of appearance-based modeling tech-
niques, e.g., [44,31,27,7] is that no segmentation, grouping, or abstraction is
necessary to acquire a model. An object is simply placed on a turntable in front
of a camera, the viewing sphere is sampled at an appropriate resolution, and the
resulting images (or some clever representation thereof) are stored in a database.
Others have sought increased illumination-, viewpoint-, or occlusion-invariance
by extracting local features as opposed to using raw pixel values, e.g., [36, 38,



32,45]. Still, the resulting models are very exemplar-specific due to the extreme
locality at which they extract and match features (e.g., one pixel or at best,
a small neighborhood around one pixel). The resulting models are as far from
generic as one can get.

In the domain of range images, greater success has been achieved in ex-
tracting coarse models. Generic shape primitives, such as restricted generalized
cylinders, quadrics, and superquadrics have few parameters and can be robustly
recovered from 3-D range data [35,42,24,21,43,11]. Provided the range data
can be segmented into parts or surfaces, these generic primitives can be used to
approximate structural detail not belonging to the class. Unlike methods oper-
ating on 2-D data, these methods are insensitive to perceived structure in the
form of surface markings or texture.

In the domain of generating generic models from 2-D data, there has been
much less work. The seminal work of Winston [46] pioneered learning descrip-
tions of 3-D objects from structural descriptions of positively or negatively la-
beled examples. Nodes and edges of graph-like structures were annotated with
shapes of constituent parts and their relations. As some shapes and relations
were abstractions and specializations of others, the resulting descriptions could
be organized into specificity-based hierarchy. In the 2-D shape model domain, Et-
tinger learned hierarchical structural descriptions from images, based on Brady’s
curvature primal sketch features [17,16]. The technique was successfully applied
to traffic sign recognition and remains one of the more elegant examples of fea-
ture abstraction and generic model acquisition.

1.4 What’s Ahead

In the following sections, we begin by presenting a detailed formulation of our
problem and conclude that its solution is computationally intractable. Next, we
proceed to reformulate our problem by focusing on deriving abstractions from
pairs of input images through a top-down procedure that draws on our previous
work in generic 2-D shape matching. Given a set of pairwise abstractions, we
present a novel method for combining them to form an approximation to the
solution of our original formulation. We demonstrate the approach by applying
it to subsets of images belonging to a known class, and conclude with a discussion
of the method’s strengths and weaknesses, along with a glimpse of where we’re
heading.

2 Problem Formulation

Returning to Fig. 1, let us now formulate our problem more concretely. As we
stated, each input image is processed to form a region adjacency graph (we em-
ploy the region segmentation algorithm of Felzenzwalb and Huttenlocher [19]).
Let us now consider the region adjacency graph corresponding to one input im-
age. We will assume, for now, that our region adjacency graph represents an



oversegmentation of the image (later on, we will discuss the problem of under-
segmentation, and how our approach can accommodate it). Under this assump-
tion, the space of all possible region adjacency graphs formed by any sequence of
merges of adjacent regions will form a lattice, as shown in Fig. 2. The lattice size
is exponential in the number of regions obtained after initial oversegmentation.?
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Fig. 2. The Lowest Common Abstraction of a Set of Input Exemplars

Each of the input images will yield its own lattice. The bottom node in each
lattice will be the original region adjacency graph. In all likelihood, if the exem-
plars have different shapes (within-class deformations) and/or surface markings,
the graphs forming the bottom of their corresponding lattices may bear little or
no resemblance to each other. Clearly, similarity between the exemplars cannot
be ascertained at this level, for there does not exist a one-to-one correspondence
between the “salient” features (i.e., regions) in one graph and the salient features
in another. On the other hand, the top of each exemplar’s lattice, representing

% Indeed, considering the simplest case of a long rectangular strip subdivided into
n + 1 adjacent rectangles, the first pair of adjacent regions that can be merged can
be selected in n ways, the second in n — 1, and so on, giving a lattice size of n!. The
lattice is even larger for more complex arrangements of regions.



a silhouette of the object (where all regions have been merged into one region),
carries little information about the salient surfaces of the object. Following some
preliminary definitions, our problem can be stated as follows:

Definitions: Given N input image exemplars, E1, Es, ..., En,let L1, Lo, ..., Ly
be their corresponding lattices, and for a given lattice, L;, let L;n; be its con-
stituent nodes, each representing a region adjacency graph, g;;. We define a com-
mon abstraction, or CA, as a set of nodes (one per lattice) Linj, , Lang,, ..., Lnnjy
such that for any two nodes L,n;, and Lgn;,, their corresponding graphs g,;,
and g,;, are isomorphic. Thus, the root (silhouette) of each lattice is a common
abstraction. We define the lowest common abstraction, or LCA, as the common
abstraction whose underlying graph has maximal size (in terms of number of
nodes). Note that there may be more than one LCA.

Problem Definition: For N input image exemplars, find the LCA.

Intuitively, we are searching for a node (region segmentation) that is com-
mon to every input exemplar’s lattice and that retains the maximum amount of
structure. Unfortunately, the presence of a single, heavily undersegmented ex-
emplar (a single-node silhouette in the extreme case) will drive the LCA towards
the trivial silhouette CA. In a later section, we will relax our LCA definition to
make it less sensitive to region undersegmentation.

3 The Lowest Common Abstraction of Two Examples

3.1 Overview

For the moment, we will focus our attention on finding the LCA of two lattices;
in the next section, we will accommodate any number of lattices. Since the input
lattices are exponential in the number of regions, actually computing the lattices
is intractable. Our approach will be to restrict the search for the LCA to the
intersection of the lattices, which is much smaller than either lattice, and leads
to a tractable search space. But how do we generate this new “intersection”
search space without enumerating the lattices?

Our solution is to work top-down, beginning with a node known to be in the
intersection set — the root node. If one or both of the roots have no children in the
lattice, i.e., the original region segmented image was already a silhouette, then
the process stops and the LCA is simply the root. However, in most cases, each
root (silhouette) has many possible decompositions, or specializations. We will
restrict ourselves to the space of specializations of each root into two component
regions, and attempt to find a specialization that is common to both lattices.
Again, there may be multiple 2-region specializations that are common to both
lattices; each is a member of the intersection set.

Assuming that we have some means for ranking the matching common spe-
cializations (if more than one exists), we pick the best one (the remainder con-
stituting a set of backtracking points), and recursively apply the process to each



pair of isomorphic subregions. The process continues in this fashion, “pushing”
its way down the intersection lattice, until no further common specializations
are found. This lower “fringe” of the search space represents the LCA of the
original two lattices. In the following subsections, we will formalize this process.

3.2 The Common Specialization of Two Abstraction Graphs

One of the major components of our algorithm for finding the LCA of two
examples is finding the common specialization of two abstraction graphs. In
this subsection, we begin by formulating the problem as a search for a pair of
corresponding cuts through the two abstraction graphs. Next, we reformulate
the problem as the search for a pair of corresponding paths in the dual graph
representations of the two abstraction graphs. Finally, high search complexity
motivates our transformation of the problem into the search for a shortest path
in a product graph of the two dual graphs. In the following subsections, we
elaborate on each of these steps.

Problem Definition Our specialization problem can be formulated as follows:
Given a pair of isomorphic graphs G; and G2 in Ly and Lo, find a pair of iso-
morphic specializations of G; and G2, denoted by Hy; € Ly and Hy € Lo, if such
a pair exists. Two decompositions (in general, two region adjacency graphs)
are isomorphic if their corresponding regions have similar shapes and similar
relations. For corresponding regions, it is imperative that we define a similar-
ity metric that accounts for coarse shape similarity. Since the exemplars are all
slightly different, so too are the shapes of their abstracted regions. To compute
the coarse shape distance between two regions, we draw on our previous work
in generic 2-D object recognition [40,39,41], in which distance is a weighted
function of a region’s part structure and part geometry. For relational (or arc)
similarity, we must check the relational constraints imposed on pairs of corre-
sponding regions. Such constraints can take the form of relative size, relative
orientation, or degree of boundary sharing. We implicitly check the consistency
of these pairwise constraints by computing the shape distance (using the same
distance function referred to above) between the union of the two regions form-
ing one pair (i.e., the union of a region and its neighbor defined by the arc) and
the union of the two regions forming the other. If the constraints are satisfied,
the distance will be small.

The Search for Corresponding Graph Cuts The decomposition of a region
into two subregions defines a cut in the original region adjacency subgraph defin-
ing the region. Unfortunately, the number of possible 2-region decompositions
for a given region may be large, particularly for nodes higher in the lattice. To
reduce the computational complexity of finding a pair of corresponding cuts, we
will restrict ourselves to cuts that generate regions that are simply connected
in the topological sense, i.e., they have no internal “holes”. Despite this restric-
tion, the complexity is still prohibitive, and we need to take further measures to
simplify our formulation.



The Search for Corresponding Paths in a Dual Graph To find a pair
of corresponding cuts, we first define a dual graph to be any graph with the
property that a cut in the original graph can be generated by a path in its
dual graph.? Thus, finding a pair of corresponding cuts in the original graphs
reduces to finding a pair of corresponding paths in their dual graphs. Moreover,
our restriction of open cuts (preventing holes) will result in a corresponding
restriction (preventing cycles) on the paths in the dual graphs. Before we discuss
how to generate a dual graph, which we visit in a later section, we will assume
that the dual graphs exist and proceed to find a pair of corresponding paths in
the dual graphs.

The Product Graph of Two Dual Graphs Our transformation to the dual
graph has not affected the complexity of our problem, as there could be an ex-
ponential number of paths in each dual graph, leading to an even larger number
of possible pairs of paths (recall our checkerboard example). Rather than enu-
merating the paths in each dual graph and then enumerating all pairs, we will
generate the pairs directly using a heuristic that will generate more promising
pairs first. To accomplish this, we define the product graph of two dual graphs,
such that each path in the product graph corresponds to a pair of paths in the
dual graphs. Moreover, with suitably defined edge weights in the product graph,
we can ensure that paths resulting in nearly optimal values of an appropriately
chosen objective function will correspond to more promising pairs of paths in
the dual graphs.

The product graph G = G1 x G2 = (V, E) of graphs Gy = (V1,E), G2 =
(Va, E») is defined as follows:

V=WV xVo={(v1,v2
E = {((u1,u2), (v1,v2)

{((Ula u2): (1)1, UZ)

{((u17v2)7 (v1,v2)

~—

tv; € Vi,up € Va}

: (u1,v1) € Eq, (u2,v2) € B} U
:Ule‘/l,(UQ,Uz)EEz} U

: (u1,v1) € Er, vz € Va}

~— ~—

Hence, a simple path (u1,v1) = (u2,v2) = --- = (un,vp) in the product graph
corresponds to two sequences of nodes in the initial dual graphs, uy — us —
-+ = upy and v; = vs — --+ = v, which, after the elimination of successive
repeated nodes, will result in two simple paths (whose lengths may be different)
in the initial dual graphs.

Algorithm for Finding the Common Specialization Notice that a path
that is optimal with respect to an objective function defined in terms of edge
weights of the product graph may result in unacceptable partitions. Therefore, we
will evaluate several near-optimal paths in terms of similarity of regions resulting

3 While our definition agrees in principle with the usual notion of the dual graph for
planar graphs [23], we have chosen a more flexible definition which does not prescribe
its exact form.



from the partitions. Our generic algorithm for finding the common specialization
of two abstraction nodes is shown in Algorithm 1. In the following sections, we
will elaborate on a number of components of the algorithm, including the choice
of a dual graph, edge weights, and the objective function.

Algorithm 1 A Generic Algorithm for Finding a Common Specialization

1: Let A1, As be subgraphs of the original region adjacency graphs that correspond
to isomorphic vertices of the abstraction graphs.

2: Let G1, G2 be dual graphs of Ay, As.

Form the product graph G = G1 x G2, as described above.

Choose an objective function f, compute edge weights w;, and select a threshold

e>0.

Let Py be the optimal path with respect to (f, {w;}) with value F(Py).

Let P = Py

while |f(P) — f(Pf)| < € do
Let P, and P, be the paths in G1, G2 corresponding to P.
Let (Vi,W1) and (Va, Wa) be the resulting cuts in Ay, As
if region V) is similar to region V>, and region W is similar to region Ws, and
arcs (Vi,U?), (Vz,US) are similar for all isomorphic neighbors U?, Ui of Vi, Va
respectively, and arcs (W1, U}), (Wa, US) are similar for all isomorphic neighbors
Ui, Ui of W1, Wa respectively then

11: output decompositions (Vi, W1) and (Va2, W2).

12: return

13:  end if

14:  Let P be the next optimal path with respect to (f, {w:}).

15: end while

16: output “no non-trivial specialization is found”.

—_

Choosing a Dual Graph We now turn to the problem of how to define a
dual graph of an abstraction graph. In this section, we will present two alterna-
tives. However, before describing these alternatives, we must first establish some
important definitions, in conjunction with Fig. 3.

— A region pixel is a boundary pizel if its 8-connected neighborhood contains
pixels belonging to one or more other regions.

— At a given step, our algorithm for computing the LCA of two examples will
focus on a connected subgraph of the input region adjacency graph. A region
belonging to this subgraph is called a foreground region, while any region not
belonging to this subgraph is called a background region.

— A boundary pixel of a region is exterior if it is adjacent to a background
region; it is interior otherwise.

— A boundary segment of a region is a contiguous set of its boundary pixels,
and is interior if all its points (except possibly for the endpoints) are such.
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— A junction is a point whose neighborhood of a fixed radius r includes pixels
from at least 3 different regions.? If one or more of the regions are back-
ground, the junction is exterior; otherwise, it is interior.

2(ext) 1(ext)
(int)

(ext)

ext)

Fig. 3. Illustration of Basic Definitions. All the regions belonging to the cube are
foreground. Junctions are labeled as either interior or exterior. The boundary segments
between junctions 2 and 4, and 4 and 7 are interior, while those between 1 and 5, and
5 and 8 are exterior.

Our initial choice for a dual graph representation was a junction graph:

— The junction graph of a region adjacency graph is a graph whose nodes rep-
resent region junctions and whose arcs are those internal boundary segments
that connect junctions.’?

Fig. 4 illustrates a junction graph. Since a path between two exterior junctions
along internal boundary segments separates regions into two disjoint groups, a
path in the junction graph between nodes corresponding to external junctions
generates a cut in the region adjacency graph. Thus, the junction graph is dual
to the region adjacency graph.

Despite the simplicity and intuitive appeal of the junction graph, it poses
some limitations. For example, consider the different types of edges that arise
in the product graph. Looking back at its definition, we notice that some edges
are of type “edge-edge”, corresponding to the ((u1,us),(v1,v2)) terms, while
others are of type “node-edge”, corresponding to the ((vi,us2),(v1,v2)) and
((u1,v2), (v1,v2)) terms. Since edge weights in the product graph will be based

4 The radius r is a parameter of the definition and should be chosen so as to counteract
the effects of image noise. In the ideal case, the immediate neighbors of the junction
point will belong to 3 different regions, which may not be true if the boundaries of
the regions are noisy.

5 There can be multiple arcs between two nodes corresponding to different internal
boundary segments connecting the two junctions.
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(a) (b)

Fig. 4. The Dual Graph of a Region Adjacency Graph. (a) Segmented image with a
path between external junctions shown in black. (b) Junction graph overlaid on the
region adjacency graph, with the corresponding path in the junction graph shown in
black. The path edges cut the region adjacency graph (at the dashed edges) into two
parts, one whose nodes are square and shaded and one whose nodes are circular and
unshaded.

on node and edge data in the dual graphs, a definition of an edge weight in
the junction graph that will result in acceptable paths will require sufficiently
precise geometric alignment of the object silhouettes, such that junctions and
internal boundary segments are closely aligned.® However, such a close align-
ment is unlikely, with both the shapes and locations of the boundary segments
varying across exemplars. As boundary segments possess not only positional but
also local shape information, below we define a graph whose edges and nodes
carry information about internal boundary segments.

If we define a graph on undirected boundary segments, i.e., take boundary
segments as nodes and define node adjacency according to the adjacency of
the corresponding boundary segments, then many paths in the dual graph will
not result in cuts in the region adjacency graph due to the presence of 3-cycles
occurring at junction points. Although these unacceptable paths can be modified
to produce cuts in the region adjacency graph, they may still be generated among
near-optimal paths, thus decreasing the overall efficiency. Orienting boundary
segments, i.e., splitting each undirected boundary segment into two directed
copies, eliminates the problem, leading to the following alternative dual graph:

— The boundary segment graph of a region adjacency graph has directed inter-
nal boundary segments of the regions as its node set (two nodes per undi-
rected internal boundary segment), and an edge from boundary segment by
to be if the ending point of by coincides with the starting point of by, unless
by and by are directed versions of the same undirected boundary segment, in

5 A simpler, watershed-like method, where blurred dark region boundaries are overlaid
on top of each other, and darkest curves are found, might also be applicable.



12

which case they are not adjacent. Nodes of the graph are attributed with the
corresponding boundary segments, while an edge is attributed with the union
of the adjacent boundary segments corresponding to the nodes it spans.

The directed boundary segment graph possesses the interesting property that
for each path starting at a node v; and ending at a node vs, there is a “reverse
directed” path starting at the duplicate of v and ending at the duplicate of vy,
which is characteristic of undirected graphs. An example of a boundary segment
graph is given in Fig. 5.

(a) (b)

Fig. 5. Two Possible Boundary Segment Graphs. Nodes representing boundary seg-
ments are placed on or near the segments. A path between any two green nodes in
both graphs corresponds to a cut in the region adjacency graph. Notice that in the
undirected version, (a), cycles have no meaningful interpretation in terms of curves in
the original image. The directed acyclic version of the same graph, (b), in which each
boundary segment is duplicated and directed, eliminates this problem.

Assigning Edge Weights to the Product Graph Consider now the task
of defining edge weights so that optimal paths will result in regions of similar
shape. The minimal requirement that shape similarity imposes on the paths
is that their shapes are similar and that they connect “corresponding points”
on the object’s silhouettes. Despite the fact that corresponding contours are
unlikely to be closely aligned, their proximity in both shape and position can
be taken into account. We therefore define edge weights as a combination of
metrics reflecting the amount of rigid displacement and the amount of non-rigid
transformation required to align one boundary segment with another. Due to the
special type of the initial boundary segment graphs, whose nodes and edges are
both attributed with boundary segments, it is sufficient to define distances on
pairs of boundary segments from different images. We employ a simple Hausdorff-
like distance between the two boundary segments, yielding a local approximation
to the global similarity of the regions.
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Choosing an Objective Function In our dual graph, smaller edge weights
correspond to pairs of more similar boundary segments. This leads to a number
of very natural choices for an objective function, if we interpret edge weights
as edge lengths. The total path length, ti(p) = > picn I(p;), is a well-studied
objective function [9]. Fast algorithms for generating successive shortest and
simple shortest paths are given in [15,26]. However, the above objective function
tends to prefer shorter paths over longer ones, assuming path edges are of equal
average length. For our problem, smaller paths will result in smaller regions being
cut off, which is contrary to our goal of finding the lowest common abstraction.”

To overcome this problem, we turn to a different objective function that mea-
sures the maximum edge weight on a path, ml(p) = max,,_, I(p;). A well-known
modification® of Dijkstra’s algorithm [9] finds paths of minimal maximum edge
weight (minmax paths) between a chosen node and all other graph nodes, and
has the same complexity, O(|E| + |V|log|V]), as the original algorithm. How-
ever, efficient algorithms for finding successive minmax paths are not readily
available. Leaving development of such an algorithm for the future, we will em-
ploy a mixed strategy. Namely, we find pairs of nodes providing near-optimal
values of the objective function, and along with the minmax path between the
nodes we also generate several successive shortest paths between them. For this,
we use Eppstein’s algorithm [15], which generates k successive shortest paths
between a chosen pair of nodes in O(|E| + |V |log|V| + klog k) time. The mixed
strategy, whose overall complexity is O(|V|(|E| + |V'|log|V])) for small k, has
proven to be effective in preliminary empirical testing.

3.3 Algorithm

Now that we have fully specified our algorithm for finding a common specializa-
tion of two abstraction graphs, we will embed it in our solution to the problem of
finding the LCA of two examples. Recall that our solution to finding the LCA of
two examples computes the intersection of the respective lattices in a top-down
manner. Beginning with the two root nodes (the sole member of the initialized
intersection set), we recursively seek the “best” common specialization of these
nodes, and add it to the intersection set. The process is recursively applied to
each common specialization (i.e., member of the intersection set) until no further
common specializations are found. The resulting set of “lowest” common spe-
cializations represents the LCA of the two lattices. The procedure is formalized
in Algorithm 2.

4 The LCA of Multiple Examples

So far, we’ve addressed only the problem of finding the LCA of two examples.
How then can we extend our approach to find the LCA of multiple examples?

7 A small region is unlikely to be common to many input exemplars.
8 Instead of summing up edge weights when determining the distance to a node, it
takes their maximum.
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Algorithm 2 Finding the maximal common abstraction of two region adjacency
graphs.
1: Let A1, A be the initial region adjacency graphs.
2: Let G1, G2 denote abstraction graphs belonging to abstraction lattices, L1 and Ls
respectively.

3: Let GY, GY be the topmost nodes of the lattices.

4: Let G1 = G(l), G2 = Gg

5: while there are unexplored non-trivial isomorphic nodes u; € G1, uz € G2 do

6: Let U; and Uz be the corresponding subgraphs of A1, As.

7:  if there is a common specialization Uy = V4 UW; and Us = Vo U W, then

8: Split the nodes u1 € G1, us € G2 by forming the specialization graphs Hy =
(G1 — {u1}) U{vi,w1}, Ha = (G2 — {u2}) U {v2, w2} with edges established
using Al, Ag.

9: Let G1 = Hi, Ge = H>, and goto 5.

10: end if

11: end while
12: output Gi1, Go.

Furthermore, when moving towards multiple examples, how do we prevent a
“noisy” example, such as a single, heavily undersegmented silhouette from de-
railing the search for a meaningful LCA? To illustrate this effect, consider the
inputs (a)-(d) shown in Fig. 6. If the definition of the pairwise LCA is directly
generalized, thus requiring the search for an element common to all abstraction
lattices, the correct answer will be the input (d). However, much useful structure
is apparent in inputs (a)-(c); input (d) can be considered to be an outlier.

To extend our two-exemplar LCA solution to a robust (to outliers), multi-
exemplar solution, we begin with two important observations. First, the LCA
of two exemplars lies in the intersection of their abstraction lattices. Thus, both
exemplar region adjacency graphs can be transformed into their LCA by means
of sequences of region merges. Second, the total number of merges required to
transform the graphs into their LCA is minimal among all elements of the inter-
section lattice. Our solution begins by relaxing the first property. We will define
the LCA of a set of region adjacency graphs to be that element in the intersec-
tion of two or more abstraction lattices that minimizes the total number of edit
operations (merges or splits) required to obtain the element from all the given
exemplars. As finding the desired abstraction according to this definition would
still involve the construction of many abstraction lattices, whose complexity is
intractable, we will pursue an approximation method.

Consider the closure of the set of the original region adjacency graphs under
the operation of taking pairwise LCA’s. In other words, starting with the initial
region adjacency graphs, we find their pairwise LCA’s, then find pairwise LCA’s
of the resulting abstraction graphs, and so on (note that duplicate graphs are
removed). We take all graphs, original and LCA, to be nodes of a new closure
graph. If graph H was obtained as the LCA of graphs G; and G4, then directed
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(b)

(c) (d)

Fig. 6. The straightforward computation of the Lowest Common Abstraction of exem-
plars (a)-(d) gives the exemplar in (d). However, (c) is the Lowest Common Abstraction
of exemplars (a)-(c), and therefore is more representative.

arcs go from nodes corresponding to G, G2 to the node corresponding to H in
the closure graph.

Although a graph may not be directly linked to all of its abstractions, if H
is an abstraction of G, there is a directed path between the nodes corresponding
to G and H. Thus, any abstraction is reachable from any of its specializations
by a directed path. Each edge in the closure graph is assigned a weight equal to
the merge edit distance that takes the specialization to the abstraction. The edit
distance is simply the difference between the numbers of nodes in the specializa-
tion graph and the abstraction graph. As a result, we obtain a weighted directed
acyclic graph. An example of such a graph, whose edges are shown directed from
region adjacency graphs to their LCA’s, is given in Fig. 7.

Given such a graph, the robust LCA of all inputs will be that node that min-
imizes the sum of shortest path distances from the initial input region adjacency
graphs. In other words, we are looking for the “median” of the graph. Note that
the resulting solution is bound to lie in the constructed graph, and therefore may
be only an approximation to the true answer. To find a possibly better solution,
one must consider a supergraph of the closure graph. Algorithm 3 computes the
LCA for a set of input examples.

To prove correctness of the algorithm, we must prove that the distance sum
for the output node is minimal. Adopting the convention that edges are directed
towards the current sink node, we denote Ry, ..., Ry to be those nodes whose
outgoing edges point directly to the sink, and denote L1, ..., L to be subgraphs
with nodes Ry, ..., Ry as their roots (L; will consist of all nodes having R; as
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A

Fig. 7. Embedding Region Adjacency Graphs and their Pairwise LCA’s in a Weighted
Directed Acyclic Graph. The center node is the median, as its distance sum value is
341+ 2+ 2 =8, while the sum is 5 + 3 4+ 4 + 0 = 12 for the topmost node.

Algorithm 3 Finding the median of the closure graph

1:
2:

Let the sink node, s, be the topmost node in the closure graph.
Solve the “many-to-one” directed shortest path problem on the graph with the
source nodes being the original adjacency graphs and with the specified edge
weights. Find the distance sum, DS(s), for the sink node.
Similarly, find distance sums, DS(s;), for all unexplored s; € N(s).
if min;(DS(s;)) > DS(s) then
return s
else
Let s = argmin; DS(s;).
goto 2.
end if
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their abstraction). It suffices to prove that if DS(sink) > DS(R;) and DS(R;) <
DS(R;) for all j, then a solution lies in L;.

Consider the original problem restricted to L;’s and call the restricted ob-
jective function of the i-th problem DS;. The values of the objective functions
approximately satisfy the following relations:

k
DS(R;) = ) DSj(R;) +2(k — 1) — F(i) (1)
j=1

Here 2(k — 1) comes from the fact that to get from an element of L;, that is
not in L;, to R;, we must necessarily pass through the two edges connecting the
sink node to L;, L;. F (i) is the sum of shortest path distances from the original
nodes to R; taken over the nodes that belong to both L; and L; (for some
i # j). Under the assumption DS(R;) < DS(R;), we have that F (i) > F(j),
which means that L; wholly contains at least as many shortest paths as any
other L;. This, in turn, implies that a node minimizing the original objective
function will lie in L;.

To analyze the complexity of the algorithm, notice that the first step, i.e.,
finding the distance sum to the topmost node, can be performed in linear time
in the graph size, since the closure graph is a directed acyclic graph, and the
single source shortest path problem in such graphs can be solved in O(|V |+ |E|)
time [9]. Since the algorithm can potentially examine a constant fraction of the
graph nodes (consider the case of a line graph), the total running time can be
as high as O(|V|(|V| +|E|))- The complexity can be somewhat reduced by using
the relations (1). The average case complexity will depend on the particular
distribution of the initial data and is beyond the scope of this paper. In practice,
the algorithm stops after a few iterations.

The possibility that the size of the generated graph is exponential in the size
of the initial region adjacency graphs cannot be ruled out. This could happen,
for example, when the images are segmented too finely, and different pairs of
region adjacency graphs are abstracted to similar but unequal graphs. We hope
to address this issue in the future. Alternatives include resegmenting the images
when the size of the generated closure graph exceeds a threshold value, and
subsampling the graph in a randomized fashion.

5 Experiments

In this section, we begin by showing two results of our approach applied to syn-
thetic image data, and follow that with two results using real image data. As
mentioned before, images were region segmented using the approach of Felzen-
zwalb and Huttenlocher [19]. For the experimental results shown below, consid-
erable parameter tuning in the region segmentation algorithm was performed to
avoid region oversegmentation.
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5.1 Synthetic Imagery

The first input exemplar set to our program consisted of four synthetic images
of books, whose segmentations are shown as rectangular nodes with black, bold
outline in the closure graph, shown in Fig. 8. The other two nodes are the LCA’s
of each pair of nodes just below them. Edges of the graph are labeled with the
merge edit distance between the nodes, while nodes are labeled with the distance
sum value. Although the three upper nodes are labeled with the same minimal
value, 9, the upper node is optimal according to the algorithm. Our computed
LCA agrees with our intuition given the input set.

—
()

1 /
A

Fig. 8. The LCA of Multiple Books. The upper node is optimal. See text for details.

The next input set to our program consists of four images of bottles, whose
segmented versions are shown as rectangular nodes with black, bold outline in
the closure graph, shown in Fig. 9. The fifth, upper node is the LCA of the two
nodes just below it. Again, edges of the graph are labeled with the merge edit
distance between the nodes, while nodes are labeled with the distance sum value.
The center node, with rounded corners and boldest outline, is optimal according
to the algorithm.



19

On the positive side, the computed LCA preserved all features present in the
majority of the inputs. For example, the four rectangular stripes, into which the
region segmentation algorithm segmented the label of the bottle, are preserved,
as is the region corresponding to the cork. However, on the negative side, the
subdivision of the label into four stripes is undesirable, as it does not correspond
to a partition of the object into meaningful structure based on coarse shape.
This is more a limitation of the original exemplar set. As was pointed out ear-
lier, our algorithm finds the finest-level common structure present in the input
region adjacency graphs, which may not correspond to the desired shape-based
structure. If additional examples of bottles were available, in which the label
was not segmented into several pieces or was segmented very differently, a more
appealing answer would likely have resulted.

t
L
1/3-

Fig. 9. The LCA of Multiple Bottles. The node in the center, with rounded corners, is
optimal. See text for details.

5.2 Real Imagery

We now turn to two examples of our approach applied to real imagery. In the
figures below, each of the two rows corresponds to one entry, the first column
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containing the original intensity image, the second column containing its region
segmentation, and the third column containing the LCA of the two region seg-
mentations (although each lattice’s LCA is shown for completeness, either one
could be chosen for inclusion in a database).

In the first example, we compute the LCA of two input image exemplars, as
shown in Fig. 10. The computed LCA captures the coarse structure with one
exception. The ideal LCA would assign the handle two regions rather than one.
The reason the “hole” was left out of the handle is that the shape matching mod-
ule found that the “handle silhouette” regions (i.e., the union of the handles with
their holes) were sufficiently similar in shape, while the two-region (handle,hole)
representation was found to exceed the shape dissimilarity threshold. This is a
deficiency of the current implementation of the shape similarity module, and it
will be eliminated in the near future.

oV
A

Original images  Initial segmentations Resulting LCA

Fig. 10. The LCA of Two Cups.

Our second example, again computing the LCA of two exemplars, is shown in
Fig. 11. In this case, the results deviate more significantly from our expectation.
For example, the handle of the second cup was not segmented from the body
of the cup. This illustrates the need for a region splitting operation, which we
discuss in the next section. Notice, however, that even if the second cup was
better segmented, the segmentation of the first cup would have prevented the
algorithm from obtaining the correct abstraction, since the handle of the first
cup is directly attached to the top portion, while in the second cup, it is attached
to the body portion. In this case, a split would be required on the first cup. The
other undesirable feature computed in the LCA is the stripe at the bottom of
the LCA. As has been already mentioned, this stripe would disappear if there
were other examples, most of whom lacked the stripe.
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Original images  Initial segmentations Resulting LCA

Fig.11. The LCA of Two Cups.

6 Limitations

There are a number of limitations of our proposed approach that deserve men-
tioning. As we discussed earlier in the paper, we have assumed that a lattice can
be formed from an input region adjacency graph through a sequence of adjacent
region merge operations. However, this assumes that the input region adjacency
graph is oversegmented. This is a limiting assumption, for lighting effects and
segmentation errors can lead to region undersegmentation®. Granted, our algo-
rithm for computing the LCA of multiple examples, through its search for the
median of the closure graph, can avoid the influence of an undersegmented ex-
ample, such as a silhouette. Nevertheless, a more direct approach to recovering
from region undersegmentation would be appropriate. Such an approach might
decompose selected regions in each input exemplar into a set of subregions which
could remain intact, merge with each other, or merge with other neighbors. Al-
though discretion must be exercised in selecting which regions should be split
(undue oversegmentation would result in a much more complex and possibly
ineffective input graph), we are fortunate in that the shock graph representation
of regions specifies a finite number of splits (branches in the shock graph, which
can be severed).

A second limitation involves the method by which a common specialization
of two graphs is found. Recall that this consists of finding corresponding paths
through two graphs that yield matching subregions. In order to reduce the com-
plexity of examining a possibly exponential number of corresponding paths (not
to mention application of the shape similarity function), we reformulated the
problem as a search for the shortest path in a product graph. The limitation

® Frequent undersegmentation of our input data was the main reason we did not use
the segmentation algorithm of Comaniciu and Meer [8]
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arises from the fact that in order to make the search tractable, our edge weights
capture local information. Thus, although the algorithm may find a global mini-
mum path, such a path may not represent the best cut. We are investigating the
incorporation of additional information into the edge weights, including more
global shape information.

Finally, more experimentation is needed to better understand the perfor-
mance of the framework as a function of the number and nature of the input
exemplars. For example, although the algorithm for finding the LCA of mul-
tiple examples (i.e., the median of the closure graph) can theoretically handle
any number of input exemplars, our experiments to date have included only a
few input exemplars. Experiments using larger numbers of input exemplars are
necessary to establish the performance of the algorithm. In addition, although
our experiments to date have included some undersegmentation and overseg-
mentation, we have not evaluated the performance of the entire framework as a
function of degree of segmentation error. A more thorough set of experiments,
parameterized in terms of number of exemplars and degree of segmentation error,
is essential before the approach can be fully evaluated.

7 Conclusions

The quest for generic object recognition hinges on an ability to generate abstract,
high-level descriptions of input data. This process is essential not only at run-
time, for the recognition of objects, but at compile time, for the automatic
acquisition of generic object models. In this paper, we address the latter problem
— that of generic model acquisition from examples. We have introduced a novel
formulation of the problem, in which the model is defined as the lowest common
abstraction of a number of segmentation lattices, representing a set of input
image exemplars. To manage the intractable complexity of this formulation, we
focus our search on the intersection of the lattices, reducing complexity by first
considering pairs of lattices, and later combining these local results to yield an
approximation to the global solution. We have shown some very preliminary
results that compute a generic model from a set of example images belonging to
a known class. Although these results are encouraging, further experimentation
is necessary and a number of limitations need to be addressed.

Our next major step is the actual recognition of the derived models from a
novel exemplar. Our efforts are currently focused on the analysis of the conditions
under which two regions are merged. If we can derive a set of rules for the
perceptual grouping of regions, we will be able to generate abstractions from
images. Given a rich set of training data derived from the model acquisition
process (recall that the LCA of two examples yields a path of region merges), we
are applying machine learning methods to uncover these conditions. Combined
with our model acquisition procedure, we can close the loop on a system for
generic object recognition which addresses a representational gap that has been
long ignored in computer vision.
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