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Abstract: The research presented in this article is aimed at developing an automated imaging system for classification 
of tissues in medical images obtained from Computed Tomography (CT) scans. The article focuses on using 
multi-resolution texture analysis, specifically: the Haar wavelet, Daubechies wavelet, Coiflet wavelet, and 
the ridgelet. The algorithm consists of two steps: automatic extraction of the most discriminative texture 
features of regions of interest and creation of a classifier that automatically identifies the various tissues. 
The classification step is implemented using a cross-validation Classification and Regression Tree approach. 
A comparison of wavelet-based and ridgelet-based algorithms is presented. Tests on a large set of chest and 
abdomen CT images indicate that, among the three wavelet-based algorithms, the one using texture features 
derived from the Haar wavelet transform clearly outperforms the one based on Daubechies and Coiflet 
transform. The tests also show that the ridgelet-based algorithm is significantly more effective and that 
texture features based on the ridgelet transform are better suited for texture classification in CT medical 
images. 

1 INTRODUCTION

The research presented in this article is part of an 
ongoing project (Xu et al. 2005), (Channin et al. 
2004), and (Semler, Dettori, & Furst 2005) aimed at 
developing an automated imaging system for 
classification of tissues in medical images obtained 
by Computed Tomography (CT) scans.  
Classification of human organs in CT scans using 
shape or grey level information is particularly 
challenging due to the changing shape of organs in a 
stack of slices in 3D medical images and the grey 
level intensity overlap in soft tissues. However, 
healthy organs are expected to have a consistent 
texture within tissues across multiple slices. This 
research focuses on using multi-resolution texture 
analysis for the classification of tissues from normal 
chest and abdomen CT scans. The approach consists 

of two steps: extraction of the most discriminative 
texture features of regions of interest and creation of 
a classifier that automatically identifies the various 
tissues. Four forms of multi-resolution analysis were 
carried on and texture features vectors were created 
from image transformations based on: the Haar 
wavelet, the Daubechies wavelet, the Coiflet 
wavelet, and the ridgelet. The classification step is 
implemented through a decision tree classifier based 
on the cross-validation Classification and Regression 
Tree (C&RT) approach. Multi-resolution analysis 
has been successfully used in image processing, and 
a number of applications to texture classification 
have been proposed over the past few years. Several 
studies have investigated the discriminating power 
of wavelet-based features applied to various 
domains, examples can be found in (Dara & Watsuji 
2003) and (Mulcahy 1997). Recently, the finite 



ridgelet transform has emerged as a new multi-
resolution analysis tool. Applications of ridgelet 
transforms to image contrast enhancement and 
image denoising have been developed in recent 
years as in (Do, & Vetterli 2003), however, to the 
authors’ knowledge, applications to texture 
classification have only been investigated in the 
context of natural images (LeBorgne & O’Connor 
2005).

Texture is a commonly used feature in the analysis 
and interpretation of images. It can be characterized 
by a set of local statistical properties of the pixel 
grey level intensity. Statistical, structural, or spectral 
techniques commonly used are: wavelets, run-length 
statistics, spectral measures, fractal dimensions, 
statistical moments, and co-occurrence matrices.

The discrete wavelet transform decomposes the 
image into several directional details obtaining low-
pass bands that capture horizontal, vertical and 
diagonal activity. First and second order statistics of 
the wavelet detail coefficients provide texture 
descriptors that can discriminate contrasting 
intensity properties spatially distributed throughout 
the image, according to various levels of resolution.  
Wavelets have been an area of research in many 
texture classification applications and have been 
useful in capturing texture information and edge 
detection in natural images (Li, Jun 2003), such as 
detecting the vertical outline of a skyscraper. 
However, they are not able to capture enough 
directional information in noisy images, such as 
medical CT scans. 

A better approach to texture classification for this 
type of images is to apply a ridgelet transform 
instead of a Wavelet transform. Ridgelets, like 
wavelets, capture directional information of an 
image, however, they are not limited to vertical, 
horizontal, and diagonal directions. Structural 
information derived from the ridgelet transform of 
an image is based on multiple radial directions in the 
frequency domain. For ridgelets, first order statistics 
can be calculated on the directional detail 
coefficients, providing texture descriptors that can 
be used in the classification of texture. Our tests 
confirm that the multi-directional capabilities of the 
ridgelet transform provide better texture information 
and prove to be more effective in the texture 
classification in medical images. 

The article is organized as follows. Section 2 
describes the data set, the wavelet and ridgelet 
transforms and the texture feature extraction process. 
The classification algorithm is detailed in Section 3. 
Tests and a comparison of wavelet-based and 
ridgelet-based features are presented in Section 4.  

2 TEXTURE FEATURES 

The texture classification algorithm proposed in this 
article consists of four main steps: segmentation of 
regions of interest (organs), application of the 
discrete wavelet or ridgelet transform, extraction of 
texture features, and creation of a classifier. In this 
article, we analyze and compare texture 
classification techniques based on four different 
multi-resolution approaches: Haar (H) wavelet, 
Daubechies 4 (D4) wavelet, Coiflet (C6) wavelet, 
and the ridgelet. 

A wavelet is a mathematical function that filters a 
signal or an image with a series of averaging and 
differencing calculations see for example (Mulcahy 
1997). Wavelets are typically used in image 
decomposition and compression. Wavelets can be 
calculated according to various levels of resolution 
(or blurring) depending on how many levels of
averages are calculated. They are sensitive to the 
spatial distribution of grey level pixels, but are also 
able to differentiate and preserve details at various 
scales or resolutions. 

The ridgelet transform is an application of a multi-
resolution wavelet to a radon transform. A radon 
transform is able to provide directional information 
in the frequency domain. Thus, ridgelets capture 
several directions, in addition to the horizontal, 
vertical and diagonal offered by the wavelet. The 
ridgelet gives rotation invariant structural 
information on multiple directions and scales. 

2.1 The Data Set

The texture classification algorithms were tested on 
3D data extracted from two normal chest and 
abdomen CT studies from Northwestern Memorial 
Hospital. The data consisted of 340 2D DICOM 
consecutives slices, each slice being 512 x 512 and 
having 12-bit grey level resolution. Using an Active 
Contour Models (“Snake”) algorithm, five organs 
were segmented from the initial data: heart, liver, 
spleen, kidney, and backbone (Xu et al. 2005). The 
segmentation process generated 140 Backbone 
slices, 52 Heart, 58 Liver, 54 Kidney, and 40 Spleen. 

Both wavelets and ridgelets are extremely 
sensitive to contrast in the grey level intensity, 
therefore, in order to use wavelet-based or ridgelet-
based texture description it was necessary to 
eliminate all background pixels to avoid mistaking 
the edge between the artificial background and the 
organ as a texture feature. Each slice was therefore 
further cropped, and only square sub-images fully 
contained in the interior of the segmented area were 



generated. These images were of sizes 31 x 31 (for 
ridgelets) or 32 x 32 (for wavelets), resulting in 
2,091 slices of “pure” single-organ tissue (363 
Backbone, 446 Heart, 506 Liver, 411 Kidney, 364 
Spleen). These images were cropped to the 
respective size because of the requirements of an 
image of size 2n for wavelets and a prime image size 
for ridgelets.

2.2 Feature Extraction 

Once the medical images have been segmented, the 
wavelet and ridgelet discrete transforms are applied. 
Several texture features are then extracted from the 
wavelet and ridgelet coefficients generated by these 
transforms. First, the three different families of 
wavelets were investigated to determine which 
would yield a higher discriminating power. Haar, 
Daubechies and Coiflet wavelet filters were applied 
to each of the images, using two levels of resolution. 
At each resolution level, three detail coefficient 
matrices were calculated capturing the vertical, 
horizontal and diagonal structures of the image. 

The following first order statistics were 
calculated on each of the directional matrices: Mean 
and Standard Deviation. Also calculated from these 
matrices were 4-directional co-occurrence matrices 
on which the following second order statistics were 
calculated:  Energy, Entropy, Contrast, Homogeneity 
Sum-mean, Variance, Maximum Probability, Inverse 
Difference Moment, and Cluster Tendency
(Haralick, Shanmugame, & Dinstein 1973). This 
generated a 264-element texture descriptor vector
per image. To avoid problems of overfitting for the 
decision trees the resulting feature vector was 
reduced to 22 features (using only two levels of 
resolution and averaging over wavelet details and 
co-occurrence directions). Further details on feature 
vector reduction and more in-depth analysis of the 
various wavelet-based texture features are provided 
in (Semler, Dettori, & Furst 2005). 

The Finite Ridgelet Transform as presented in 
(Do & Vetterli 2003), was also applied. This was 
computed by: first calculating a discrete radon 
transform, and then applying a one-dimensional 
wavelet transform. The radon transform was 
computed by: first calculating the 2-dimensional fast 
Fourier transform of the image, and then applying a 
1-dimensional inverse Fourier transform on each of 
the 32 radial directions of the radon projection. A 
one-dimensional Haar wavelet was applied to each 
of the radial directions, for two levels of resolution. 
The following texture descriptors were then 
calculated for each radial direction and resolution 

level of the wavelet details: mean, standard 
deviation, energy and entropy. Entropy texture 
descriptors were determined to yield the highest 
discriminating power; further details are presented in 
(Semler, Dettori & Kerr 2006). Several different 
combinations of resolution levels were also 
investigated, and two levels of resolution were 
determined best for both ridgelets and wavelets. The 
numbers of features extracted were limited since 
each descriptor is calculated over two resolution 
levels and for 32 directions, yielding 64 descriptors. 

Although the ridgelet-based features contain 
more descriptors, it should not be assumed they 
would perform better than the wavelet-based 
features because of the increase in number of 
descriptors. In (Semler, Dettori, & Furst 2005), it 
was found that a wavelet-based feature vector of 33 
descriptors outperformed another same-family 
wavelet-based feature vector of 99 descriptors.

3 TEXTURE CLASSIFICATION

The classification step was carried out using a 
decision tree classifier based on the Classification 
and Regression Tree (C&RT) approach (Channin et 
al. 2004). A decision tree predicts the class of an 
object (organ) from values of predictor variables 
(texture descriptors). The most relevant texture 
descriptors are found for each specific organ, and 
based on those selected descriptors, a set of decision 
rules are generated. These set of rules are then used 
for the classification of the each region. Using the 
C&RT cross-validation approach, each tree’s 
parameter was optimized, including depth of tree, 
number of parent nodes, and number of child nodes. 

To evaluate the performance of each classifier, 
specificity, sensitivity, precision, and accuracy rates 
were calculated from each of the misclassification 
matrices.

A misclassification matrix is a table that lists each 
organ and its true positives, true negatives, false 
positives and false negatives. The number of true 
positives is the number of organs that are correctly 
classified as that organ. The number of true 
negatives is the number of other organs that are 
correctly classified as other organs. The number of 
false positives is the number of organs that are 
incorrectly classified as that organ.  The number of 
false negatives is the number of organs that are 
incorrectly classified as other organ. From the 
misclassification matrix specificity, sensitivity, 
precision, and accuracy statistics were computed.



Table 1: Measures of classification performance

Measure Definition

Sensitivity True Positive / Total Positive

Specificity True Negative / Total Negatives

Precision True Positive / (True Positive + False Positives)

Accuracy (True Positives + True Negatives) / Total Sample

Specificity measures the accuracy among 
positive instances, and is calculated by dividing the 
true negatives by the number of all other organ 
slices. Sensitivity measures the accuracy among 
negative instances, and is calculated by dividing the 
number of true positives by the total number of that 
specific organ slices.  Precision measures show how 
consistent the results can be reproduced. Accuracy 
reflects the overall correctness of the classifier, and 
is calculated by adding the true positives and 
negatives together and dividing by the entire number 
of organ slices.

4 WAVELET - RIDGELET 
COMPARISON

Tables 2-5 in the Appendix show a comparison of 
accuracy, precision, specificity, and sensitivity 
results, for each tissue of interest for the three 
wavelet-based texture features and the ridgelet-based 
texture features respectively. Within all the wavelets, 
the Haar wavelet outperformed all others for most 
organs and performance measures. The only 
exception is the backbone, for which the Daubechies 
and Coiflet wavelets produce slightly better results. 
The performance for the Haar-based descriptors in 
all other organs was significantly higher, thus 
indicating that these descriptors yield the highest 
discriminating power among the wavelet-based 
features. 

The results also show that the ridgelet-based 
texture features outperform all wavelet-based 
descriptors. Accuracy rates for Wavelet-based 
texture descriptors range between 85 - 93%, while 
ridgelet-based accuracy rates are in the 91 - 97% 
range. Precision rates for the wavelets are between 
55 - 91%, compared to 73 - 93% for ridgelets.  
Specificity rates for the wavelets are in the 82-97% 
range, while specificity for the ridgelet descriptors is 
in the 92-98% range. Furthermore, sensitivity rates 
for the wavelets are in the 35-87% range, whereas 
ridgelets are between 72-94%. The lower bound of 
the sensitivity range for wavelets is due to the poor 
performance of those descriptors (especially Coiflets 
and Daubechies) for Heart and Spleen. The texture 

of the images for these two organs is quite similar 
and the classifier often mistakes the two organs for 
one another. Further investigation is needed to 
determine the underlying cause for the poor 
performance of the Heart and Spleen.

Overall, the ridgelet-based descriptors have 
significantly higher performance measures, with 
accuracy rates approximately four percent higher 
than any other feature set for all individual organs. 
This was expected due to the fact that the ridgelet 
transform is able to capture multi-directional 
features, as opposed to the wavelet transform which 
focuses mainly on horizontal, vertical, and diagonal 
features, which are not dominant in medical CT scan 
images. One of the limitations of using ridgelet-
based descriptors is the fact that ridgelets are most 
effective in detecting linear radial structures, which 
are not the main component of medical images. A 
recent extension of ridgelets is the curvelet 
transform. Curvelets have been proven to be 
particularly effective at detecting image activity 
along curves instead of radial directions (Starck 
Donoho & Candes 1999). We are currently 
investigating the use of curvelet-based texture 
descriptors and we expect this to further improve the 
ability of our classifier to successfully classify each 
tissue sample. 
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APPENDIX

Table 2: Wavelet-Ridgelet accuracy rates comparison

Accuracy

Feature Set Backbone Heart Liver Kidney Spleen Average

Haar 93.7 85.0 88.6 92.8 89.5 89.9

Daubechies 93.6 84.0 88.0 83.6 88.2 87.5

Coiflets 93.1 85.3 88.3 85.8 88.6 88.2

Ridgelet 97.3 93.6 92.7 92.7 91.7 93.6

Table 3: Wavelet-Ridgelet precision rates comparison

Precision

Feature Set Backbone Heart Liver Kidney Spleen Average

Haar 82.6 67.0 69.9 82.6 69.7 74.4

Daubechies 91.6 57.4 55.7 64.9 64.3 66.8

Coiflets 90.7 58.9 56.7 70.6 70.8 69.5

Ridgelet 93.5 90.8 79.4 88.5 72.9 85.0

Table 4: Wavelet-Ridgelet specificity rates comparison

Specificity

Feature Set Backbone Heart Liver Kidney Spleen Average

Haar 96.1 92.1 91.4 94.4 94.3 93.7

Daubechies 97.3 91.8 92.0 82.9 96.2 92.0

Coiflets 96.8 89.4 92.2 87.4 97.6 92.7

Ridgelet 98.7 97.9 92.3 97.67 93.4 96.0
Table 5: Wavelet-Ridgelet sensitivity rates comparison

Sensitivity

Feature Set Backbone Heart Liver Kidney Spleen Average

Haar 82.6 59.0 77.7 87.3 65.5 74.4

Daubechies 83.5 49.1 63.2 85.4 40.2 64.2

Coiflets 85.9 67.1 64.3 81.6 35.2 66.8

Ridgelet 90.9 77.8 94.2 72.5 83.8 83.8


