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Abstract 

Evaluating the success of prediction and retrieval systems depends upon a reliable reference standard, a ground 

truth. The ideal gold standard is expected to result from the marking, labeling, and rating of domain experts of the 

image of interest. However experts often disagree and this lack of agreement challenges the development and 

evaluation of image-based feature prediction of expert-defined "truth." This paper addresses the success and 

limitations in bridging the semantic gap between CT-based pulmonary nodule image features and the ratings of 

diagnostic characteristics recorded by expert pulmonary radiologists. The prediction of diagnostic characteristics 

promises to automatically annotate medical images with medically meaningful descriptions directly usable for 

indexing and retrieving in content-based image retrieval (CBIR) and assisting in computer aided diagnosis (CADx). 

Successful results in predicting texture characteristics will be contrasted with less successful results for boundary 

shapes. The two primary differences in agreement between radiologists will be discussed; the first concerns 

agreement about the existence of a nodule, while the second considers the variability in diagnostic ratings among 

radiologists who agree on the presence of a nodule. 

 

1. Introduction 

Increased utilization of diagnostic imaging imposes a growing demand for improving the efficiency of 

radiology departments. Picture Archiving and Communication Systems (PACS) technology helps manage the 

operational demands but new technologies are needed to address the diagnostic demand. Recent research [34] and 

commercial success [9] with computer-aided detection (CAD) and diagnosis (CADx) have demonstrated the 

efficacy of using CAD(x) as a second reader to augment the diagnostic process. While increasingly accurate in 

detection and diagnosis, CAD(x) rarely offers supporting guidance about the rationale for the diagnosis or supplies 

descriptive annotations about medically meaningful diagnostic characteristics [Doi]. Two areas of research attempt 

to address this deficiency, one focuses on standardizing diagnostic terminology with notable success in the 

mammography community [1] while the other, semantic mapping, focuses on automatically labeling images with 

usable, medically meaningful, diagnostic descriptors. Semantic mapping attempts to extract image features and build 

predictive models of diagnostic characteristics for labeling images. 

Semantic mapping promises to add clinically relevant diagnostic evidence to support the medical decision 

maker using CAD(x)-based tools as well as content-based retrieval (CBIR) systems [4]. Case-based reasoning is a 

major aim of CBIR and approaches include the display of relevant images based entirely upon the image contents 

[11]. Extending this approach to automatically extract clinically relevant diagnostic characteristics will allow for 

retrieval of past cases with similar characteristics [4]. 

The semantic mapping approach discussed in this paper follows the methodology introduced by Raicu [31] of 

combining measurements of low-level image features and radiologists' outlines of pulmonary nodules to predict 

each radiologists' ratings for a set of diagnostic characteristics such as texture, margin, subtlety, spiculation, etc. 

These characteristics reflect image-based radiologist-interpreted image features useful for diagnostic decision 

making. Using radiologist-defined ratings for diagnostic characteristics as the target for classification and prediction 

models, this approach aims to bridge the semantic gap between low-level image features and medically meaningful 

descriptions of images. The predicted ratings for diagnostic characteristics promise to enhance medical decision 

making both with the CADx framework as well as content-based image retrieval. For CADx, the ratings of 

diagnostic characteristics offer evidence for radiologists in decision making. For CBIR, the ratings will enhance 

indexing and retrieval relevance by offering queries based upon diagnostic criteria and providing additional 

diagnostic evidence for retrieved images.  

In this paper, we extend previous work on semantic mapping of image features to predict radiologists' ratings of 

diagnostic characteristics of pulmonary nodules by focusing on building boundary-based shape descriptor models 

directly from radiologist-drawn outlines on the assumption that their outlines best represent their perception of the 

boundary of the nodules. Through example cases, we verify the approach and show that the shape metric varies 

accordingly. After applying the shape feature method, two predictive methods are applied but fail to predict the 

radiologist ratings for three (3) shape characteristics. In discussing the results we show that the variability in their 
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ratings for shape characteristics is much higher than for other diagnostics characteristics such as texture which have 

been successfully mapped by Raicu et al. [31]. We conclude with strategies for combining the radiologists' outlines 

and ratings in an attempt to produce a usable shape descriptor model. 

This work uses a publicly available dataset: The Lung Imaging Database Consortium (LIDC): 

http://imaging.cancer.gov/programsandresources/InformationSystems/LIDC. The LIDC contain images, outlines, 

and radiologist ratings of pulmonary nodules for use in developing computer aided tools for nodule identification 

and characterization. 

 

2. Related Work 

Evaluation remains a significant challenge to the development of semantic mapping in medical imaging. 

The challenges reside in the variability in diagnostic opinions among radiologists [3] and the potential differences in 

medical meaning of image characteristics. Another major challenge results from the lack of standardized lexicons 

for medical image diagnostics [16] and the potential disagreement on the proper terminology and the usage of 

common terminology. These challenges present potential obstacles to the creation and usage of radiologist annotated 

databases for discovering valid and consistent mappings from raw image features to medically meaningful semantic 

labels. 

 

2.1 Evaluation Methodology of CAD,  CADx, and Semantic Mapping 

The evaluation methods of CAD and CADx follow the basic methodology underpinning receiver operating 

characteristics (ROC), including two states of truth (often labeled positive and negative): lesion present or absent for 

CAD and disease or not in CADx, and diagnostic-accuracy measures such as sensitivity, specificity, and ROC 

curves [Metz]. Sensitivity measures the performance of finding a disease when the disease is present and specificity 

measures the performance of rejecting the finding of a disease when the disease is not present. A false positive is the 

detection of a disease which is not present and the probability of this occurring is reported as the true positive 

fraction (TPF); while a false negative is the failure to find an existing disease and its probability is reported as the 

false positive fraction (FPF). Sensitivity is equivalent to TPF while FPF is equal to 1 - Specificity. ROC curves plot 

TPF against FPF (or Sensitivity vs 1 - Specificity) and create a curve based upon different settings of the observer's 

decision criteria or critical confidence level. The area under the ROC curve (Az) is often used as single index to 

reflect the overall performance. Studies evaluating CAD(x) systems typically measure the change in radiologist 

performance (ROC Az) between readings performed alone and readings performed with CAD(x). 

Both CAD and CADx use ROC analysis, but special considerations are often necessary to measure the 

performance of detection (CAD) when multiple lesions are possible or the location of lesions is important. ROC 

analysis is suitable for CAD performance when the task is to decide only if the image contains a lesion but not its 

location. This might include a single or set of images or a region of interest within an image [28]. If the CAD task is 

to decide not only the presence but also the location, then Localization ROC (LROC) analysis is applicable. For 

multiple lesions, several methods have been proposed based upon the Free-response operation characteristic (FROC) 

[7], but many studies choose to report sensitivity and false positives per image (FPI) or per case. 

ROC analysis is restricted to two-class data and is not applicable to the ordinal category [31] or interval 

[26] data used in semantic mapping (subjective similarity) studies. The methods to evaluate performance of 

semantic mapping will depend upon the type of data but will primarily use overall and per characteristic 

classification accuracy (e.g. hit ratio: the percentage of instances correctly classified). Since the aim of semantic 

mapping includes not only labeling images with meaningful diagnostic descriptions but also using those mapping 

models to retrieve similar images, the evaluation of semantic mapping for CBIR will report information retrieval 

statistics such as precision and recall [8]. Recall corresponds to the ROC concept of sensitivity and measures the 

probability that relevant images are retrieved by a query. Precision does not correspond to a ROC concept but 

measures the positive predictive value of a query or the percentage of retrieved images which are relevant to a 

query. 

 

2.2 Inter-observer Agreement 

Agreement among radiologists remains an active area of research both as a subject of understanding 

differences between radiologists as well as studying the effects of different imaging modalities, different types or 

experience of radiologists, the comparison of CAD(x) and radiologist performance, and the effect of CAD(x) as a 

second reader on radiologist performance. The two primary methods of measuring inter-observer agreement are the 

Kappa statistics [17] and ROC [23]. Many studies consider only binary categories (disease or not) and report 

Cohen's Kappa statistics using either a pair of observers or average the Kappa scores for multiple observers [17]. For 

studies of ranked, multi-category findings such as disease severity {absent, minimal, moderate, or severe}, a 



weighted (often quadratic) Kappa method is used [12]. Though widely used, Kappa statistics vary according to 

disease prevalence and are unsuitable for comparative studies [17]. When ground truth is known, each radiologist's 

performance can be measured by Az (area under the ROC curve) scores and comparison made using ANOVA 

methods [24]. These methods measure the findings of known radiologists’ examinations of the same set of cases, a 

requirement not met by the LIDC pulmonary nodule study where the radiologist identity is blinded and potentially 

different between cases. 

Several studies used radiologist rankings of similarity between regions of interest to estimate subjective 

similarity of image characteristics. Muramatsu et al. [26] studied agreement in similarity for mammographic regions 

and used Spearman's rank ordered correlation coefficients to assess intra-observer agreement between the first and 

second readings of the same data. They averaged each observer's similarity rankings then used Pearson's correlation 

coefficient between all-pairs of observers to assess inter-observer correlation. They concluded that their method for 

obtaining similarity scores for lesions is robust even though some radiologists were noticeable outliers. 

No studies have been found that measure agreement in rating diagnostic characteristics such as the ratings 

in the LIDC for spiculation, etc. In one of the few studies examining radiologists' ratings for image-based 

diagnostics features such as spiculation, Nakamura et al. [27] qualifies the ratings as varied but does not report any 

quantitative measure of this variance or other measures of inter-observer agreement for their study group which used 

radiologists from a single institution, an academic medical center. There are five (5) medical centers participating in 

the LIDC but due to the blinded study there is no method to identify whether differences in agreement are due to 

radiologists or institutions. 

2.3 Semantic Mapping 

CAD(x) can be considered a diagnostic mapping from image features to detection or diagnosis and is 

increasingly accepted as a successful diagnostic adjunct [9,34]. Semantic mapping attempts to insert an intermediate 

step in this diagnostic mapping process by creating image-based diagnostic characteristics which are medically 

meaningful and semantically similar to radiologists' diagnostic interpretations. Therefore, we can define the 

semantic mappings as a two step process with the first step representing a mapping from image features to 

diagnostic characteristics (subjective features [20,27]) and the second step a mapping from diagnostic characteristics 

(subjective features) to overall diagnosis. 

CBIR aims to retrieve images relevant to the query and semantic mapping offers an additional indexing 

strategy to include medically meaningful, semantically-mapped, image descriptions for filtering retrievals and 

annotating retrieved images. However, learning radiologists' interpretations of diagnostic characteristics presents a 

significant challenge. Li et al. developed a nodule similarity rating based upon a set of extracted image features 

selected to represent radiologists’ diagnostic characterizations of lesions [20]. They performed two studies, one to 

show the value of a CBIR-like system and the other to evaluate feature performance in predicting image similarity. 

In the first study, they asked radiologists to diagnose an unknown lesion then presented 6 labeled lesions (3 similar 

benign and 3 similar malignant with similarity based upon feature similarity) and asked the radiologist to repeat their 

diagnosis. They report improvement in radiologist diagnostic performance (Az) using this CBIR-based approach. In 

the second study, pairs of images are presented to the radiologists who rate their similarity on a scale from 0 (not 

similar) to 3 (almost identical). They report the correlation of various image features in predicting the radiologist 

similarity ratings, but chose to predict not the raw ratings but the average similarity rating due to rating variability. 

A seminal study on semantic mapping evaluated the use of extracted image features to predict the 

subjective diagnostic characteristics rated by radiologists [27]. Using pulmonary nodules in chest radiography, 

Nakamura et al. asked radiologists to rate subjective features such as shape, margin irregularity, spiculation, 

lobulation, etc. on a scale of 1 to 5. After extracting raw image features such as intensity statistics and geometric, 

Fourier, and radial gradient indices for shape, they correlated image features to radiologists' subjective ratings. Their 

results show that radial gradient features are strongly correlated with radiologists' ratings (interpretation) of 

spiculation while geometric features correlate with nodule shape. 

The Nakamura study compared the performance of a single step CADx approach to diagnosis of pulmonary 

nodules using image features and the second step of the approach described above where the radiologists' ratings for 

diagnostic characteristics are used to predict diagnosis. They reported that the single step CADx predictive 

performance exceeded the prediction performance of radiologists’ ratings. Their study illustrates the major challenge 

to semantic mapping and indicates that the design and selection of images features is less important than obtaining 

consistent ratings from radiologists for diagnostically useful image characteristics. 

 

2.4 Reporting Terminology 



 Burns et al. demonstrated a lack of consistent radiologist reporting of lung nodule characteristics and 

recommended adoption of a standardized criteria [5]. Efforts to standardize reporting in pulmonary nodules are 

underway as part of the development of a general purpose radiology lexicon [18]. 

 Within the mammography community, the BiRads lexicon has been developed to standardize and reduce 

confusing in imaging interpretations [1]. Recent analysis indicates the effectiveness of this approach. Lazarus 

evaluated inter-observer variability in BiRads reporting and concluded that radiologists showed good agreement 

(Cohen's Kappa), the ratings had a high predictive value, and the results validate the use of the US BiRads lexicon 

[19].  

2.5 Segmentation 

 Accurate segmentation of pulmonary nodules plays an important role in measuring shape features [34] as 

well as ensuring that comparison of foreground nodule and background imagery is preserved. In this study, the 

radiologist drawn outlines serve as a segmentation template: thus each nodule has up to four (4) outlines. Inter-

observer variability in the drawing of outlines around pulmonary nodules was studied directly by Meyer at al. [22]. 

The Meyer study compared the relative performance of six radiologists using three (3) outlining methods to define 

the spatial extent of 23 nodules and concluded that radiologists represent the major source of variance in the final 

outlines. Their study introduced the combination method of p-map (probability map) to represent the likelihood that 

a pixel is a member of the nodule. Examining the initial LIDC dataset, Opfer [30] estimated a 50% variability in the 

regions selected by multiple radiologists for the same nodule. Reeves et al. investigated the choice of different 

metrics for estimating the size of pulmonary nodules on upcoming LIDC data and concluded that a very high inter-

observer variation exists for four (4) size metrics [32]. These reports indicate that the significant variability in 

outlines presents a significant challenge to the characterization of the pulmonary nodule with respect to the 

background of the image. 

 

2.6 Forms of Diagnostic Training Imagery and Ground Truth 

Ground truth training data ranges from coarse, binary labeled data to detailed, annotated outlines of suspect 

regions of interest and includes either expert-defined diagnostic opinion or pathology-confirmed findings. Typically, 

this data is collected from case-histories at a single institution and labeled by a single or consensus of domain 

experts; mostly these datasets remain private or not publically available. Few publically available datasets with 

annotated diagnostic information are available, but include mammography data [14], confirmed by pathology and 

annotated by a set of radiologists, and the pulmonary nodule database (LIDC). A more general collection of medical 

images using various modalities and containing numerous diseases and anatomies is available at 

http://www.casimage.com/ and described by [25]. The Reference Image Database to Evaluate Response (RIDER) is 

another NCI Cancer Imaging Program effort similar to the LIDC but targeted at serial image histories of lung cancer 

patient conditions as a method for measuring the image response to cancer treatment and is located at 

http://www.nibib.nih.gov/Research/Resources/ImageClinData. 

Semantic mapping closely matches the forms of image data used by CAD(x) but with the addition of 

medically meaningful, descriptive information. The image data can be classified according to its specificity to the 

suspected nodules, either by limiting the region of interest or by using localization marking techniques such as 

coordinates, bounding boxes, or detailed outlines. Isolation of the suspected region is the major factor driving the 

need for limiting the region of interest to ensure feature extraction obtains as little of the non-diagnostic background 

as possible when measuring the features of the diagnostic foreground of the suspected region of interest. The 

following discussion uses CT-based pulmonary nodule imagery as an example, but applies to other modalities such 

as posterior-anterior chest x-rays, MRI, and sonography or other anatomies such as mammography. 

Images without localization of the suspect region provide limited benefit to training and evaluating 

semantic mapping models, since they offer no method to identify agreement between algorithm and ground truth. 

Some CAD/CADx studies use global images as the unit of analysis with ground truth labels for a patient case (set of 

slices) or single slice (Figure 1A). The ground truth labels indicate lesion presence or absence, diagnosis of 

malignant or benign, and the location, if any, of nodules is not known. Since multiple nodules could be present 

within a slice, a more localized region of interest approach [28] uses subdivided slices (e.g. quadrants) (Figure 1B) 

as the unit of analysis with a single ground truth without location for the entire ROI. These designs are motivated by 

the lack of localization support in traditional ROC analysis [23]. Using other localization evaluation methodologies 

(LROC/AFROC or false positives per image (FPI)), studies often use datasets with more specific nodule location 

(centroids) (Figure 1C) or location and extent of nodules (bounding boxes) (Figure 1D). 
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A) CT slice with single ground truth B) ROI quadrant grid with 4 ground 

truths 

C) Nodule and location (centroid, etc) D) Nodule location and extent 

Figure 1: Global image ground truth with varying levels of localization 

Some studies focus on the nodule as the unit of analysis and create images containing a single nodule or 

detailed outline(s) of nodule, perhaps with known diagnosis. Several studies on subjective similarity [20,26] present 

radiologists with sets of images of isolated lesions for rating similarity between images such as Figure 2A. Use of 

detailed outlines (Figure 2B) is primarily used in segmentation studies, though use of an outline or segmentation is 

essential for accurate characterization of the nodules [27]. The LIDC and DDSM datasets for lung and 

mammography contain one or multiple outlines of the same nodule. Figure 2C from the LIDC shows four 

radiologist-drawn outlines of the same pulmonary nodule. Currently, the LIDC does not contain pathology 

confirmed diagnoses, but contains radiologist characterizations of nodules in terms of presence/absence, size, 

outline, and ratings for clinically significant characteristics such as spiculation, subtletly, and texture (among 

others). 

 

 
 

 

A) ROI containing nodule B) Detailed nodule outline  C) Multiple outlines of same nodule 

Figure 2: Local ground truth images with increasingly detailed localization. 

2.7 Shape of Pulmonary Nodules 

The shape of pulmonary nodules is used by radiologists in clinical practice and the appearance of 

spiculation along the boundary of nodules is a strong indication of malignancy [37]. Shape measurement algorithms 

play an important role in detection and diagnosis in pulmonary CAD(x) [33] and formed the basis for the LIDC to 

include the diagnostic shape characteristics of spiculation, lobulation, and sphericity [LIDC]. Giger et al. employed 

geometric methods (effective diameter and degree of circularity) to detect suspicious nodules in chest x-rays [13]. 

Nakamura et al. used the root-mean-square and first moment of a Fourier transformation of the nodule outline and 

the radial gradient index (RGI); the RGI was chosen to measure nodule spiculation [27]. Towards predicting the 

LIDC diagnostic characteristics for shape, Raicu et al. extended the set of geometric features to measure roughness, 

eccentricity, solidity, extent, and radial standard deviation [31]. Their work showed promising results for predicting 

the LIDC diagnostic characteristics for texture, sublety, and malignancy, but had less success in predicting shape 

characteristics such as spiculation, lobulation, and sphericity, and indicated that additional shape features are 

necessary. The work presented in this paper attempts to address this issue by applying specific boundary-based 

shape features directly on radiologist-drawn outlines. 



This paper introduces the Radial Normal Indexing (RNI) method (an adaption of the RGI technique) and 

applies the RNI to the radiologists drawn outlines primarily to measure spiculation and predict the radiologists 

ratings of spiculation. The RNI is also applied to measure two other shape characteristics: lobulation, and sphericity.  

Additionally, based upon the effectiveness of Fourier boundary shape measurements in [27], the Fourier 

shape descriptor technique is applied to the outlines to assess its performance in predicting the radiologists ratings 

for the shape characteristics. The implementation of the Fourier shape descriptor is described by Svoboda [35]. 

 

3. Materials and Methods 

 

3.1 Data Set 

The LIDC [3] has developed a lung nodule collection and reporting protocol for four (4) radiologists to 

identify, in thoracic CT scans, lesions in one of three (3) categories: 1) nodules between 3 and 30 mm in maximum 

diameter, 2) nodules less than 3 mm (unless clearly benign), and 3) non-nodules larger than 3 mm. When 

radiologists identify a nodule in category 1 (3-30 mm), they draw an outline around the nodule and rate a set of nine 

(9) diagnostics characteristics on a scale of 1 - 5: texture, subtlety, spiculation, sphericity, margin, malignancy, 

lobulation, internal structure, and calcification (different scale: 1 - 6).  

The LIDC protocol does not enforce consensus among the radiologists, allowing each radiologist to review 

the outlines and ratings of the other (3) radiologists. This is accomplished by an initial blinded reading by each 

radiologist followed by a second, unblinded reading where the initial reporting is present to each radiologist. On the 

second reading, each radiologist is free to retain or modify their initial ratings and outlines, including incorporating 

other radiologist drawn outlines. In addition to not enforcing a consensus among the ratings and outlines of the 

readers, the radiologists are free to select the overall category of the lesion or provide no markings for the lesion. As 

a result, the nodules may be marked by up to 4 radiologists. At the time of this study, the LIDC database contained 

85 cases overall, with 60 cases containing 147 nodules. Since there can be many slices per nodule with only one 

rating per radiologist, a bias-limiting approach selects only the largest area slice as the representation of the nodule 

with area defined by the radiologist outline. Depending upon the number of radiologists agreeing on the existence of 

the nodule, there can be up to 4 slices and 4 ratings per nodule. In comparing the effects of agreement, the dataset is 

partitioned by the number of radiologists who rate the nodule with agreements of 2, 3, and 4.  

 

3.2 Methods 

Earlier work [31] showed promising results in predicting non-shape characteristics such as texture and 

malignancy and motivated this study to focus on boundary-based shape descriptors found in the literature [15,27] to 

attempt to predict the shape-based characteristics: spiculation, lobulation, and sphericity. A spiculation-specific 

boundary shape descriptor, radial gradient index (RGI), was developed for mammography [15] and used the 

direction of image gradient along the segmented boundary of the mass. [27] showed the effectiveness of RGI 

features in classifying the diagnosis of pulmonary nodules. In both papers, the RGI was applied to find the direction 

perpendicular to the outline (the direction of maximum slope of the image gradient (similar to Canny edge detection 

[6]) along the segmentation of the mass or nodule. In this study, the outlines are provided by radiologists and 

assumed to represent the radiologists' interpretation of the "segmentation" of the nodule and an approach is 

developed to measure the perpendiculars along the outlines. 

The boundaries of the nodules, represented by each radiologists outline, were measured with the RNI and 

Fourier shape descriptor. The features extracted from the RNI included a 16-bin histogram and two measures of 

central tendency, the standard deviation of the histogram and the Full Width of the Half Maximum (FWHM) 

(described below). The choice of number of bins (=16) was informed by [15] and represents a tradeoff between 

angular resolution in measuring variation along the boundary and a goal of limiting the number of features extracted. 

Similarly, fifteen (15) Fourier descriptors (Fourier coefficients) were chosen per guidance [35]. 

Two approaches for predicting the ordinal categorical radiologist ratings from raw shape features (RNI and 

Fourier descriptors) were applied: logistic regression and decision trees (both implemented in Weka [36]). Both 

methods are appropriate for categorical response variables but differ in their use of the ordering inherent in the 

ratings. Logistic regression uses the ordering information while decision trees can separate non-linear data. Feature 

selection is automatic in decision trees but requires additional support in logistic regression. Both methods can 

assign probabilities to their predictions. Model building and performance uses a 10-fold cross validation technique. 

The prediction of multiple categories (radiologists’ ratings from 1 to 5 for most characteristics) is most appropriately 

measured using overall accuracy in prediction rather than reporting sensitivity and specificity scores for each 

category of ratings. For the results in this paper, only overall accuracy will be reported where accuracy is the number 

of correct predictions over the number of predictions. 



These shape measurements were applied to the full LIDC dataset then three (3) progressively smaller subsets 

each representing an increasingly level of agreement about the existence of a nodule. This level of agreement 

partitioning was suggested by Ochs et al. for reporting LIDC results where reader agreement can be influenced by 

outliers [29]. The predictive performance of RNI and Fourier shape descriptors are reported by level of agreement to 

identify differences or trends. 

Inter-observer agreement cannot be measured using traditional methods and this paper adopts a raw 

disagreement scoring system where the absolute differences between radiologists per characteristic are measured 

and the mean difference represents the disagreement for the particular nodule. These differences are only computed 

for the radiologists who rated the nodule and only computed for nodules marked by at least two radiologists. These 

mean differences per nodule can be accumulated in a histogram to represent the level of disagreement for a specific 

diagnostic characteristic. 

 

3.3 Radial Normal Index 

The radial normal index (RNI) captures the variability in the boundary (outline) of an object by comparing 

the perpendicular (normal) along the outline to the radial angle from the center of the object. This captures an 

angular variation along the boundary similar to the RGI method which uses the direction of the image gradient along 

the boundary. As illustrated in Figure 3, the boundary (represented by the gradient magnitude) of a smooth object is 

regular while a spiculated object is quite irregular. Plotting the gradient direction illustrates the differences in 

angular variation along the boundary of the near-circular and irregular (spiculated) object. The radial gradient index 

(RGI) method measures this variability by the difference between the radial angle from the center of the object to the 

boundary and the gradient angle at that location along the boundary. The radial normal index (RNI) mimics this 

approach by substituting the normal of boundary outline for the direction of the gradient. 

 
Gradient Magnitude 
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Near-circular object Irregular suspicious nodule 

Figure 3: Gradient magnitude and direction along boundary of regular and irregular objects 

3.3.1 Computing the Radial Normal Index 

The method of the Radial Normal Index is illustrated in Figure 4. The radial gradient angle (θ) is computed from the 

center of the object, while the normal angle (φ) is computed as the angle from the object in the direction of the 

normal. The difference between the radial and normal angles represents the value of the RNI at this value of the 

radial angle. Sweeping along the 360 degrees of the radial angle and accumulating the differences produces an 

angular difference distribution which represents the shape of that object.  The angular difference distribution is 

represented using a histogram.  

 

Circle:  Radial Angle = Normal Angle Non-circle:  Radial Angle != Normal Angle 

  



Figure 4: RNI method for computing difference between radial angle (θ) - direction of vector from center of object 

to point on perimeter – and normal angle (φ) -direction of vector normal to object at point on perimeter 

3.3.2 Computing Radial Normal Index Features 

After accumulating the differences between the radial and normal angles in a distribution histogram, the 

radial normal index is computed as a measure of dispersion of this distribution. Though standard deviation is the 

canonical dispersion statistic, the use of full-width of the maximum height (FWMH) was suggested for spiculation 

measurements in the radial gradient indexing method [15]. Figure 5 illustrates the computation of the FWHM using 

a line (versus bar) graph representation of the histogram. 

 

 
Figure 5: An example of FWHM computation 

3.4 RNI Results for Exemplar Objects  

Results for near-circular, reference type object, and spiculated nodule illustrate how RNI captures the 

variability in the shape of an object. The near-circular object has a small RNI and a narrow distribution while the 

spiculated object has a much larger RNI as reflected in its wider distribution. As shown in Figure 6, the standard 

deviation also tracks the differences in the dispersion of the angle differences and will be investigated along with the 

FWHM to assess their performance in describing shape. 

 

RNI angle difference distribution and measures of dispersion: standard deviation and FWHM 

  
near-circular object irregular suspicious nodule 

Figure 6: RNI results for representative shapes 

3.5 RNI Captures Increased Angular Variability along Radiologist-Drawn Contours 

When applied to LIDC radiologist-drawn nodule outlines, RNI captures increased angular variability along 

outlines and predicts some of the radiologist ratings for spiculation. As illustrated in the Figure 7, the less spiculated 

(LIDC Spiculation Rating = 4) outline has a narrower distribution and smaller FWHM than the more spiculated 

(LIDC Spiculation Rating = 2) nodule on the right. The ratings for Spiculation range from a maximum with rating of 

1 to a minimum of 5.  

 

 
Less Spiculated (Rating 4) Nodule FWHM = 1.05 More Spiculated (Rating 2) Nodule FWHM = 2.17 



    

Figure 7: RNI correlates well with spiculation for selected images 

4. Results 

 

Table 1 illustrates the poor the performance of RNI features for predicting radiologist ratings for 

spiculation, lobulation, and sphericity using all nodules and the three (3) progressive levels of agreement [Ochs] 

among radiologists on the presence/absence of a particular nodule. Overall the predictions are poor (less than 50%) 

and a couple (~24%) are slightly better than guessing (20%). With respect to agreement, the performance is slightly 

better for the at-least-3 agreement. Sphericity is somewhat better predicted than the other characteristics. Logistic 

regression is somewhat better than decision trees and might perform better due to its use of the order in the ratings. 

 

Table 1: Poor performance of RNI for predicting radiologists' diagnostic characteristics for shape 

Prediction of Shape Characteristics Based Upon RNI  (FWHM, StdDev, and Bin Counts) 

Agreement means # Radiologists’ Outlines (Nodule existence) 

Characteristic  All radiologists (1,2,3,or 4) 

147 Nodules 

>=  2 radiologists 

105 Nodules 

>=  3 radiologists 

74 Nodules 

All 4 radiologists 

35 Nodules 

 Decision 

Tree 

Logistic Reg Decision 

Tree 

Logistic 

Reg 

Decision 

Tree 

Logistic 

Reg 

Decision 

Tree 

Logistic 

Reg 

Spiculation  33.33% 42.35% 32.10 % 40.74 % 34.73 % 45.03 % 25.00 % 26.61 % 

Lobulation  30.87% 39.34% 24.07 % 37.96 % 24.81 % 37.79 % 29.84 % 29.84 % 

Sphericity  34.97% 36.88% 33.64 % 42.28 % 38.17 % 44.66 %  43.55 % 42.74 % 

 

Table 2 shows the results of the Fourier descriptors which also poorly predict the radiologists' ratings of 

shape characteristics with performances very similar to the RNI and some of the same patterns where logistic 

regression outperforms decision trees and sphericity is better predicted.  

 

Table 2: Poor performance of Fourier descriptors for predicting radiologists' diagnostic characteristics for shape 

Prediction of Shape Characteristics Based Upon Fourier Descriptors 

Agreement means # Radiologists’ Outlines (Nodule existence) 

Characteristic  All radiologists (1,2,3,or 4) 

147 Nodules 

>=  2 radiologists 

105 Nodules 

>=  3 radiologists 

74 Nodules 

All 4 radiologists 

35 Nodules 

 Decision 

Tree 

Logistic Reg Decision 

Tree 

Logistic 

Reg 

Decision 

Tree 

Logistic 

Reg 

Decision 

Tree 

Logistic 

Reg 

Spiculation  33.88% 41.80% 35.60 % 41.79 % 37.54 % 44.82 % 27.77 % 25.00 % 

Lobulation  28.96% 33.3% 24.14 % 33.43 % 27.58 % 33.33 % 25.69 % 32.63 % 

Sphericity  34.70% 39.89% 32.19 % 40.55 % 37.93 % 41.76 % 40.27 % 38.88 % 

 

5. Discussion of Results 

Two primary causes can result in the poor performance of the boundary shape descriptors in predicting 

radiologist shape characteristic ratings. Either the shape descriptors (or the selected features) cannot sufficiently 

measure the image features used by radiologists in rating nodule shape, or there exists too much disagreement 

among the radiologists’ ratings of these shape characteristics. While the verification of the RNI techniques 

employed only a small number of sample outlines and more research is needed to confirm the approach, the 

methodology closely matches the RGI technique successfully used in both the pulmonary nodule [Nakamura] and 



mammography [15] communities. If the radiologists cannot agree on ratings, then statistical and pattern recognition 

models will not perform well in discriminating between rating categories. Earlier work on semantic mapping of 

LIDC diagnostic characteristics [31] showed much better performance for texture and subtlety characteristics than 

for the shape characteristics in this paper. In addition to poor performance, their decision trees showed other signs of 

poor generalization such as much more complex decision trees for shape characteristics than for texture and the 

feature selection process for decision trees included many non-shape features such as texture descriptors. 

The second question on the radiologist disagreement is measureable in terms of raw scoring differences 

rather than traditional intra- and interobserver agreement using standard methods for observer studies: (Cohen's 

kappa statistic, Spearman's correlation coefficient, Interclass coefficients, or ROC) where the identity of the 

observer is known and consistent throughout the study. In the LIDC data, the observer identity is unknown and 

might differ between cases, thus the differences between ratings per nodule is the unit of interest and the mean 

difference between ratings is the primary metric. This metric is computed by measuring the absolute difference 

between all pairs of readers then dividing by the number of pairs. For example, three readers with ratings of {1,2,4} 

will have three (3) pairs of differences {|1-2|, |1-4|, |2-4|} for total difference of 6 and mean of 2, and a set of four 

readers will have six (6) pairs of differences. This measures the disagreement on a single characteristic for a single 

nodule, while a histogram of the accumulated nodule-level disagreements represents the overall disagreement for the 

characteristic. Using a normalized histogram, a single index of overall disagreement for a characteristic can be 

computed using a weighted summation of bin counts where the bin positions form the weights. For example, the 

range of most LIDC characteristics (ratings 1 to 5) is four (4) and the bin-positions (=weights) are {0, 1, 2, 3}; note 

that using a weight of 0 removes all counts where the disagreement is zero (0). This produces a raw disagreement 

metric for characteristics which ranges from 0 (full agreement) to 1 (total disagreement). Selection of a few extreme 

examples illustrate the extent of disagreement for spiculation: one nodule received four ratings of {1,1,5,5} with 

mean disagreement of 2.67 while another nodule received nearly identical outlines by two radiologists but nearly 

opposite ratings {2,5} even though only one vertex on the outline differed and only be a couple of pixels.  

Comparing the histograms in Figure 8 illustrates larger agreements on texture (high counts on left side of 

distribution) while large disagreements occur on spiculation (high counts on right side). Using the bin-weighted 

index method for overall characteristic agreement, texture receives a disagreement score of 0.19 while spiculation 

receives a much higher score of 0.29 (Table 3). This corresponds with the results shown in [31] who showed 

promising prediction for texture, but less success at predicting spiculation. As illustrated, the lack of agreement 

among radiologists is a major factor in the inability of semantic mapping algorithms to predict their ratings. 

 

  
A) Spiculation B)  Texture 

Figure 8: Radiologist disagreement using all-pairs differences 

Box plot analysis illustrates direct comparisons of radiologist disagreement (variability) for all nine (9) 

diagnostic characteristics as shown in Figure 9. Boxes closer to the origin indicate lower disagreement while shorter 

boxes indicate less variance among the ratings. The more predictable texture and subtlety characteristics appear as a 

shorter box near the origin, while spiculation and lobulation have much longer boxes farther from the origin. The 

lack of boxes for internal structure and calcification result from their near total agreement. The cause of the 

agreement for internal structure is uncertain, while the cause for agreement on calcification is its high negative 

predictive value where the presence of calcium in a nodule is a strong indication than the nodule is benign [37]. 



 
Figure 9: Radiologists’ disagreement on diagnostic characteristics for all nodules with 2 or more readers; the major elements are 

the height of median disagreement (bar in middle of box), the spread of disagreement between the 25 and 75th percentile (the 

box), and the height of the 25 percentile (bottom of box).   

 

 

Table 3: Characteristic Disagreement Indexes 

Characteristic Disagreement 

Internal structure 0.004 

Calcification 0.016 

Sphericity 0.184 

Texture 0.192 

Subtlety 0.264 

Margin 0.269 

Spiculation 0.287 

Lobulation 0.318 

Malignancy 0.354 

 

6. Conclusions and Future Work 

 

In addressing the boundary shape feature questions posed by previous work [31], this study shows that the 

inability to predict radiologists' shape characteristics in the LIDC is due more to the variability in radiologists' 

ratings rather than selection of shape features (either geometric or boundary) of the radiologist defined outlines. 

Given the persistence of this diversity of opinion from the original 23 LIDC cases studies examined by Raicu to the 

current 85 cases, the future work must focus on managing this diversity of ratings. 

In these studies, the method has attempted to predict individual radiologist's ratings based only upon their 

definition of the boundary of the nodule as represented by their own outlines. Given the poor success of specific 

predictions, a method of combining ratings and outlines might yield better results. Recent research on analyzing 

multiple outlines suggests two similar approaches. One method, developed at the National Institutes of Health (NIH) 

and reported by [21], is the Simultaneous Truth and Performance Level Estimation (STAPLE). This method offers a 

method to analyze intra- and inter-expert variability in drawing segmentation outlines as well as generating 

segmentation maps from the combined outlines. Without knowledge of the radiologists (each reading is blinded in 

the final dataset), there is no clear method for applying the STAPLE algorithm to the LIDC dataset.  Another 

approach, proposed by the LIDC, uses probability maps, p-maps, as the probability that a pixel is a member of the 

nodule [22] and offers a method of defining an outlines containing a range of pixels with varied likelihoods of 

membership. This approach is similar to various methods of overlap, intersection, union, and other similarity 



metrics. Future research for predicting semantic descriptors can attempt a range of likelihoods to determine whether 

this improves the predictive performance of shape descriptors when the nodule boundary is represented by only one 

outline.  

After combining the outlines, research on combining radiologists' ratings is necessary. When analyzing the 

performance of radiologists' subjective similarity ratings between unknown and known images, [26] found the inter-

observer variability too high and chose to use the average ratings. Averaging is not appropriate for the ordinal LIDC 

data and median methods represent an alternative. Mode represents another voting approach where the category 

most chosen is the representative. Another option to explore is based upon the LIDC instructions for recording the 

shape descriptors. For lobulation and spiculation, the LIDC provided guidance for ratings of 1 and 5 but left blank 

the ratings for 2-4; while for sphericity, the LIDC labels only 1, 3, and 5 without guidance for 2 and 4. This suggests 

future experimentation with binary methods for lobulation and spiculation and trinary methods for sphericity. 

Measured disagreement on individual pulmonary nodules allows for the design of training and testing datasets 

according to the confidence of the combined radiologists' results. Future experiments in database design and 

alternative machine learning strategies will attempt to both the confidence of low disagreement nodules and the 

uncertainty of high disagreement nodules for improving the overall performance of the semantic mapping approach 

to predicting diagnostic characteristics for applications in CADx and CBIR. 
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