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Abstract 

 
Diagnostic decision-making in pulmonary medical 

imaging has been improved by computer-aided 
diagnosis (CAD) systems, serving as second readers to 
detect suspicious nodules for diagnosis by a 
radiologist. Though increasing accurate, these CAD 
systems rarely offer useful descriptions of the 
suspected nodule or their decision criteria, mainly due 
to lack of nodule data.  

In this paper, we present a framework for mapping 
image features to radiologist-defined diagnostic 
criteria based on the newly available data from the 
Lung Image Database Consortium (LIDC). Using data 
mining, we found promising mappings to clinically 
relevant, human-interpretable nodule characteristics 
such as malignancy, margin, spiculation, subtlety, and 
texture. Bridging the semantic gap between computed 
image features and radiologist defined diagnostic 
criteria allows CAD systems to offer not only a second 
opinion but also decision-support criteria usable by 
radiologists. Presenting transparent decisions will 
improve the clinical acceptance of CAD. 
 
1. Introduction 
 

Diagnostic decision-making in medical imaging by 
radiologists has been augmented by computer-aided 
diagnosis (CAD) systems which extract image features 
and use data mining techniques to classify or predict a 
detection or diagnosis. Typically, the CAD system 
marks the location of a suspicious area, such as a 
pulmonary nodule, signaling the radiologist to 
investigate and make the final diagnosis. While 
beneficial as a tireless and increasingly accurate 
screening tool, CAD systems rarely offer supporting 
guidance about their decision rationale or this guidance 
does not match the perceptual tasks used by the 
radiologist in forming their diagnosis. 

This paper focuses on deriving medical decision-
support criteria rather than nodule detection and 

diagnosis. After extracting low-level image features, 
decision trees are applied to predict the scoring of 
image-based diagnostic criteria as interpreted by 
radiologists. This paper predicts nine (9) nodule 
characteristics from measurements of sixty-five (65) 
image features representing shape, size, intensity, and 
texture information. From our experimental results, we 
successfully (>75% accuracy) predict five (5) 
radiologist-defined nodule characteristics: malignancy, 
margin, spiculation, subtlety, and texture.  
 
2. Background and Related Work 
 

Research in pulmonary nodule detection, 
segmentation, classification, and diagnosis continues in 
academic and industrial labs to improve each task of 
CAD. Increasing the sensitivity of detection remains a 
primary research focus since detection rates remain 
about 80% (with 3.8 false positives per patient case), 
though the CAD rates still exceed the estimated 70% 
detection rate of radiologists [2]. Efforts to improve 
detection typically reduce the specificity as 
demonstrated by [1] which reports 95% sensitivity but 
6.9 false positives per case. Addressing the tradeoff 
between detection of suspicious lung nodule candidates 
and rejecting non-nodule candidates motivates current 
research ranging from image segmentation and feature 
extraction to data mining and knowledge discovery. 

Using the data mining techniques of ensemble 
training and hierarchical neural networks, Suzuki and 
Dachman [4] attempts to reduce false positives through 
improved classification. Reducing the detection of non-
nodules and improving the segmentation of nodule 
candidates drives several efforts such as the shape 
representation introduced by Takashima et al. [8]. Liu 
and Li [10] proposed a new segmentation method 
based on gradient and intensity combined level set 
methods that generated stable and accurate 
segmentation results for lung bronchia and nodules. 
Opfer and Wiemker [15] designed a general tumor 
segmentation approach which combines energy 



minimization methods with radial basis function 
surface modeling techniques. 

Discrimination between actual nodules and false 
detections as well as the classification of a nodule (for 
example, malignant versus benign) depends upon 
measurement of disease-specific nodule characteristics 
(size, shape, texture, and internal structure), an 
approach following in this paper. McNitt-Gray et al. 
[5] used nodule size, shape and co-occurrence texture 
features as nodule characteristics to design a linear 
discriminant analysis (LDA) classification system for 
malignant versus benign nodules.  Lo et al. [6] used 
direction of vascularity, shape and internal structure to 
build an artificial neural network (ANN) classification 
system for prediction of the malignancy of the nodules.  
Armato [7] used nodule appearance and shape to build 
an LDA classification system to classify pulmonary 
nodules into malignant versus benign classes. 

There are several challenges encountered when 
creating and evaluating the CAD systems.  One of 
them is the lack of consistent “ground truth" on which 
the training and generalization of learning-based 
classification and prediction CAD systems depend 
upon.  

Another challenge results from the design of the 
ground truth: CAD rarely provides supporting 
information about its decision criteria. The ground 
truth typically uses only a binary representation (such 
as presence/absence and malignant/benign for the 
detection and diagnosis tasks, respectively) without 
any further information about the characteristics of the 
nodule (such as level of calcification, spiculation). 
Though meeting the goal for detection/diagnosis, the 
binary representation offers no guidance for explaining 
the nature of the suspected nodule.  

This lack of publicly shareable databases for 
benchmarking pulmonary nodule CAD performance 
motivated the establishment of the LIDC. The LIDC 
database includes both the radiologist nodule outlines 
and the nodule characteristics which we use in this 
paper to bridge the semantic gap between nodule 
image features and human-interpretable diagnostic 
criteria.  Given the fact that, in practice, physicians use 
several perceptual categories to make diagnoses, which 
are not always reliable and reproducible when used to 
train CAD systems [17-20], our approach is expected 
to both increase the accuracy of radiologist’s 
interpretation and to reduce the variability among 
radiologists. 

The decision tree approach was motivated by our 
earlier work using linear [3] and logistic [21] 
regression approaches. Response to our linear 
regression analysis [3] with an early version of the 
LIDC indicated that the nodule characteristics might be 
better represented as ordinal or nominal rather than 

numeric. Using the dataset presented in this paper, 
logistic regression analysis was performed with an 
overall accuracy of less than 63% accuracy. Decision 
trees offer another approach to predicting non-numeric 
class labels and permit assigning probabilities to the 
decisions, a decision support criteria beneficial to a 
clinical setting. As shown in Table 1, decision trees 
markedly outperform logistic regression for the cases 
where at least 3 radiologists agreed. 

Table 1: Comparison of logistic regression and decision 
trees when at least 3 radiologists agree on characteristic 
 
Characteristics Logistic Regression Decision Trees 
Lobulation 41.27% 68.25% 
Malignancy 31.15% 90.16% 
Margin 57.14% 82.14% 
Sphericity 58.82% 71.76% 
Spiculation 62.07% 78.16% 
Subtlety 93.18% 94.32% 
Texture 94.17% 98.33% 
Overall Accuracy 62.54% 84.64% 

 
Decision trees include a feature selection 

mechanism which permits non-linear separation of 
class boundaries, unlike the earlier linear approaches. 
This non-linear approach is motivated by the 
complexity of the nodule data given the significant 
disagreement between radiologists [9]; for example, in 
this study, two radiologists agree on the contour of a 
nodule but one assigns a spiculation (shape) score of 
five (5) while the other assigns one (1). 

 
3. Methodology 
 

In this section we present our methodology for 
finding mappings between the image features and 
nodule characteristics as summarized in Figure 1.  The 
basic procedure uses the radiologist-drawn contour as a 
template for image segmentation and feature 
extraction. Since a nodule might appear in many CT 
slices, only the largest area slice is chosen to represent 
the nodule as selected by a particular radiologist. The 
image features extracted from this slice segmentation 
and the diagnostic characteristics annotated by the 
radiologist form this nodule-radiologist data point. Up 
to four (4) data points might represent this nodule. 



 
Figure 1: Diagram of the mapping framework 

 
In Section 3.1 we present the data set.  In Section 

3.2, we present the image feature extraction process 
and, in Section 3.3, we present the decision tree 
approach applied to find mappings from the image 
features to the radiologists’ assessments.  In Section 4 
we discuss our results and conclude in Section 5 on 
how the results can be further improved.  
 
3.1. Data Set 
 

The data used in this study were generated 
from 85 cases of thoracic CT collected by the LIDC. In 
the marking process, up to 4 radiologists marked the 
boundary of lung nodules with sizes between 3 mm 
and 3 cm for every slice on which the nodule appears 
and rated nine semantic characteristics for each 
identified nodule. The nine characteristics selected by 
the LIDC represent physical and diagnostic criteria 
usable by radiologist for diagnosis and consultation 
with other physicians and patients.  

The LIDC attempts to capture the differences 
of radiologist diagnostic opinion and does not force 
any consensus. This lack of agreement results in 
nodules marked and characterized by up to 4 
radiologists. Nodule boundary outlines are marked on 
each CT slice where the nodule is present, though each 
radiologist scores the characteristics only once per 
nodule. Since the database is designed for 
benchmarking CAD performance, some cases contain 
no nodules and the dataset at the time of our 
experiment contained 149 nodules from 60 of the total 
85 cases. Given the diversity of radiologist opinion, we 
examine the semantic mappings for various levels of 
agreement, using an N-of-4 approach, where N is the 
number of agreeing and four (4) is the total number of 
radiologists, similar to [13], and report results for the 
nodules where at least two (2) or at least three (3) 

radiologists agree. To eliminate bias, we select only 
one nodule image (the largest) from the set of nodules 
marked by a radiologist. The number of nodule images, 
nodules, and cases of the reduced data used for predict 
each characteristic are presented in Table 2. 
Table 2: Number of images, nodules, and cases, respectively, 
for each characteristic 
Characteristics Entire 

dataset 
At least 2 
agreed 

At least 3 
agreed 

Lobulation 180, 73,42 63, 20, 19 
Malignancy 187,73, 42 61, 19, 15 
Margin 186,77, 42 56, 17, 12 
Sphericity 197,77, 45 85,27,20 
Spiculation 200,77, 43 87, 27, 24 
Subtlety 194,70, 41 88, 25, 21 
Texture 

379 
(images), 
149 
(nodules), 
(60 cases) 

222,79, 43    120,34, 24 
 
3.2. Feature Extraction 

In order to quantify the image content, we 
calculated four types of image features for each 
nodule: size, shape, intensity, and texture; this feature 
extraction stage generated 64 image features as 
presented below.  The choice of these features was 
based on a literature review of the most common image 
features used for pulmonary nodule detection and 
diagnosis by existing CAD systems [5-8]. 

Shape measurements include circularity 
measured by the ratio of nodule area over area of a 
circle with the same convex hull. Roughness is the 
perimeter ratio of the object to the convex hull. 
Eccentricity is the ratio of distance between the foci 
and major axis length of an ellipse with the same 
second-moments as the region. Solidity and extent 
measure the percentage of the convex hull and 
bounding box covered by the nodule. The 
RadialDistanceSD is the standard deviation of the 
distances from every boundary pixel to the centroid of 
the region. Size measurements include area, perimeter, 
convex hull perimeter, diameter of an equivalent area 
circle, and the major and minor axis length of ellipse 
with the same normalized second central moments as 
the region. Intensity features capture the absolute and 
relative brightness of the pixel in both the foreground 
(nodule) and background (bounding box around 
nodule) regions; for this study we use the min, max, 
mean, and standard deviation of each region as well as 
the absolute difference between the mean of the 
segmented (foreground) and the background. 

We applied three well-known texture analysis 
techniques: co-occurrence matrices (a statistical-based 
method), Gabor filters (a transform-based method), and 
Markov Random Fields (a model based approach). 

Co-occurrence matrices represent the 
conditional joint probability of gray level pairs within a 



window based upon their separation and orientation 
[11]. Our implementation computes the Haralick 
texture descriptors for the twenty (20) matrices formed 
from five (5) separations (distances of 1-5 pixels) over 
the half-plane of four (4) angles (0º, 45º, 90º, and 
135º). We averaged the descriptors by distance then 
selected the minimum value by direction to produce 
eleven (11) Haralick features per nodule. Gabor filters 
[12] capture localized texture frequencies by 
convolving an image with Gaussian modulated 
frequency transform. Our method uses the resulting 
means and standard deviations of the twelve (12) 
responses from applying four (4) orientations (0º, 45º, 
90º, and 135º) and three (3) frequencies to a 9x9 image 
window. Markov Random Fields (MRFs) model the 
local contextual information of an image [14] using a 
window approach. Using the Cesmeli [15] algorithm, 
we convolved the image with a 9x9 MRF window and 
computed the mean response for 4 angular rotations 
(0°, 45°, 90°, 135°) and variance, for a total of 5 MRF 
features. Figure 2 shows an example of feature values 
for a nodule representation. 

 
Figure 2: An example of nodule characteristics assigned by a 
radiologist and features extracted from the segmented nodule. 
 
3.3. Learning the Semantic Mappings 
 

This paper applies decision trees, an information-
theoretic machine learning [16] technique, to predict 
the value (target category) of the human-interpretable 
diagnostic characteristic of a nodule from the image-
extracted nodule features. Decision trees learn target 
categories by splitting training data based on attribute 
values into lower entropy sub-trees using information 
gain and can classify data which are not linearly 
separable. We employ the C4.5 algorithm variant (J48 
in Weka). The final tree represents a sequence 
(conjunction) of decision criteria based upon feature 
(attribute) values with the leaves of the tree 
representing the classifications.  

 In this study we consider only seven (7) 
characteristics and eliminate calcification and internal 
structure (each received only one rating). The model 
was validated by using leave-one-out cross validation. 
The classification accuracies are reported in Table 3, 
where accuracy is defined as the total number of 
correctly predicted values for the characteristic divided 
by the total number of samples. Overall, the total 
accuracy is 84.64% (with > 3 radiologist agreements). 
Table 3: Classification Accuracy 

Characteristics At least 2 agreed At least 3 agreed 
Lobulation 57.22% 68.25% 
Malignancy 68.98% 90.16% 
Margin 61.83% 82.14% 
Sphericity 63.45% 71.76% 
Spiculation 69.50% 78.16% 
Subtlety 65.45% 94.32% 
Texture 81.08% 98.33% 

 
 Five (5) characteristics are predicted with greater 
than 75% accuracy, when at least three (3) radiologists 
agree: malignancy, margin, spiculation, subtlety, and 
texture, with lobulation and sphericity about 70% 
accurate. 

When analyzing the importance and contribution of 
the image features (Table 4) for predicting radiologists’ 
assessments, we found that only 37.5% of the features 
(24 of 64) were needed to form the decision tree rules 
for these seven (7) characteristics, with only three (3) 
required for malignancy but ten (10) for spiculation.   

 
Table 4: Number of attributes and maximum rule depth 

(# of decisions required to predict the characteristic) indicate 
the complexity of the decision tree. 

Characteristic # of Attributes Max Rule Depth 
Malignancy 3 2 
Margin 5 4 
Spiculation 10 6 
Subtlety 2 2 
Texture 3 2 
Lobulation 7 5 
Sphericity 9 6 

 
The attributes selected by the decision tree 

correspond to the features included in our literature 
review, with some anomalies. For instance, MRFs and 
Gabor filters are selected for texture, as expected. 
However, if the area is large, texture is always 4. 
Spiculation attributes include radial distance, 
compactness, perimeter, and roughness, as anticipated; 
but also include Gabor (texture frequency). 
Malignancy attributes include intensity (bright nodules 
are less likely malignant), but also texture features. 
Subtlety attributes indicate darker, elongated nodules 
which are less obvious. Margin uses intensity of 



nodule and background as expected.  Table 5 shows an 
example of mappings. 
Table 5: Rules for subtlety; second column shows examples 
of nodules classified based on the learned mappings 

Rules for subtlety Nodule examples 
IF (minorAxisLength <= 0.15) 
AND 
(maxIntensity <= 0.23) THEN 
subtlety =  1 

 
Nodule ID: 65  

IF (minorAxisLength <= 0.15) 
AND 
(maxIntensity > 0.23) THEN 
subtlety =  4 

   
Nodule IDs: 42, 47, 105  

IF (minorAxisLength > 0.15) 
THEN 
subtlety =  5 
 

   
Nodule IDs: 24, 46, 68 

 
4. Discussion of the results  
 

Using the decision tree classification approach, we 
were able to predict malignancy, subtlety, and texture 
with over 90% accuracy for the nodules on which at 
least three (3) radiologists agree with respect to the 
corresponding characteristic.  

We found that most of the misclassified nodules 
are those whose ratings were either equal to 2 or 3; 
these findings correspond to the lack of agreement 
among radiologists themselves. In the LIDC dataset 
[13], agreement about nodule existence between two 
radiologists occurs for only 84% of the nodules and it 
drops to 70% for three (3) and to only 43% of the 
nodules for four (4) radiologists. Figure 3 shows there 
is little agreement for many of the characteristics, with 
agreement occurring for only low or high ratings. 

Furthermore, not only do they disagree about the 
presence of nodules; when they agree, they draw 
significantly different contours around the nodules. R. 
Opfer and Wiemker [13] estimated a 50% variability in 
the regions selected by multiple radiologists for the 
same nodule. Our feature extraction technique uses 
each radiologist outline to measure image features. 
Differences between radiologists' outlines may 
generate significantly different feature measurements 
and predictions, even though the radiologists might 
agree on the characteristic. We intend to investigate 
independent methods for determining an outline for the 
region of the nodule to de-couple this potential 
conflict; incorporating a nodule segmentation 
algorithm may be required for this task. 

 
 
 
 

  

  

  
 

 

 
Figure 3: Distributions of ratings for characteristics when 
only images with at least 2 agreements on the same ratings 
are included or only images with at least 3 agreements. 
  

The three characteristics with the poorest results 
represent perceptions of shape. The worst two, 
lobulation and sphericity, can be considered low 
frequency or smooth shapes, while spiculation 
represents a higher frequency change in shape. New 
shape measurement features are being developed to 
capture these characteristics. 
 
5. Conclusions 
 

Most CAD systems mimic domain knowledge by 
extracting image features and training the systems by 
some algorithms based on the image features against 
the ground truth provided by domain experts. 
However, the image features used in the CAD systems 
are tenuously related to human perception.   

In this paper, we proposed a supervised (decision-
tree) learning approach for finding the mappings 
between low-level image features and high-level 
human concepts used for lung cancer diagnosis. From 
the preliminary results, we found that the radiologists' 
perception with respect to malignancy, margin, 
spiculation, subtlety, and texture can be captured with 



high accuracy (higher than 75%) based on low-level 
image features. 

Our preliminary results are promising and serve as a 
CAD framework to support diagnostic decision making 
in lung nodule diagnosis. Acting as a consulting 
second reader, this approach provides an estimated 
rating for each nodule characteristic to offer guidance 
to the radiologist in their diagnosis as well as 
conveying nodule assessments for improving the 
consistency among multiple readers. Beyond this work, 
we intend to investigate other image features and 
construct visual concept ontologies for lung nodule 
interpretation.  
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