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Abstract: This paper uses an ensemble of classifiers andeattarning strategies to
predict radiologists’ assessment of the noduleghefLung Image Database Consortium
(LIDC). In particular, the paper presents machaewering classifiers that model agreement
among ratings in seven semantic characteristigsulgpion, lobulation, texture, sphericity,
margin, subtlety, and malignancy. The ensembldasfsdiers (which can be considered as
a computer panel of experts) uses 64 image featir®e nodules across four categories
(shape, intensity, texture, and size) to prediotas#ic characteristics. The active learning
begins the training phase with nodules on whichotadists’ semantic ratings agree, and
incrementally learns how to classify nodules onchiithe radiologists do not agree. Using
our proposed approach, the classification accushdiie ensemble of classifiers is higher
than the accuracy of a single classifier. In thegloun, our proposed approach can be used
to increase consistency among radiological intéatiens by providing physicians a
“second read”.
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1. Introduction

Interpretation performance varies greatly amongotagdists when assessing lung nodules on
computed tomography (CT) scans. A good exampleuoh sariability is the Lung Image Database
Consortium (LIDC) dataset [1] for which out of 9Istinct nodules identified, delineated, and
semantically characterized by up to four differeadiologists, there are only 180 nodules on average
across seven semantic characteristics on whickaat three radiologists agreed with respect to the
semantic label (characteristic rating) appliedh® module. Computer-aided diagnosis (CADXx) systems
can act as a second reader by assisting radidogishterpreting nodule characteristics in order t
improve their efficiency and accuracy.

In our previous work [2] we developed a semi-autiieractive-learning approach [3] for predicting
seven lung nodule semantic characteristics: spionla lobulation, texture, sphericity, margin,
subtlety, and malignancy. The approach was intenttechandle the large variability among
interpretations of the same nodule by differentialagists. Using nodules with a high level of
agreement as initial training data, the algorithumoenatically labeled and added to the training data
those nodules which had inconsistency in theirrpregations. The evaluation of the algorithm was
performed on the LIDC dataset publicly availabléhattime of publication, specifically on 149 dinsti
nodules present in the CT scans of 60 patients.

A new LIDC dataset consisting of 914 distinct nadulfrom 207 patients was made publicly
available as of June 2009. This has opened the twdyrther investigate the robustness of our
proposed approach. Given the highly non-normal reatd medical data in general and of the LIDC
dataset in particular (for example, on the set3f Bodules for which at least three radiologist®ag
with respect to the spiculation characteristic, 281these nodules are rated with a 1 ("marked
spiculation”) and only five nodules are rated widttings from 2 to 5 (where 5 “no spiculation”), we
include in our research design a new study to etalthe effects of balanced and unbalanced datasets
on the proposed ensemble’s performance for eacthefseven characteristics. Furthermore, we
investigate the agreement between our proposed wemaided diagnostic characterization (CADc)
approach and the LIDC radiologists’ semantic charaations using the weighted kappa statistic [4]
which takes into account the general magnitude hef tadiologists’ agreement and weighs the
differences in their disagreements with respeavery available instance. Finally, we include a new
research study to investigate the effects of theatran/disagreement present in the manual lung
nodule delineation/segmentation on performanca®tnsemble of classifiers.

The rest of the paper is organized as follows: vesgnt a literature review relevant to our work in
Section 2, the National Cancer Institute (NCI) Lid&taset and methodology in Section 3, the results
in Section 4, and our conclusions and future workéction 5.

2. Related Work
A number of CAD systems have been developed imtgasars for automatic classification of lung

nodules. McNitt-Grayet al [5,6] used nodule size, shape and co-occurrentare features as nodule
characteristics to design a linear discriminantlyama (LDA) classification system for malignant
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versus benign nodules. lat al. [7] used direction of vascularity, shape, anénmal structure to build
an artificial neural network (ANN) classificatioryssem for the prediction of the malignancy of
nodules. Armateet al [8] used nodule appearance and shape to build@nclassification system to
classify pulmonary nodules into malignant versusidpe classes. Takashing al [9,10] used shape
information to characterize malignant versus betégions in the lung. Shadt al. [11] compared the
malignantvs. benign classification performance of OneR [12] bwistic regression classifiers learned
on 19 attenuation, size, and shape image feat@asiuelet al. [13] developed a system for lung
nodule diagnosis using Fuzzy Logic. Furthermorejingér et al. [14] and more recently Goldin
et al [15] summarized in their survey papers the eaxistiung nodule segmentation and
classification techniques.

There are also research studies that use climéaination in addition to image features to classif
lung nodules. Gurnegt al. [16,17] designed a Bayesian classification systeased on clinical
information, such as age, gender, smoking statughefpatient,etc, in addition to radiological
information. Matsukiet al. [18] also used both clinical information and sedefeatures scored by
radiologists to design an ANN for malignant verbesign classification. Aoyamet al.[19] used two
clinical features in addition to forty-one imageatigres to determine the likelihood measure of
malignancy for pulmonary nodules on low-dose CTgesa

Although the work cited above provides convincingdence that a combination of image features
can indirectly encode radiologists’ knowledge ahiadicators of malignancy (Sluimet al.[14]), the
precise mechanism by which this correspondencedmspigs unknown. To understand this mechanism,
there is a need to explore several approachesniding the relationships between the image features
and radiologists’ annotations. Kalat al. [20] emphasized recently the importance of thgetyf
research; the knowledge gathered from the postegssd images and its incorporation into the
diagnosis process could simplify and accelerateatimlogy interpretation process.

Notable work in this direction is the work by Baeb al [21] and Ebadollahet al [22,23].
Barb et al. proposed a framework that uses semantic methodegoribe visual abnormalities and
exchange knowledge in the medical domain. Ebado#éafal. proposed a system to link the visual
elements of the content of an echocardiogram (thiety the spatial-temporal structure) to external
information such as text snippets extracted froragaostic reports. Recently, Ebadolladti al.
demonstrated the effectiveness of using a semaoiccept space in multimodal medical
image retrieval.

In the CAD domain, there is some preliminary waoklink images to BI-RADS. Niet al. [24]
reported results linking the gray-level co-occuceematrix (GLCM) entropy and GLCM sum average
to internal enhancement patterns (homogenous védrstesogeneous) defined in BI-RADS, while
Liney et al. [25] linked complexity and convexity image featwrt® the concept of margin and
circularity to the concept of shape. Our own wdt®,R7] can also be considered one of the initgpst
in the direction of mapping lung nodule image feasufirst to perceptual categories encoding the
radiologists’ knowledge about lung interpretation durther to the RadLex lexicon [28].

In this paper we propose a semi-supervised prdababilearning approach to deal with both the
inter-observer variability and the small set ofdkgal data (annotated lung nodules). Given the atem
use of our proposed approach as a second reatter radiology interpretation process, we inveséigat
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the agreement between the ensemble of classifieistize LIDC panel of experts as well as the
performance accuracy of the ensemble of classifidre accuracy of the ensemble is calculated as the
number of correctly classified instances over ttalthumber of instances. The agreement is measured
using weighted kappa statistic as introduced bye@idh,29]. The weighted kappa statistic takes into
account the level of disagreement and the specafiegory on which raters agreed for each observed
case, reflecting the importance of a certain rat@gginally, the kappa statistic was intended to
measure the agreement between two raters acrassilzen of cases, where the pair of raters is fixed
for all cases. Fleiss [30] proposed a generalinatib kappa statistics which measures the overall
agreement across multiple observations when maue tivo raters were interpreting a specific case.
Landis and Koch [31] explored the use of kappaissies for assessing the majority agreement by
modifying the unified agreement evaluation approt@t they proposed in a previously published
paper [32]. An approach proposed by Kraemer [38rmrded the technique proposed by Fleiss [34] to
situations in which there are a multiple numbepb$ervations per subject and a multiple, inconstant
number of possible responses per observation. kémently, Viera and Garrett [35] published a paper
that describes and justifies a possible interpgmtagcale for the value of kappa statistics obthime

the evaluation of inter-observer agreement. Theyp@se to split the range of possible values of the
kappa statistic into several intervals and assigordinal value to each of them as shown in Table 1
We will use this interpretation scale to quanthg tagreement between the panel of LIDC experts and
the ensemble of classifiers.

Table 1.Kappa statistics interpretation scale.

k-value (%) Strength of Agreement beyond Chance

<0 Poor
0-0.2 Slight
0.21-04 Fair
0.41-0.6 Moderate
0.61-0.8 Substantial
0.81-1 Almost perfect

3. Methodology
3.1. LIDC dataset

The publicly available LIDC database (downloadatileough the National Cancer Institute’s
Imaging Archive web site-http://ncia.nci.nih.goyjovides the image data, the radiologists’ nodule
outlines, and the radiologists’ subjective ratirgdsnodule characteristics for this study. The LIDC
database currently contains complete thoracic @hséor 208 patients acquired over different period
of time and with various scanner models resultmg wide range of values of the imaging acquisition
parameters. For example, slice thickness rangegebkat0.6 mm and 4.0 mm, reconstruction diameter
ranges between 260 mm and 438 mm, exposure rargesdn 3 ms and 6,329 ms, and the
reconstruction kernel has one of the following eatuB, B30f, B30s, B31f, B31s, B45f, BONE, C, D,
FCO01, or STANDARD.
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Table 2.LIDC nodule characteristics with correspondingngiscale.

Characteristic Notes and References Possible Scores
Calcification Pattern of calcification present inretnodule 1. Popcorn
2. Laminated
3. Solid
4. Non-central
5. Central
6. Absent
Internal Expected internal composition of the nodule 1. Sidsue
structure 2. Fluid
3. Fat
4. Air
Lobulation Whether a lobular shape is apparent fitthe 1. Marked
margin or not 2..
3..
4. .
5. None
Malignancy Likelihood of malignancy of the nodule 2. Highly Unlikely
Malignancy is associated with large nodule siZ2Moderately Unlikely
while small nodules are more likely to be benigB. Indeterminate
Most malignant nodules are non-calcified antiModerately
have spiculated margins. Suspicious
5. Highly Suspicious
Margin How well defined the margins of the nodule a 1. Poorly Defined
2
3
4. .
5. Sharp
Sphericity Dimensional shape of nodule in termsitsf 1. Linear
roundness 2..
3. Ovoid
4. .
5. Round
Spiculation Degree to which the nodule exhibitscslds, 1. Marked
spike-like structures, along its border - Spicudate. .
margin is an indication of malignancy 3..
4. .
5. None
Subtlety Difficulty in detection - Subtlety refet® the 1. Extremely Subtle
contrast between the lung nodule and & Moderately Subtle
surrounding 3. Fairly Subtle
4.Moderately Obvious
5. Obvious
Texture Internal density of the nodule - Texturayslan 1. Non-Solid

important role when attempting to segment 2.

nodule, since part-solid and non-solid texture c&8nPart Solid/(Mixed)
increase the difficulty of defining the noduld. .

boundary 5. Solid
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The XML files accompanying the LIDC DICOM imagesntain the spatial locations of three types
of lesions (nodules < 3 mm in maximum diameter, dmily if not clearly benign; nodules > 3 mm
but <30 mm regardless of presumed histology; andromlules > 3 mm) as marked by a panel of up
to 4 LIDC radiologists. For any lesion marked amaule > 3 mm, the XML file contains the
coordinates of nodule outlines constructed by ahyhe 4 LIDC radiologists who identified that
structure as a nodule > 3 mm. Moreover, any LID@ialagist who identified a structure as a
nodule > 3 mm also provided subjective ratingsdfoiodule characteristics (Table 2): subtlety, maér
structure, calcification, sphericity, margin, loatibn, spiculation, texture, and malignancy likebkl.

For example, the texture characteristic provideammgful information regarding nodule appearance
(“Non-Solid”, “Part Solid/(Mixed)”, “Solid”) whilemalignancy characteristic captures the likelihood
of malignancy (“Highly Unlikely”, “Moderately Unlikly”, “Indeterminate”, “Moderately Suspicious”,
“Highly Suspicious”) as perceived by the LIDC rddgists. The process by which the LIDC
radiologists reviewed CT scans, identified lesiaarg] provided outlines and characteristic ratirggs f
nodules > 3 mm has been described in detail by kicBiayet al.[36].

The nodule outlines and the seven of the noduleacteristics were used extensively throughout
this study. Note that the LIDC did not impose acéat consensus; rather, all of the lesions indichyed
the radiologists at the conclusion of the unblindeading sessions were recorded and are available t
users of the database. Accordingly, each lesidhdrdatabase considered to be a nodule > 3 mm could
have been marked as such by only a single radgildgy two radiologists, by three radiologistsbgr
all four LIDC radiologists. For any given noduleetnumber of distinct outlines and the number tf se
of nodule characteristic ratings provided in the XKles would then be equal to the number of
radiologists who identified the nodule.

3.2. Image feature extraction

For each nodule greater than 5 x 5 pixels (arourd33nm) — nodules smaller than this would not
have yielded meaningful texture data — we calcudaget of 64 two-dimensional (2D), low-level image
features grouped into four categories: shape festuexture features, intensity features, and size
features (Table 3 and Appendix 1). Although eactut® is present in a sequence of slices, in this
paper we are considering only the slice in whiah nlbdule has the largest area along with up to four
(depending on the number of radiologists detecting annotating the corresponding nodule) image
instances corresponding to this slice (Figureripudr future work, we will also investigate the wudge
three-dimensional (3D) features to encode the inwgeent of the lung nodules and compare the
classification power of the 3D features versus2Ddeatures [37].

After completion of the feature extraction proces® created a vector representation of every
nodule image which consisted of 64 image featunesSaradiologists’ annotations (Figure 2).
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Figure 1. An example of four different delineations of a otedon a slice marked by four
different radiologists.

Lobulation = 1

Lobulation = 4

“marked”
Malignancy = 5 “highly Malignancy = 5
suspicious” ~ “highly suspicious”
Sphericity = 2

Lobulation = 2 Lobulation = 5

Malignancy = 5 “highly “none”
suspicious” Malignancy = 5

Sphericity = 5 “round “highly suspicious”

Rader 3 | Reaer 4

Figure 2. An example of nodule characteristics assigned bgd#logist and normalized
low-level features computed from image pixels.

Image Features

Area :0.0196

ConvexArea :0.0178

Circularity :0.9168

Perimeter :0.0735

ConvexPerimeter  :0.0823

Roughness :0.6369

. . EquivDiameter :0.1023
Characteristics Elongation :0.0228
Calcification .6 Compactness :0.0448
InternalStructure : 4 Eccentricity :0.4776
Lobulation . 4 SOlidity :0.9168
Malignancy .5 Extent :0.6367
Margin 2 RadialDistanceSD  :0.6580
Sphericity . 4 MinIntensity :0.6543
Spiculation : 3 Maxlntensity :0.4333
Subtlety .5 Meanlntensity :0.6209
Texture <4 SDIntensity :0.1967
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Table 3.Image features extracted from each lung nodusgjgn of interest; SD stands for
standard deviation and BG for background.

Shape Features

Size Features Intensity Features

Circularity
Roughness
Elongation
Compactness
Eccentricity
Solidity
Extent
RadialDistanceSD

Area MinIntensity

ConvexArea MaxIntensity
Perimeter Meanlntensity

ConvexPerimeter SDIntensity
EquivDiameter MinintensityBG
MajorAxisLength MaxIntensityBG

MinorAxisLength MeanintensityBG

SDIntensityBG

IntensityDifference

Texture Features
11 Haralick features calculated from co-occurremedrices (Contrast,
Correlation, Entropy, Energy, Homogeneit{? Grder Moment, Inverse
variance, Sum Average, Variance, Cluster Tenddvieximum Probability)
24 Gabor features are mean and standard devidtith different Gabor
images (orientation = 0°, 45°, 90°, 135° and fraque 0.3, 0.4, 0.5)
5 Markov Random Fields (MRF) features are mearsdfferent response
images (orientation = 0°, 45°, 90°, 135°), alonip Wie variance response
image

Size Features

We use the following seven features to quantify #iee of the nodules: area, ConvexArea,
perimeter, ConvexPerimeter, EquivDiameter, Majosheingth, and MinorAxisLength. Therea and
perimeterimage features measure the actual number of pirethe region and on the boundary,
respectively. Th&€onvexAreaand ConvexPerimetemeasure the number of pixels in the convex hull
and on the boundary of the convex hull correspanda the nodule regiorEquivDiameteris the
diameter of a circle with the same area as theomnegiLastly, the MajorAxisLength and
MinorAxisLengthgive the length (in pixels) of the major and miraxes of the ellipse that has the
same normalized second central moments as thenregio

Shape Features

We use eight common image shape features: cirgylawughness, elongation, compactness,
eccentricity, solidity, extent, and the standardiakon of the radial distanc€ircularity is measured
by dividing the circumference of the equivalentaarcle by the actual perimeter of the nodule.
Roughnessan be measured by dividing the perimeter of thereby the convex perimeter. A smooth
convex object, such as a perfect circle, will haueughness of 1.0. TheEcentricityis obtained using
the ellipse that has the same second-moments asdgio®. The eccentricity is the ratio of the dis@
between the foci of the ellipse and its major deigyth. The value is between 0 (a perfect cirche) &

(a line). Solidity is the proportion of the pixels in the convex hoillthe region to the pixels in the
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intersection of the convex hull and the regiémtentis the proportion of the pixels in the bounding
box (the smallest rectangle containing the regitimt are also in the region. Finally, the
RadialDistanceSDs the standard deviation of the distances fromnyelieundary pixel to the centroid
of the region.

Intensity Features

Gray-level intensity features used in this studg aimply theminimum, maximum, mean, and
standard deviatiorof the gray-level intensity of every pixel in easbgmented nodule and the same
four values for every background pixel in the bdangdbox containing each segmented nodule.
Another feature|ntensityDifferencgeis the absolute value of the difference betwédenmean of the
gray-level intensity of the segmented nodule aedniean of the gray-level intensity of its backgmun

Texture Features

Normally texture analysis can be grouped into foategories: model-based, statistical-based,
structural-based, and transform-based methodsctStal approaches seek to understand the hierarchal
structure of the image, while statistical methodsatibe the image using pure numerical analysis of
pixel intensity values. Transform approaches gediyeperform some kind of modification to the
image, obtaining a new “response” image that i thealyzed as a representative proxy for the
original image. Model-based methods are based @mdhcept of predicting pixel values based on a
mathematical model. In this research we focus oeethwell-known texture analysis techniques:
occurrence matricega statistical-based methodgabor filters (a transform-based method), and
Markov Random Field&@ model based method).

Co-occurrence matrices focus on the distributiomd @elationships of the gray-level intensity of
pixels in the image. They are calculated along tbrections (0°, 45°, 90°, and 135°) and five dicts
(1, 2, 3, 4 and 5 pixels) producing 20 co-occureenmatrices. Once the co-occurrence matrices are
calculated, eleven Haralick texture descriptors then calculated from each co-occurrence matrix.
Although each Haralick texture descriptor is catedl from each co-occurrence matrix, we averaged
the features across all distance/direction passaltiag in 11 (instead of 11 x 4 x 5) Haralick ieats
per image.

Gabor filtering is a transform based method whigtraets texture information from an image in
the form of a response image. A Gabor filter isirmusoid function modulated by a Gaussian and
discretized over orientation and frequency. We obrer the image with 12 Gabor filters: four
orientations
(0°, 45°, 90°, and 135°) and three frequencies (4 and 0.5), where frequency is the inverse of
wavelength. We then calculate means and standatidtid®ms from the 12 response images resulting
in 24 Gabor features per image.

Markov Random Fields (MRFs) is a model based methbath captures the local contextual
information of an image. We calculate five featuresrresponding to four orientations
(0°, 45°, 90°, 135°) along with the variance. Wégkate feature vectors for each pixel by using a 9
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estimation window. The mean of four different resg® images and the variance response image are
used as our five MRF features.

3.3. Active DECORATE for lung nodule interpretation

We propose to find mappings based on a small ldbeiéal dataset that, instead of predicting a
certain rating (class) for a semantic characteristill generate probabilities for all possibleings of
that characteristic. Our proposed approach is basedhe DECORATE [38] algorithm, which
iteratively constructs an ensemble of classifigraddding a small amount of data, artificially geated
and labeled by the algorithm, to the data set aadhing a new classifier on the modified data. The
newly created classifier is kept in the ensemblg ffoes not decrease the ensemble’s classification
accuracy. Active-DECORATE [39] is an extension &k tDECORATE algorithm that detects
examples from the unlabeled pool of data that erédhe most disagreement in the constructed
ensemble and adds them to the data after manugingbThe procedure is repeated until a desired
size of the data set or a predetermined numbeeations is reached. The difference between Active
DECORATE and our approach lies in the way examfile® the unlabeled data are labeled at each
repetition. While in Active-DECORATE, labeling i©ode manually by the user, our approach labels
examples automatically by assigning them the laketgaracteristics ratings, in the context of this
research) with the highest probabilities/confideasgredicted by the current ensemble of classifier

Since the process of generating the ensemble s$ifiexs for every semantic characteristic is the
same, we will explain below the general steps ofapproach regardless of the semantic characteristi
to be predicted. The only difference will consiktlee initial labeled data that will be used foeation
of the ensemble of classifiers. For each charatierithe ensemble will be built starting with the
nodules on which at least three radiologists’ agneth respect to that semantic characteristic
(regardless of the other characteristics).

Figure 3. A diagram of the labeling process.

LABELED DATA

A

Build ensemble of
classifiers

Move instances predicted
with high confidence along
with the predicted labels
into labeled data

( DECORATE \ > UNLABELED DATA

J Apply the ensemble to predict
unlabeled data

We divided the LIDC data into two datasets: labetedl unlabeled data, where labeled data
included all instances of the nodules on whicheasst three radiologists agreed and unlabeled data
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contained all other instances (Figure 3). The @lgms woks iteratively to move all examples frore th
unlabeled data set to the labeled data set. At @acddtion, some instances were chosen for this
transition using the results of classification sfyeto that iteration.

Instances were added to the labeled data set basdtie confidence with which they were
predicted. Instances predicted with probabilityheigthan a threshold were added into the traingtg s
along with their predicted labels (ratings produbgdCAD). When an iteration of the algorithm failed
to produce any labels of sufficient confidence,rgvastance left in the unlabeled pool was added to
the labeled data along with its original labelifrgtassigned by the radiologist). This is showrthmy
vertical arrow in Figure 3. At this point, the emdde of classifiers generated in the most recent
iteration is the ensemble used to generate firalsdication and accuracy results.

The creation of the ensemble of classifiers at éacation is driven by the DECORATE algorithm.
The steps of the DECORATE algorithm are as follofirst, the ensemble is initialized by learning a
classifier on the given labeled data. On subseqseps, an additional classifier is learned by
generating artificial training data and addingoitthe existing training data. Artificial data isngeated
by randomly picking data points from a Gaussianr@xmation of the current labeled data set and
labeling these data points in such a way that falmblosen differ maximally from the current
ensemble’s predictions. After a new classifierdarhed based on the addition of artificial data, th
artificial data is removed from the labeled dathas®l the ensemble checked against the remaining
(original, non-artificial) data. The decision on&ther a newly created classifier should be kepihén
ensemble depends on how this classifier affectgetisemble error. If the error increases, the dlassi
is discarded. The process is repeated until theneble reaches the desired size (number of classifie
or a maximum number of iterations are performedisval representation of the algorithm’s steps is
shown on Figure 4.

To label a new unlabeled example x, each clasgifiein the ensemble C* provides probabilities
for the class membership of x. We compute the atesibership probabilities for the entire ensemble
as:

ZVi(CiEC*) Pe, (x)

P, (x) =
Vi p
ZVi(CieC*),vj(ijY) Ci'yj(’)‘)

(1)

where Y is the set of all possible classes (labelsy R, , (x) is the probability of example x

belonging to classyyaccording to the classifier;.CThe probability given by Equation 1 is used to
identify the nodules predicted with high confidence

In ensemble learning the ensemble can be compasdeaf classifiers of any type, such as artificial
neural networks, support vector machines, decisees, etc. In this paper, we are using decisiegstr
(C4.5 implemented in WEKA [40]) and the informatigain criterion (Equation 2) for forming the
trees [41]:

|5y

IG(S,A) = Entropy(S) — Z mEntropy(Sv) (2)

VEA

where v is a value of attribute A, |$ the subset of instances of S where A takesdhee v, and |S]| is
the number of instances, and
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C
Entropy(S) = Z p;ilog,p; (3)

i=1

where pis the proportion of instances in the datasethhatthe target attribute i from C categories.

Figure 4. The diagram of the DECORATE algorithm.

BEGIN

Build a classifier C by using BaseLearn on T
Initialize ensemble C* = {C}
Compute ensemAbIe training error

Baselearn = a classification algorithm
T = training set
Cisize = desired ensemble size
Imax = maximum number of iterations
Rsize = factor that determines number of
artificial examples to generate

Number of classifiers in
the ensemble less than Cgize
AND
Number of iterations less
than lax

Generate Rgj,e * |T]| artificial instances (R)
Label examples in R with the probability of class labels inversely proportional to the C*’s predictions
Add the artificial data R into T
Build a classifier C’ by using BaseLearn on T
Add classifier C’ into current ensemble C*
Remove the artificial data R from T
Compute training error of C*
If the training error of C* increases, Remove C’ from C*

3.4. Evaluation of the CADc

In addition to the evaluation of the CADc perforroarwith respect to its accuracy (the ratio of the
correctly classified instances over the total numbieinstances), we investigate the effects of the
variation in the manually delineated nodule bouiedaacross radiologists on the accuracy of the
ensemble of classifiers. Furthermore, we evaluateagreement between the ensemble’s predictions
and the radiologists’ ratings using kappa stasstis presented below.

3.4.1. Variability index as a measure of variapilit the lung nodule manual segmentation
We also investigated the accuracy of our algorithith respect to the variation in the boundary of

the nodules which can affect the values of the llevel image features. We introduced in [42] a
variability indexvi that measures the segmentation variability amodiglagists.
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We first construct a probability map (p-map) thsgigns each pixel a probability of belonging to the
lung nodule by looking at the areas inside eachhef contours, so that each valpg,c) in the
probability map equals the number of radiologibts tselected the given pixel. The p-map matrix can
be normalized by dividing the entire matrix by Agttotal number of possible contours). Two more
matrices are constructed to calculate the vartgbifhdex metric. The first is the cost map
(Equation 4), which contains a cost for each piXake cost varies inversely with so that

max [ Pl-Br.e)

(R o 1) ~ maxfl=1

if Plr,el =0 (4)
ifP(reci=0

Clr.e) =

wherec(r,c) is the cost of the pixet,c) based on its value in the p-map. This ensurespikats upon
which there is less agreement contribute more tabidity than those with higher agreement. The
constant R is set to the number of raters; in thsecof the LIDC, R = 4; k is determined

experimentally. The second matrix is the variapititatrix V (Equation 5) initialized with the values
of O for pixels that correspond tr,c) = max(P) in the p-map. The rest of the pixels are not assica

numeric value QaN). The matrix is then updated iteratively: for egmkel, the algorithm finds the
lowest V as follows:

v+ C(r,e) if Vir.e) = vt + C(r,c)
i’ =
el {V{r, c) FVincl=e'+ Clr o) (5)
whereV is the value of the current pixelc) in the variability matrix,C is the cost map and v* is the
lowest value of the eight pixels surrounding:;) in the variability matrix. The matrix converges avh

the lowest values for all pixels have been found. pels in the variability matrix with value
P(r,c) =0 from the p-map are assignedN, so they are ignored in subsequent calculations.

The normalized variability index is defined as:

VI,= wen (6)
R
where:
Vi =Y V(rc), (7)

In our experimental results section we will prestém@ accuracy of our ensemble of classifiers with
respect to certain ranges of the variability index.

3.4.2. Kappa statistics as a measure of agreernsemeen the CADc and the LIDC panel of experts

To evaluate the performance of the ensemble ofifias and its agreement with the panel of
experts, given the absence of ground truth (patjyotwr follow-ups are not available for the LIDC
dataset), we consider the following reference suth) nodules rated by at least one radiologist b)
nodules rated by at least two radiologists, andocjules rated by at least three radiologists—wtieze
class label for each nodule in all cases is detethas the median of all ratings (up to four) (Fégbi).
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At this point in the study, we cannot evaluate pleeformance of the ensemble across individual
radiologists since LIDC radiologists are anonymeuen across nodules (radiologist 1 in one study is
not necessary radiologist 1 in another study).

Figure 5. Reference truths for the LIDC dataset.
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agreement
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agreement
Atleast 3
agreement
Atleast 4
agreement

Number of
raters agreed
7

Total number

We will use the kappa statistq8) to evaluate the degree to which the panekpéds agrees with
the computer output with respect to each semahtcacteristic:
B, — P
k=T ®)
wherepy (Equation 9) stands for the observed agreemenpafithuation 10) stands for the agreement
that would occur by chance:

p, = Duizs 4G @)

'}

P = Ty (B 20 (10)

where the agreement matrix A (Equation 11) consi$tthe number of correct classifications and
misclassifications of every possible type (r = nemdf ratings):

gorual_watiteg

C‘a:w.rr,tLl C‘atm,th . C‘auntm
C'ount C'ount = Count

A = predicted_rating |. 21 . 2.2 o 2r (11)
C‘o:wn,t[- 1 C‘otm,t[- 2 Cauntl-l,r

For instance, when the panel’'s rating for a nodalespiculation was 3 and the ensemble of
classifier rated the spiculation for the same neduth 2, then the value in the third column, seton
row in the agreement matrix will be incrementedlbyhe cells of the main diagonal are incremented
only if the expert panel rating agrees with the Cgiediction. Given that we are predicting multiple
ratings per semantic characteristic instead of gubinary rating, we also investigated the usehef t
weighted kappa statistik,, that takes into consideration the significanceaoparticular type of
misclassification and gives more weight(Equation 12) to a an error depending on how setlere
error is:
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5] I:k _ 1:] z (12)

for any two ratings andj. The observed agreemeni, (Equation 13) and the agreement by change
(Equation 14) are calculated as:

Pow = L y=1 01, 1) (13)
Paw = Zi,;=1 E(0,J) (14)

where the elements of the observed weighted priopsrinatrixO and expected weighted proportions
matrix E are defined by (Equation 15) and (Equation 16peesvely:

oo AL W) L,
0L j) == "%} (15)
B(i, /) = B i B e v (16)

4. Results

In this section we present the results of our psepoapproach as follows. First, we present the
accuracy results of Active-DECORATE with respect lalanced and unbalanced datasets, and
“unseen” datasets - data that was not used byritbengble to generate the classification rules. Skcon
we present the performance of Active-DECORATE ie thariability index context in order to
understand the effects of the nodule boundariesabiity across radiologists. Third, we analyze th
agreement between the panel of experts and thenblsef classifiers both quantitatively using kappa
statistics and visually using bar charts.

4.1. Accuracy results versus LIDC data subsets

By applying the active-DECORATE to the new LIDC akt (Tables 4 and 5), the classification
accuracy was on average 70.48% (Table 6) with amage number of iterations equal to 37 and
average number of instances added at each iteredjigal to 123. The results were substantially lower
than on the previous available LIDC dataset (LIDG&1y 85 cases out of which only 60 cases were
rated by at least one radiologist) for which therage accuracy was 88.62%.

Looking at the ratings distributions of the tramimlatasets (nodules on which at least three
radiologists agree) for the LIDC and LIDC85 datad@table 5), we noticed that the distributions for
the LIDC dataset were strongly skewed in the dioactof one dominant class for almost each
characteristic and therefore, produced unbalanatakdts when experimenting with our approach.

Table 4.LIDC datasets overview; LIDC_B is a balanced datia

LIDC LIDC85 LIDC B
Instances 2,204 379 912
Nodules 914 149 542

Cases/Patients 207 60 179
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Table 5. Structure of the initial training data for all && datasets; L/U ratio represents the
ratio between the labeled versus unlabeled datastéihds for initial training instances, N
for the number of nodules and C for the numberasks.

Dataset LIDC LIDC85 LIDC B

- L/U #of N C L/U #of N C L/U #of N C

Characteristics _ . .
ratio ITl ratio ITl ratio ITI

Lobulation 0.51 748 197 99 0.20 63 21 19 0.34 266 7 5 31
Malignancy 0.30 503 133 73 0.19 61 22 17 0.23 503 211 67
Margin 0.35 570 148 84 0.17 56 19 14  0.29 365 126 9 7
Sphericity 0.30 516 135 80 0.29 85 27 20 0.23 477 311 77
Spiculation 0.68 893 236 120 0.30 87 28 24  0.17 19263 52
Subtlety 0.31 519 137 87 0.30 88 27 22 0.23 296 77 46
Texture 0.89 1040 277 123 0.46 120 35 24 0.23 1736 3 11
Average 0.45 684 180 95 0.26 80 25 20 0.25 324 87 1 5

Table 6. Classification accuracies of the ensemble of dlass built using decision trees;
the number of classifiers Qgj,e) was set to 10 and number of artificially genedate

examples Rsize) to 1; #of ITR stands for number of iterationsAaitive-DECORATE, and

#of IAL stands for number of instances added tottaming data later (those that did not
reach the confidence threshold).

LIDC LIDC85 LIDC_B

(80% Confidence level) (60% Confidence level) (80% Confidence level)
Characteristics #of  #of Accuracy #of #of Accuracy  #of  #of Accuracy

ITR IAL ITR IAL ITR 1AL
Lobulation 68 196 54.53% 10 1 81.00% 33 24 83.56%
Malignancy 18 136 89.89% 8 1 96.31% 12 170 89.38%
Margin 34 112 75.67% 5 8 98.68% 16 6 93.58%
Sphericity 33 49 87.47% 9 9 91.03% 23 24 85.86%
Spiculation 30 117 50.17% 15 13 63.06% 34 33 82.5%
Subtlety 29 86 81.73% 7 4 93.14% 18 55 93.93%
Texture 44 163 53.9% 9 0 97.10% 11 61 95.83%
Average 36.6 1227 70.48% 9 5.14 88.62% 21 53 89.23%

To validate the effect of the unbalanced data enattcuracy of the classifier, we evaluated further
the ensemble of classifier on another balancedsdatdhe second subset (LIDC_B) was formed by
randomly removing nodules from the most dominaasgfirating such that the most dominant class has
almost the same number of nodules as the seconodmmsnant class.

Furthermore, when comparing our proposed approatthtte traditional decision trees applied as
single classifiers per characteristic, our appraaatably outperforms the traditional approach b$624
to 45% accuracy, depending on the characteristitseeadata subsets (Table 7).

While all of the data instances were involved ie ttreation of both the decision trees and the
ensemble from Tables 6 and 7, we also wanted tofugber the performance of our algorithm on
“unseen” data. We reserved 10% of our data setetadmpletely unavailable (“unseen”) for the
creation of the classifiers. This 10% was chosebdacsimilar to the entire data set with respect to
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levels of agreement and the distribution of sencamatiings. Further, if a patient had multiple nedul
they were all included in the reserved 10%.

Table 7. Classification accuracies of decision trees an@&rsemble of decision trees on

all datasets.
Decision trees Ensemble approach
Characteristics LIDC LIDC85 LIDC B LIDC LIDC85 LIDC B
Lobulation 49.4% 27.44% 38.52% 54.53% 81.00% 83.56%
Malignancy 39.11% 42.22% 38.88% 89.89% 96.31% 89.38
Margin 38.56% 35.36% 39.56% 75.67% 98.68% 93.58%
Sphericity 34.21% 36.15% 32.21% 87.47% 91.03% 856.86
Spiculation 59.43% 36.15% 59.16% 50.17% 63.06% %B82.5
Subtlety 38.11% 38.79% 39.51% 81.73% 93.14% 93.93%
Texture 66.74 53.56% 60.42% 53.9% 97.10% 95.83%
Average 46.51% 38.52% 44.04% 70.48% 88.62% 89.23%
Costs for ratings’ missclassifications 1 2 3 4 5

1 0 0.5 1 15 2

2 0.5 0 0.5 1 15

3 1 0.5 0 0.5 1

4 15 1 0.5 0 0.5

5 2 1.5 1 0.5 0

Table 8. Classification accuracies of Active-Decorate oigiaal (90%) and reserved
(10%) datasets.

Cross-validation on Validation of testing data
training data
DT AD DT AD # of # of # of
Patients Nodules Instances
Lobulation 49.39%  54.52% 18.60%  36.41% 87 19 209
Malignancy 39.44%  90.65% 31.00% 35.75% 84 19 213
Margin 38.54% 75.62%  36.11%  46.46% 97 22 217
Sphericity 33.89%  86.65% 14.26% 57.49% 84 19 226
Spiculation 60.24% 50.85%  33.53%  34.92% 84 19 237
Subtlety 38.87% 83.35%  25.14% 15.03% 82 18 248
Texture 67.26% 54.32%  40.88%  47.46% 95 21 193
Average 46.80% 70.85% 28.50% 39.07% 87 19 220

Not surprisingly, when tested on a set of data ltiaa never been viewed, both the single decision
tree and our ensemble produced lower accuraciesvettry, one of the main features of the
Active-DECORATE algorithm is its ability to dynanaity adjust the ensemble when fed with newly
available instances. In other words, the ensemlillenat be generated just once, and then used in
immutable form for classification of every new mste, but rather learn from every new instance it
classifies, every time modifying the classificatiamhes accordingly. Furthermore, associating défifeer
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costs to different types of misclassifications (@ample, misclassifying an instance as 3 whes it i
actually a 1 will receive a higher cost than wheisatassifying it as 2 and a lower cost than when
classifying it as 4), improves the results on thal@ation dataset by more than 20% (Table 9). Ehis
done by the application of a cost matrix to theataissification matrix before evaluating accuracy. |
our case, we used the following cost matrix:

Table 9. Classification accuracies for original (90%) am$earved (10%) subsets after
applying costs for degree of misclassification.

AD (original AD (original data)  AD (reserved  AD (reserved data)

data) after applying cost data) after applying costs
Lobulation 54.52% 67.99% 36.41% 61.48%
Malignancy 90.65% 93.65% 35.75% 62.91%
Margin 75.62% 84.75% 46.46% 70.74%
Sphericity 86.65% 90.60% 57.49% 75.44%
Spiculation 50.85% 58.95% 34.92% 49.79%
Subtlety 83.35% 89.37% 15.03% 51.01%
Texture 54.32% 70.51% 47.46% 63.47%
Average 70.85% 79.40% 39.07% 62.126

Furthermore, we investigated the influence of thygetof classifier on the accuracy of single
classifiers and our proposed ensemble of classitgproach. Tables 10 and 11 show how single
classifiers compare to ensembles, for both decisiEgs and support vector machines (In the case of
the ensembles, decision trees and support vectonines serve as the base classifier). In averhge, t
performance of an ensemble always exceeds the rpenfice of a single classifier, and the
performance of the support vector machine almosayd exceeds the performance of the decision
tree. In particular, the support vector machinesdoetter on the reserved data set, meaning thegupp
vector machine generalizes better than the decisten

Table 10. Classification Accuracy of decision trees on faliiginal and reserved data sets
(single classifievs.ensemble of classifiers).

DT DT ensemble
full original reserved full original reserved
Lobulation 49.40%  49.39% 18.60%  54.53%  54.52% 36.41%
Malignancy 39.11%  39.44% 31.00%  89.89%  90.65% 35.75%

Margin 38.56%  38.54% 36.11%  75.67%  7562%  46.46%
Sphericity 34.21%  33.89% 14.26%  87.47%  86.65% 57.49%
Spiculation 59.43%  60.24% 33.53% 50.17%  50.85% 34.92%
Subtlety 38.11% 38.87% 25.14%  81.73%  83.35% 15.03%
Texture 66.74%  67.26% 40.88%  53.90%  54.32%  47.46%

Average 46.51%  46.80% 28.50% 70.48%  70.85% 39.07%
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Table 11.Classification Accuracy of support vector machiordull, original and reserved
data sets (single classifies.ensemble of classifiers).

SVM SVM ensemble
full original reserved Full original reserved
Lobulation  60.02%  63% 55.02% 67.64%  69.87% 66.98%
Malignancy  50.45%  51.28% 36.15% 77.49%  78.16% 62.91%
Margin 45.68%  45.69% 17.51% 63.83%  61.9% 37.32%
Sphericity 42.96% 42.16% 33.18% 64.15%  64.45% 53.98%
Spiculation  69.23%  69.54% 56.54% 80.8%  80.42% 59.49%
Subtlety 45.64%  45.24% 24.19% 66.28%  66.41% 54.83%
Texture 73.69%  75.98% 57.51% 88.92%  89.06% 69.94%
Average 55386 55.78%  40.0% 727% 72.8% 57.92%

4.2. Accuracy results versus variability index

The variability index was calculated for all LID@dules, specifically on those image instances that
represented the slices containing the largest afrébe nodule. The five number summaries for the
distribution of the variability index had the folng values: min = 0, first quartile (Q1) = 1.3165,
median = 1.9111, third quartile (Q3) = 2.832, maB855842. Then we calculated the five-number
summary of the variability index for two subsetbe tmisclassified instances and the correctly
classified instances with respect to each charnatiterRegardless of the characteristic, we leathat
those instances with low variability index (<= 1)58ere correctly classified by the ensemble of
classifiers and all those instances with high \mlitg index (>= 4.95) were misclassified by the
ensemble of classifiers. Given that variabilityemdvalues greater than 5.12 (3 Q1.5 x (Q— Q)
indicate potential outliers in the boundary delii@a we conclude that the ensemble of classifiers
able to correctly classify instances with largeafaitity in the nodule boundaries.

4.3. Ensemble of classifiers’ predictions versyseeixpanel agreement

Furthermore, we measured the agreement betweempahel of experts and our ensemble of
classifiers using both kappa and weighted kappestta for different levels of agreement. The fesu
(Table 12) show that higher levels of agreemertymegher kappa statistics. Furthermore, we noticed
that weighted kappa statistics better capturedldliel of agreement than the non-weighted kappa
statistic across different reference truths in ¢base of being more consistent when going from one
level of agreement to another. With the exceptibrsmculation and texture, the weighted kappa
statistics for all the other five characteristios the entire LIDC dataset showed that the ensewible
classifiers was in ‘moderate’ agreement or bett®ub&tantial’ or ‘almost perfect’) with the LIDC
panel of experts when there were at least thraelomists who agreed on the semantic charactesistic
Furthermore, when analyzing these five semanticaceristics with respect to the other two refeeenc
truths, we learned that the ensemble of classifiers in ‘fair’ or ‘moderate’ agreement with the pan
of experts.
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Table 12.Kappa statistics of different agreement level stdbsf a new LIDC dataset.

Agreement level At least 3 At least 2 At least 1

Characteristic K Kw K Kw K Kuw
Lobulation 0.10 0.4 0.06 0.27 0.06 0.24
Malignancy 0.82 0.89 0.38 0.63 0.28 0.55
Margin 0.45 0.59 0.28 0.39 0.22 0.29
Sphericity 0.7 0.78 0.3 0.46 0.23 0.4
Spiculation 0.05 0.27 0.04 0.24 0.04 0.22
Subtlety 0.51 0.66 0.35 0.48 0.26 0.39
Texture 0.03 0.2 0.05 0.19 0.05 0.18

Figures 6-12 present a visual overview of the eb$emf classifiers’ agreement with the panel of
experts’ opinions. In this visualization, we wengerested not only in the “absolute” accuracy @& th
classifier, but also in how the classifier did withgard to rater disagreement. For each semantic
characteristic, we have displayed four graphs. Emoh of these graphs corresponds to a distinct
number of raters. That is, we show one graph folutes rated by one radiologist (upper left graph in
each figure), one graph for nodules rated by twibotagists (upper right graph in each figure), one
graph for nodules rated by three radiologists (lot graph in each figure) and one graph for neslu
rated by four radiologists (lower right graph incleafigure). In each graph, we have a bar
corresponding to the number of radiologists whiah @gorithm predicted correctly. (Thus the graphs
with more radiologists have more bars.) The hegjtlihe bars shows how many nodules there were in
each level of prediction success. Looking at jhstheight of these bars, we can see that our itassi
success was quite good with respect to most ofsémeantic characteristics — these characteristics
present very right-skewed distributions. Lobulati@piculation and texture present more uniform
distribution, meaning our classifier was less sasfié at predicting the radiologists’ labels. We
present one further visualization in these graphshdar is gray-coded to indicate the radiologists’
level of agreement among themselves. (Thus, fomeie the upper left graph, one radiologist, has no
gray-coding, as a radiologist will always agreewitmself.) This gray-coding allows us to see that
approach is much better at matching radiologisterwtine radiologists agree with themselves. While
this, in itself, is not surprising, it does revehht for the troublesome characteristics (lobufgtio
spiculation and texture) the algorithm does a \gogd job when we look only at higher levels of
radiological agreement.



Algorithms2009 2

Figure 6. Visual overview of the ensemble
experts’ opinions (Lobulation).
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Figure 7. Visual overview of the ensemble of classifierstemgnent with the panel of
experts’ opinions (Malignancy).
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Figure 8. Visual overview of the ensemble of classifierstemgnent with the panel of
experts’ opinions (Margin).
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Figure 9. Visual overview of the ensemble of classifiersresgnent with the panel of
experts’ opinions (Sphericity).
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Figure 10. Visual overview of the ensemble of classifierstemment with the panel of
experts’ opinions (Spiculation).
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Figure 11. Visual overview of the ensemble of classifierstesgnent with the panel of
experts’ opinions (Subtlety).
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Figure 12. Visual overview of the ensemble of classifierstesgnent with the panel of
experts’ opinions (Texture).
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5. Conclusions

In this paper, we presented a semi-supervised ifgprapproach for predicting radiologists’
interpretations of lung nodule characteristics i §&ans based on low-level image features. Our
results show that using nodules with a high levelagreement as initially labeled data and
automatically labeling the data on which disagresnexists, the proposed approach can correctly
predict 70% of the instances contained in the @ataBhe performance represents a 24% overall
improvement in accuracy in comparison with the tgstoduced by the classification of the dataset by
classic decision trees. Furthermore, we have shtwah using balanced datasets, our approach
increases its prediction accuracy by 45% over tlass@ decision trees. When measuring the
agreement between our computer-aided diagnostiaciegization approach and the panel of experts,
we learned that there is a moderate or better agmee between the two when there is a higher
consensus among the radiologists on the paneltdedst a ‘fair’ agreement when the opinions among
radiologists vary within the panel. We have alsanid that high disagreement in the boundary
delineation of the nodules also has a significdifiece on the performance of the ensemble of
classifiers.

In terms of future work, we plan to explore furtiié) different classifiers and their performance
with respect to the variability index in the exixin of improving our performance, (2) 3D features
instead of 2D features so that we can includehalgixels in a nodule without drastically increasin
the image feature vector size, and (3) integratifoiiie imaging acquisition parameters in the ensemb
of classifiers so that our algorithm will be stabiehe face of images obtained from different nisde
of imaging equipment. In the long run, it is oumaio use the proposed approach to measure the level
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of inter-radiologist variability reduction by suppig our CAD characterization approach in between
the first and second pass of radiological integiren.

References

10.

11.

Armato, S.G.; McLennan G.; McNitt-Gray, M.F.; e, C.R.; Yankelevitz, D.; Aberle,D.R.;
Henschke, C.l.; Hoffman, E.A.; Kazerooni, E.A.; Nlé&hon, H.; Reeves, A.P.; Croft, B.Y.;
Clarke, L.P.; Lung Image Database Consortium Rebedbroup. Lung image database
consortium: Developing a resource for the mediceging research communiffadiology2004
232, 739-748.

Raicu, D.; Zinovev, D.; Furst, J.; Varutbangkkl, Semi-supervised learning approaches for
predicting lung nodules semantic characteristi®ll. Decis. TechnoR009 3, No. 2.

Chapelle, O.; Schoélkopf, B.; Zien, ASemi-Supervised LearningMIT: Cambridge, MA,
USA, 2006.

Cohen, J. Weighted kappa; nominal scale agrelemiéim provision for scaled disagreement or
partial creditPsychol. Bull1968 70, 213-220.

McNitt-Gray, M.F.; Hart, E.M.; Wyckoff, N.; Sagr J.W.; Goldin, J.G.; Aberle, D.R. A pattern
classification approach to characterizing solitasymonary nodules imaged on high resolution
CT: Preliminary resultdvied. Phys1999 26, 880—888.

McNitt-Gray, M.F.; Wyckoff, N.; Sayre, J.W.; Gbh, J.G.; Aberle, D.R. The effects of
co-occurrence matrix based texture parametersenl#ssification of solitary pulmonary nodules
imaged on computed tomograpl@omput. Med. Imaging Grapt999 23, 339-348.

Lo, S.C.B.; Hsu, L.Y.; Freedman, M.T.; Lure, YAt Zhao, H. Classification of lung nodules in
diagnostic CT: An approach based on 3-D vasculatufes, nodule density distributions, and
shape features. IRroceedings of SPIE Medical Imaging ConferenSan Diego, CA, USA,
February, 2003; pp. 183-189.

Armato, S.G., lll; Altman, M.B.; Wilkie, J.; SenS.; Li, F.; Doi, K.; Roy, A.S. Automated lung
nodule classification following automated noduléedéon on CT: A serial approaciled. Phys.
2003 30, 1188-1197.

Takashima, S.; Sone, S.; Li, F.; Maruyama, Yaséfawa, M.; Kadoya, M. Indeterminate solitary
pulmonary nodules revealed at population-based c@desing of the lung: using first follow-up
diagnostic CT to differentiate benign and maligné&gions. Am. J. RoentgenoR003 180,
1255-1263.

Takashima, S.; Sone, S.; Li, F.; Maruyama, Mfasegawa, M.; Matsushita, T.; Takayama, F.;
Kadoya, M. Small solitary pulmonary nodules (<1 amejected at population-based CT screening
for lung cancer: reliable high-resolution CT feawof benign lesiongdam. J. RoentgenoR003
180, 955-964.

Shah, S.; McNitt-Gray, M.; Rogers, S.; Goldln,Aberle, D.; Suh, R.; DeZoysa, K.; Brown, M.
Computer-aided lung nodule diagnosis using a singhesifier. Int. Congr. Ser.2004 6,
952-955.



Algorithms2009 2 1498

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Holte, R.C. Very simple classification rulesfpem well on most commonly used dataséis.ch.
Learning1993 11, 63-91.

Samuel, C.C.; Saravanan, V.; Vimala, D.M.R. d.urodule diagnosis from CT images using
fuzzy logic. In Proceedings of International Conference on Compoal Intelligence and
Multimedia ApplicationsSivakasi, Tamilnadu, India, December 13-15, 2@p7;159-163.
Sluimer, I.; Schilham, A.; Prokop, M.; Ginnek& Computer analysis of computed tomography
scans of the Lung: A surveleEE Trans. Med. Imaging00§ 4, 385-405.

Goldin, J.G.; Brown, M.S.; Petkovska, |. Conguaided diagnosis in lung nodule assessnient.
Thoracic Imaging2008 23, 97-104.

Gurney, J. Determining the likelihood of mahgey in solitary pulmonary nodules with Bayesian
analysis. Part |. TheorRadiology1993 186 405-413.

Gurney, J.; Lyddon, D.; McKay, J. Determininige tlikelihood of malignancy in solitary
pulmonary nodules with Bayesian analysis. Paipplication.Radiology1993 186 415-422.
Matsuki, Y.; Nakamura, K.; Watanabe, H.; AoKi, Nakata, H.; Katsuragawa, S.; Doi, K.
Usefulness of an artificial neural network for di#ntiating benign from malignant pulmonary
nodules on high-resolution CT: Evaluation with ligee operating characteristic analysisn. J.
Roentgenol2002 178 657—-663.

Aoyama, M.; Li, Q.; Katsuragawa, S.; Li, F.;n8p S.; Doi, K. Computerized scheme for
determination of the likelihood measure of malignafor pulmonary nodules on low-dose CT
imagesMed. Phys2003 30, 387-394.

Kahn, C.; Channin, D.; Rubin, D. An ontology RACS integrationJ. Digital Imaging2006 12,
316-327.

Barb, A.S.; Shyu, C.R.; Sethi, Y.P. Knowledgpresentation and sharing using visual semantic
modeling for diagnostic medical image databa$eEE Trans. Inf. Technol. Biome@005 9,
538-553.

Ebadollahi, S.; Coden, A.; Tanenblatt, M.A.;a@h, S.F.; Syeda-Mahmood, T.F.; Amir, A.
Concept-based electronic health records: Opportsndénd challengeACM Multimed.2006
997-1006.

Ebadollahi, S.; Johnson, D.E.; Diao, M. Reingvclinical cases through a concept space
representation of text and imag8®IE Med. Imaging Symp008, (submitted).

Nie, K.; Chen, J.H.; Yu, H.J.; Chu, Y.; NaldiwgO.; Su, M.Y. Quantitative analysis of lesion
morphology and texture features for diagnostic jgtexh in breast MRIAcad. Radiol2008 15,
1513-1525.

Liney, G.P.; Sreenivas, M.; Gibbs, P.; Garcieafez, R.; Turnbull, L.W. Breast lesion analysis o
shape technique: Semi-automawsdManual morphological descriptiod. Magn. Reson. Imaging
2006 23, 493-498.

Raicu, D.S.; Varutbangkul, E.; Cisneros, J.R&urst, J.D.; Channin, D.S.; Armato, S.G., Il
Semantics and image content integration for pulmonaodule interpretation in thoracic
computed tomography. IRroceedings of SPIE Medical Imaging Conferensan Diego, CA,
USA, February, 2007.



Algorithms2009 2 1499

27.

28.

29.

30.

31.

32.

33.
34.

35.

36.

37.

38.

39.

40.

41.
42.

Raicu, D.S.; Varutbangkul, E.; Furst, J.D.; Ato) S.G., lll. Modeling semantics from image
data: opportunities from LIDAnt. J. Biomed. Eng. Techn@008 1-22.

Opulencia, P.; Channin, D.S.; Raicu, D.S.; £uWr$®. Mapping LIDC, RadLex, and Lung nodule
image featuresl. Digital Imaging2009, (in press).

Cohen, J. A coefficient of agreement for noriszale. Educat. Psychol. Measurd&96Q 20,
37-46.

Fleiss, J.L. Measuring nominal scale agreenaembng many raterd?sychol. Bull.1971 76,
378-382.

Landis, J.R.; Koch, G.G. An application of hrehical Kappa-type statistics in the assessment of
majority agreement among multiple observ8ismetrics1977 33, 363-374.

Landis, J.R.; Koch, G.G. The measurement oéives agreement for categorical d&@eémetrics
1977 33, 159-174.

Kraemer, H.C. Extension of the kappa coefficiBrometrics198036, 207-216

Fleiss, J.L. Measuring nominal scale agreenaembng many raterd?sychol. Bull.1971 76,
378-382.

Viera, A.J.; Garrett, J.M. Understanding inte@rver agreement: The Kappa statigtam Med.
2005 5, 360—-363.

McNitt-Gray, M.F.; Armato, S.G., lll.; Meyer,.R.; Reeves, A.P.; McLennan, G.; Pais, R.C,;
Freymann, J.; Brown, M.S.; Engelmann, R.M.; BlaRd.; Laderach, G.E.; Piker, C.; Guo, J.;
Towfic, Z.; Qing, D.P.; Yankelevitz, D.F.; Aberld.R.; van Beek, E.J.; MacMahon. H.;
Kazerooni, E.A.; Croft, B.Y.; Clarke, L.P. The Lunignage database consortium (LIDC) data
collection process for nodule detection and animmtafcad. Radiol2007, 12, 1464-1474.

Philips, C.; Li, D.; Furst, J.; Raicu, D. An alysis of Co-occurrence and gabor texture
classification in 2D and 3D. IRroceedings of CAR8arcelona, Spain, 2008.

Melville, P.; Mooney, R. Constructing diverstassifier ensembles using artificial training
examples. InProceedings of 18th International Joint Confererme Artificial Intelligence
Acapulco, Mexico, 2003; pp. 505-510.

Melville, P.; Mooney, R. Diverse ensembles dotive learning. IrProceedings of International
Conference on Machine Learninganff, Alberta, Canada, July, 2004; pp. 584-591.

Weka 3 - Data Mining with Open Source Machine LewyrSoftware in JavaAvailable online:
http://www.cs.waikato.ac.nz/ml/weka/ (accessed Ddmr 30, 2008).

Mitchell, T.M.Machine LearningMcGraw-Hill: New York, NY, USA, 1997.

Siena, S, Zinoveva, O., Raicu, D.; Furst J.aAamd shape-dependent variability metric for
evaluating panel segmentations of lung nodulesliCLdata. InProceedings of SPIE Medical
Imaging ConferengeSan Francisco, CA, USA, February, 2010, (accépted



Algorithms2009 2 1500

Appendix

Image feature name | I mage feature calculation

For all haralick features for each combinationsdirfections (0, 45,
90, 135) and distances (1, 2, 3, 4) generate cadwence matrix for
given image (nodule with background) and calculatedescriptors
as described below. Afterwards average each descrgross all

direction/distance pairs. M and N represent resolutvector at row
and column respectivelys, u,,0?,07 are the mean and variance of

row and column.

clusterTendency = Z Z[I — .t §— ) ZP:';'
[ 7

M N
contrast = ZZ[: —jsz[-J,-

clusterTendency

contrast
. ZZ (= e, ) — pg )Py,
correlation =
. 2 " J
correlation
ENEY gV = ZZ F..
energy
entropy = —Z Z P[.j.IogP[.}.
entropy T

MW
, Pf}'
homagenity = Z Z .
— £ |1}
[
M
. . Pf}'
inverselVariance = Z Z —
(i—J)

. . mProbabilit P,
maximumProbability maximumProbability = ﬂaﬁ i

1
sumdverage = Ez Z{iPU- + 7P
f H
M N
, P:'_;"
thirddrder Moment = ZZ —_—
— L1+ (1= 5)°
i

M N
1
variance = Ez Z{{I _F'rr:'zpfj + _F'E]ZP:'_;':'

homogeneity

inverseVariance

sumAverage

thirdOrderMoment

variance
Gabormean_0 03 Each of the Gabor responses is g&teby building a Gabor filter
GaborSD_0 03 of size 9x9 and convoluting it with the processedge. Filter is build

Gabormean_0 04 | as follows:
GaborSD_0_04
Gabormean 0 05 |xg=x*cosf +y+*5inf
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GaborSD 0 05

Gabormean_45 03

GaborSD 45 03

Gabormean_45 04

GaborSD 45 04

Gabormean_45 05

GaborSD 45 05

Gabormean 90 03

GaborSD 90 03

Gabormean 90 04

GaborSD 90 04

Gabormean_ 90 05

GaborSD 90 05

Gabormean_ 135 03

GaborSD 135 03

Gabormean_ 135 04

GaborSD 135 04

Gabormean_ 135 05

GaborSD_135_05

Vg=—x*sinf+y*cosd

— DSy Tepg
gaunssian = e LS

QM ET,

harmonic = sin( ;

G [5x + x5, + }r] = gaussian * harmonic

Where:

5_ - width

S,, - height

a - Width of Gaussian

y - Spatial aspect ratio. Should be .5
A — Distance

& - Direction

4 directions (8, 45°, 90, 13%)) and 3 distances (.3, .4, .5) give us 1
response images in total for each of them we geliZes - response’s

mean and standard deviation

N

MarkovO r represents pixel location on the imagés the size of estimation
Markovil window, j = 1, 2, 3, 4 and, stands for specific direction.
Markov?2 Calculate 4 features corresponding to 4 differenections (6, 45,
Markov3 ac®, 13%)
1
fi= 0= [3 — 8;Q,(r)]°
(u) &
ratrielia)
And the variance as5feature
1 -

o= I:‘I.sz [}F'r - GQ[TJ]E
Markov4 raFrieR(s)
area Number of pixels inside the outline
convexArea Number of pixels inside the outlinersvea hull

. . 4w Earea
circularity circularity = conpex Perimeter?
perimeter Perimeter of the outline in pixels
convexPerimeter Perimeter of the outline’s conudkih pixels
canvexLerimeter

roughness = .

roughness perimeter
2

equitDNameter = — *y/ area

equivDiameter i VI

majordxislength=a + b

majorAxisLength
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Where: a,b are the distances from each focus ygpamt on the
ellipse

minorAxisLength

minordxisLength =/ (a + b)? — ¢
Where: f is the distance between foci
a,b are the distances from each focus to any mwirthe ellipse

. mejordxisLergth
) elongation = — .
elongation minordxisLength
in verimeter’
compactness eSS v 7 * aren

eccentricity

minorAxizLen gt

:IZ

meforAxizLength . o
( : F-( ;

eccentricity = 2 *

mejordxizlength

oyYen

solidity solidity = ———
. arei
extent exient = area of bounding box
radialDistanceSD Standard deviation of radial distas of all pixels of the nodule
minintensity Minimal intensity of the nodule

maxintensity

Maximum intensity of the nodule

meanlintensity

Average intensity of the nodule

SDIntensity

Standard deviation of intensity @& ttlodule

minintensityBG

Minimal intensity of the nodule’sckground

maxIntensityBG

Maximum intensity of the nodul@skiground

meanintensityBG

Average intensity of the nodddatskground

SDIntensityBG

Standard deviation of intensityhefnodule’s background

intensityDifference

intensityDif ference = abs{meanintensity — meanintensityvBG )
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