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Abstract

We propose two semi-supervised learning approaches for automatically predicting semantic characteristics of lung
nodules based on low-level image features. The NIH Lung Image Database Consortium (LIDC) dataset is used for
training and testing of the proposed approaches such that the nodules on which at least three radiologists agree
serve as labeled data and all the other nodules serve as unlabeled data. We show that, in the case of the LIDC [1]
dataset, we are able to improve the accuracy prediction by 50% in average when using our proposed semi-
supervised approaches versus the traditional supervised classification approaches. While this paper briefly explains
our methodology and results, the extended version of this paper has been accepted as a journal publication [2] that
will appear this year.

1. Introduction

Computer-aided diagnosis (CAD) systems can act as a second reader and assist radiologists in decision-making
task to improve the efficiency of single observer and to reduce variation among multiple observers. We propose two
semi-supervised approaches [3] that, besides malignancy, they also predict nodule characteristics that are perceived
by radiologists when making diagnosis: subtlety, lobulation, margin, sphericity, malignancy, texture, and spiculation.
The expectations are that the proposed approaches will have the capability to handle the large variability in the
radiologists’ interpretation and therefore, the lack of consistency in the label values associated with a nodule’s
characteristic.

2. Methodology

Our proposed approaches relate to active-DECORATE [4], an active learning approach extended from
DECORATE [5], which iteratively constructs an ensemble of classifiers by learning a classifier at each iteration and
adding it to the current ensemble. The purpose of active-DECORATE is to detect the most informative examples (i.e.
those examples that cause most disagreement in the ensemble) in the instance space and ask expert to label them,
then add the labeled instances into the training data and repeat these processes for a number of iterations. While in
active-DECORATE the system asks for user input/annotations/labels for the most representative few cases at each
iteration, in our approaches, the labels are assigned automatically either by using the ensemble classifier’s labels
predicted with high confidence or by using both the predicted labels with high confidence and the most
representative cases along with their original labels. While both approaches are meant to improve the prediction
accuracy, the second approach also ensures that even though the original labeled data might not contain certain
classes, the final classification results can produce classification rules/labels for all classes, for example extremely
subtle, moderately subtle, fairly subtle, moderately obvious, obvious for the subtlety semantic characteristic.

Each lesion in the LIDC database considered to be a nodule > 3 mm could have been marked by one to four
radiologists. Therefore, there can be up to 4 different boundaries/images of a nodule marked by up to 4 radiologists
on a slice and ratings for different characteristics will also be different. For instance, lobulation of a nodule shown
on Figure 1 was rated by 4 different radiologists as 4, 1, 2 and 5. In this study we select only one slice per nodule
(the slice with the largest nodule area) for each radiologist. Therefore, there can be up to 4 images per nodule.

From the current 85 cases available, 60 cases had 149 nodules greater than or
equal to 3 mm in maximum diameter which generated 379 nodule images. From
these nodule images, we extracted 64 image features which include four types of
image content that encode shape, size, intensity, and texture information of the
nodule. At the end of the image feature extraction process, each nodule image is
encoded using a set of sixty-four image features f;,i=1,...64 and the seven

radiologist annotationsc;, j =1,...7 .

Figure 1: An example of lung nodule




For our first approach, we select instances predicted with the probabilities higher than a confidence threshold of
60%, and add them along with their predicted labels into labeled training data iteratively until all unlabeled data left
cannot reach the confidence threshold. Then, we add unlabeled data left along with their original labels into the
labeled data.

For our second approach, besides using the confidence threshold we also add to the training labeled data set the
instances with the lowest margin (the difference between the first and second predicted highest class probability)
using 5% threshold per iteration; these instances represent the most informative instances and are added along with
their original labels into the label data. The values of the thresholds have been determined experimentally.

3. Results

The classification accuracies of both approaches are summarized and compared against the classification
accuracies for the traditional decision trees (Table 1). For all characteristics, both semi-supervised approaches
improve the classification accuracies by about 50% in average over all seven characteristics and all the differences
are statistically significant. Furthermore, if we compare the classification accuracies between the two semi-
supervised approaches, we will find that the differences between the two approaches are not significant with the
exception of the results for lobulation. However, the second approach has the advantage of ending up with more
classes being predicted than the first approach.

Table 1: Accuracies for decision tress and the proposed semi-supervised approaches

Characteristics | Decision Add instances predicted Add instances predicted with high confidence
trees with high confidence (60%) and instances with low margin (5%)
(60%)
Lobulation 27.44% 81.00% 69.66%
Malignancy 42.22% 96.31% 96.31%
Margin 35.36% 98.68% 96.83%
Sphericity 36.15% 91.03% 90.24%
Spiculation 36.15% 63.06% 58.84%
Subtlety 38.79% 93.14% 92.88%
Texture 53.56% 97.10% 97.36%
Average 38.52% 88.62% 86.02%

4. Conclusions

Both semi-supervised learning approaches presented in the paper are especially useful when for the same nodule
and semantic characteristic there are different values (class labels) given the difference in interpretation among
radiologists. Using the LIDC dataset as a case study showcasing the variance in interpretation of four expert
radiologists, we show that we are able re-label the data on which disagreements exist and with the new re-labeled
data produce results which are as accurate as the ones on which agreement on the nodules’ interpretation exists.
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