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ABSTRACT 

 
The research presented in this article is aimed at the 
development of an automated imaging system for 
classification of tissues in medical images obtained from 
Computed Tomography (CT) scans. The article focuses 
on using curvelet-based multi-resolution texture analysis. 
The approach consists of two steps: automatic extraction 
of the most discriminative texture features of regions of 
interest and creation of a classifier that automatically 
identifies the various tissues. The discriminating power of 
several curvelet-based texture descriptors are 
investigated.  Tests indicate that Energy, Entropy, Mean 
and Standard Deviation signatures are the most effective 
descriptors for curvelets, yielding accuracy rates in the 97 
- 98% range. A comparison with a similar algorithm 
based on wavelet and ridgelet texture descriptors clearly 
shows that using curvelet-based texture features 
significantly improves the classification of normal tissues 
in CT scans. 

 
1. INTRODUCTION 

 
The research presented in this article is part of an ongoing 
project [1] - [3] aimed at developing an automated 
imaging system for classification of tissues in medical 
images obtained by Computed Tomography (CT) scans.  
Classification of human organs in CT scans using shape 
or gray level information is particularly challenging due 
to the changing shape of organs in a stack of slices in 3D 
medical images and the gray level intensity overlap in soft 
tissues. However, healthy organs are expected to have a 
consistent texture within tissues across multiple slices. 
Consequently, the research presented in this article 
focuses on using texture analysis for the classification of 
tissues. Texture is a commonly used feature in the 
analysis and interpretation of images. One way of 
characterizing texture is by calculating a set of local 
statistical properties of the pixel grey level intensity, 
measuring variations in a surface such as smoothness, 
coarseness and regularity. Traditionally texture features 
have been calculated using a variety of image processing 
techniques including run-length statistics [10], co-
occurrence matrices [11], statistical moments, fractal 

dimensions, Gabor filtering, and the wavelet transform 
[2]. 

Following the recent introduction of the ridgelet 
transform, the authors proposed a classification algorithm, 
which uses ridgelet-based texture features [3]. This 
research is extended to include texture features based on 
the discrete curvelet transform [8]. The approach consists 
of two steps: automatic extraction of the most 
discriminative curvelet-based texture features of regions 
of interest and creation of a decision tree classifier that 
automatically identifies the various tissues. Multi-
resolution analysis has been successfully used in image 
processing, and a number of applications to texture 
classification have been proposed over the past few years 
[4]. Several studies have investigated the discriminating 
power of wavelet-based texture features applied to 
various fields. More recently, applications of the ridgelet 
transform to image contrast enhancement and image 
denoising have been explored, as well as applications to 
texture classification [5]. To the authors’ knowledge, 
curvelet-based texture analysis has been applied only in 
the context of image representation of astronomical 
images [6]. This research focuses on texture classification 
using features derived from the curvelet transform of the 
images. 

 Multi-resolution analysis allows for the preservation of 
an image according to certain levels of resolution or 
blurring. Broadly speaking, multi-resolution analysis 
allows for the zooming in and out of the underlying 
texture structure.  Therefore, the texture extraction is not 
effected by the size of the pixel neighbourhood. This 
multi-resolution quality is why wavelets have been useful 
in image compression, image de-noising, and image 
classification. Wavelets have been an area of research in 
many texture classification applications [4] and have been 
useful in capturing texture information and edge detection 
in natural images, such as detecting the vertical outline of 
a skyscraper.   

By decomposing the image into a series of high-pass 
and low-pass bands, the wavelet transform extracts 
directional details that capture horizontal, vertical and 
diagonal activity. However, these three linear directions 
are limiting and might not capture enough directional 
information in noisy images, such as medical CT scans 



which do not have strong horizontal, vertical, and 
diagonal directional elements.  Ridgelets, like wavelets, 
provide multi-resolution texture information; however 
they capture structural information of an image based on 
multiple radial directions in the frequency domain. The 
authors show in [3] that the multi-directional capabilities 
of the ridgelet transform provide better texture 
discrimination than its wavelet counterpart. However, one 
of the limitations of this approach is the fact that ridgelets 
are most effective in detecting linear radial structures, 
which are also not dominant in medical images. A recent 
extension of ridgelet is the curvelet transform; curve lets 
are proven to be particularly effective at detecting image 
activity along curves instead of radial directions. Curve 
lets also capture structural information along multiple 
scales, locations, and orientations. Instead of capturing 
structural information along radial lines, the Curvelet 
transform captures this structural activity along radial 
‘wedges’ in the frequency domain. 

The structural activity extracted from the curvelet 
transform of the image can be analyzed statistically to 
generate texture features used in the classifier to create 
classification rules. Common statistical measures used in 
texture classification in image processing are: mean, 
standard deviation, energy, entropy, contrast, 
homogeneity, variance, correlation, maximum 
probability, sum-mean, cluster tendency, and inverse 
difference moment [9]. However, since these statistics are 
being applied to the curvelet transform, which extracts 
contrast of pixel pairs in radial ‘wedges’, not all of these 
statistical measures are appropriate. Previous research in 
multi-resolution texture analysis [2] and [3] suggests the 
following statistics: energy, entropy, mean, and standard 
deviation. This article introduces the use of several 
combinations of those descriptors and presents a 
comprehensive analysis determining the optimal texture 
descriptors for the curvelet transform as applied to CT 
scans. Results indicate that using a feature vector 
containing all four curvelet-based texture descriptors 
significantly improves the wavelet-based and ridgelet-
based classification algorithm.  

 
2. METHODOLOGY 

 
The texture classification algorithm proposed in this 
article consists of four main steps: segmentation of 
regions of interest, application of the discrete curvelet 
transform, extraction of texture features, and creation of a 
classifier.  

 
Figure 1: Methodology Diagram 

 
Our tests were conducted on 3D data extracted from two 
normal chest and abdomen CT studies from Northwestern 
Memorial Hospital. The data consisted of 340 2D 
DICOM consecutives slices, each slice being 512 x 512 
and having 12-bit grey level resolution. The segmentation 
process generated 140 Backbone slices, 52 Heart, 58 
Liver, 54 Kidney, and 40 Spleen. Curvelets, like 
wavelets, are extremely sensitive to contrast in the grey 
level intensity, the segmented images need further 
processing. In order to effectively use curvelet-based 
texture descriptors, it was necessary to eliminate all 
background pixels to avoid mistaking the edge between 
the artificial background and the tissue as a texture 
feature. Each slice was therefore further cropped, and 
only square 32 x 32 sub-images fully contained in the 
interior of the segmented area were generated. This size 
was chosen since the digital curvelet requires a 2n square 
image; this is discussed in more detail in [8]. The 
cropping of the images resulted in 2,091 slices of “pure” 
single-organ tissue (363 Backbone, 446 Heart, 506 Liver, 
411 Kidney, and 364 Spleen).  

The texture features used in the algorithm are derived 
from the Discrete Curvelet Transform, introduced by 
Candes and Donoho in [8]. This is a discretization of their 
continuous curvelet transform [7], which uses a 
“wrapping” algorithm. The transform consists of four 
steps: application of a 2-dimensional fast Fourier 
transform of the image, formation of a product of scale 
and angle windows, wrapping this product around the 
origin, and application of a 2-dimensional inverse fast 
Fourier transform. The approximate scales and 
orientations are supported by a generic ‘wedge’. 

The discrete curvelet transform can be calculated to 
various resolutions or scales and angles. Two parameters 
are involved in the digital implementation of the curvelet 
transform: number of resolutions and number of angles at 
the coarsest level. For our images of 32 x 32, maximum 
resolution extraction was three levels of resolution, and 
16 angles were found to be ideal. 

 Several features were then calculated on the curvelet 
coefficients.  The most common statistics calculated on 
wavelets are mean and standard deviation. The limited 
literature on both curvelet-based and ridgelet-based 
descriptors also suggests the use of a combination of 



mean, standard deviation, energy, and entropy signals 
(see for example the author’s previous work [3]). One of 
the goals of this research is to identify the most effective 
texture descriptors for medical images. Mean, standard 
deviation, energy, and entropy were investigated and their 
discriminatory power compared. Each of these first order 
statistics were calculated for each curvelet matrix based 
on each scale and orientation. The following four feature 
vectors were investigated: Energy signatures (Eng), 
Entropy signatures (Ent), Energy and Entropy signatures 
(EE), and Energy, Entropy, Mean, and Standard 
Deviation signatures (EEMSD). Each of these feature 
vectors was computed for three levels of resolution and 
each radial ‘wedge’ (16 angles) yielding 18, 36, and 72 
descriptors respectively. Our results indicate that 
curvelet-based texture extraction algorithm outperforms 
both the ridgelet-based and the wavelet-based algorithms 
presented in [2], [3]. 

The classification step was carried out using a decision 
tree classifier based on the Classification and Regression 
Tree (C&RT) approach [1]. A decision tree predicts the 
class of an object from values of predictor variables or 
texture descriptors. The most relevant texture descriptors 
are found for each specific organ, and based on those 
selected descriptors, a set of decision rules are generated. 
These set of rules are then used for the classification of 
the each region. To evaluate the performance of each 
classifier; specificity, sensitivity, precision, accuracy rates 
are then calculated from each of the misclassification 
matrices [see Table 1]. 

Table 1: Performance Measures 
 

 In the medical domain, the most important 
performance measures are both specificity and sensitivity. 
Optimally one would want both high specificity and high 
sensitivity measures. However, theoretically these two 
measures should have a negative correlation. Since 
accuracy reflects both the sensitivity and specificity in 
relation to each other, this descriptor was selected to 
determine the overall correctness of the classifier.  
 

3. RESULTS 
 
Curvelet-based features yield accuracy rates between 97 
and 98%, which significantly improves accuracy rates for 
Ridgelet-based features [3] and Wavelet-based features 
[2] [shown in Table 6]. Results indicate that for medical 
images, a combination of Energy, Entropy, Mean and 
Standard Deviation (EEMSD) signatures is the most 
effective descriptors for curvelets.  Using 16 angles with 
EEMSD was found optimal yielding 97 - 98% accuracy, 

in comparison with the EEMSD feature vector containing 
12 angles and 20 angles, resulting in 94 - 98% and 81 - 
87% accuracy respectively. The Energy, Entropy, Mean, 
and Standard Deviation signatures (EEMSD) were in the 
range 97 - 98% accuracy [see Table 1], and clearly 
outperformed all other feature vectors.  Energy 
descriptors were significantly lower than all other feature 
vectors, with accuracy rates between 80 - 90%.   

Table 2 shows EEMSD as having accuracy rates 
between 97 - 98%, which was higher than both Entropy 
(Ent) signatures (in the 91 - 97% range) and Energy and 
Entropy (EE) signatures (in the 91 - 98%). EEMSD had 
significantly higher rates for heart, liver, kidney, and 
spleen increasing the accuracy by approximately 4 - 6%. 
Sensitivity rates [see Table 4] were between 89 - 99% for 
EEMSD, 75 - 94 % for EE, and 74 - 92%. EEMSD was 
significantly higher in all organs. Specificity rates [see 
Table 5] were much closer in comparison yielding results 
between 98 - 99% for EEMSD, 92 - 99% for EE and 92 - 
98% for Ent. Overall, the addition of Energy descriptors 
did not significantly raise the performance of 
classification; this can be explained by the poor results 
obtained by using Energy signatures alone. The addition 
of Mean and Standard Deviation signatures significantly 
increased performance among all organs.  

Previous studies were carried out using wavelet-based 
and ridgelet-based texture descriptors [2], [3]. The results 
also show that the curvelet-based texture features using 
EEMSD outperform all wavelet-based and ridgelet-based 
descriptors. Accuracy rates [see Table 6] for wavelet-
based texture descriptors range between 85 - 93%, while 
ridgelet-based descriptors were 93 - 98%, and curvelet-
based accuracy rates were in the 97 - 98% range. Overall, 
the curvelet-based descriptors had significantly higher 
performance measures, with accuracy rates approximately 
5 - 12% higher than any other feature set for all individual 
organs. This was expected due to the fact that the curvelet 
transform is able to capture multi-directional features, as 
opposed to the wavelet transform which focuses mainly 
on horizontal, vertical, and diagonal features, which are 
not dominant in medical CT scan images.  

The curvelet-based algorithm has significantly 
improved upon previous texture classification algorithms 
described in [1] - [3]. The algorithm presented in this 
article is able to classify normal tissues in CT scans with 
high accuracy rates. Although, theoretically curvelets are 
more complex, there are no significant differences in the 
time performance. The authors intend to explore the use 
of 3D curvelet descriptors as well as using curvelet-based 
descriptors to classify anomalies in the various tissues 
found in CT scans. 
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Table 2: Accuracy rates comparison                       Table 3: Precision rates comparison 
 

 
 
 
 
 

     Table 4: Sensitivity rates comparison                         Table 5: Specificity rates comparison 
 

Organ Descriptor Sensitivity Specificity Precision Accuracy 
Wavelet 82.6 96.1 82.6 93.7 
Ridgelet 91.5 99.3 96.8 98.0 Backbone 
Curvelet 99.4 98.8 95.3 98.9 
Wavelet 59.0 92.1 67.0 85.0 
Ridgelet 82.5 97.5 88.5 94.6 Heart 
Curvelet 89.7 99.0 95.5 97.1 
Wavelet 77.7 91.4 69.9 88.6 
Ridgelet 95.4 93.3 82.0 93.8 Kidney 
Curvelet 96.0 98.1 93.5 97.6 
Wavelet 87.3 94.4 82.6 92.8 
Ridgelet 86.9 95.9 84.4 94.0 Liver 
Curvelet 95.9 98.5 94.3 98.0 
Wavelet 65.5 94.3 69.7 89.5 
Ridgelet 76.9 97.6 88.0 93.8 Spleen 
Curvelet 91.8 98.9 94.9 97.6 
Wavelet 74.4 93.7 74.4 89.9 
Ridgelet 86.6 96.7 88.0 94.8 

Average 
 

Curvelet 94.6 98.7 94.7 97.9 
 

Table 6: Comparison of the best wavelet, ridgelet (Entropy), and curvelet-based (EEMSD) descriptors 

Accuracy Ent EE EEMSD 
Backbone 97.5 98.2 98.9 
Heart 91.8 91.9 97.1 
Kidney 91.7 92.2 97.6 
Liver 94.2 94.4 98.0 
Spleen 94.2 92.5 97.6 
Average 93.5 93.8 97.9 

Precision Ent EE EEMSD 
Backbone 94.4 96.3 95.3 
Heart 82.8 82.0 95.5 
Kidney 77.4 77.1 93.5 
Liver 88.6 90.6 94.3 
Spleen 77.7 79.7 94.9 
Average 84.2 85.1 94.7 

Sensitivity Ent EE EEMSD 
Backbone 92.7 94.2 99.4 
Heart 74.0 75.5 89.7 
Kidney 89.1 92.3 96.0 
Liver 89.2 81.1 95.9 
Spleen 80.0 78.4 91.8 
Average 83.6 84.3 94.6 

Specificity Ent EE EEMSD 
Backbone 98.7 99.1 98.8 
Heart 96.2 95.9 99.0 
Kidney 92.5 92.1 98.1 
Liver 97.3 97.8 98.5 
Spleen 94.9 95.6 98.9 
Average 95.9 96.1 98.7 


