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Abstract. Normalized Information Distance, based on Kolmogorov com-
plexity, is an emerging metric for image similarity. It is approximated
by the Normalized Compression Distance (NCD) which generates the
relative distance between two strings by using standard compression al-
gorithms to compare linear strings of information. This relative distance
quantifies the degree of similarity between the two objects. NCD has been
shown to measure similarity effectively on information which is already a
string: genomic string comparisons have created accurate phylogeny trees
and NCD has also been used to classify music. Currently, to find a simi-
larity measure using NCD for images, the images must first be linearized
into a string, and then compared. To understand how linearization of a
2D image affects the similarity measure, we perform four types of lin-
earization on a subset of the Corel image database and compare each for
a variety of image transformations. Our experiment shows that differ-
ent linearization techniques produce statistically significant differences
in NCD for identical spatial transformations.
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1 Introduction

Image similiarity applications spann from medical image retrieval to security
and intellectual property and is an important research topic in the imaging field.
Recently, research has applied derivations of Kolmogorov complexity (K(x)) in
order to measure image similarity because its they provide a universal distance
measure [10]. First proposed by M. Li et al., Normalized Compression Distance
(NCD) quantifies object similarity by calculating the compressed sizes of two
strings and their concatenation [10].



2 Mortensen Wu Furst Rogers Raicu

In [10], [11], [4], normalized compression distance (NCD) has been shown
to yield promising results in constructing phylogeny trees, detecting plagiarism,
clustering music, and performing handwriting recognition. These results demon-
strate the generality and robustness of NCD when comparing one dimensional
data. The simplicity of NCD presents an automatic way of grouping related
objects without the complicated task of feature selection and segmentation.

In [7] the compressed size of the concatenation of x and y is used to estimate
K(xy) as well as K(yx). Compressors search for sequences shared between x and
y in order to reduce the redundancy in the concatenated sequences. Therefore,
if the result of this compression is much smaller than the compression of x and
y separately, it implies that much of the information contained in x can be also
used to describe y.

To approximate the NCD between two images, image linearization accom-
panied with a variety of compression algorithms, has been applied. Kolmogorov
complexity is not computable but it can be approximated by using compres-
sion. Image compression is the notion that given a group of neighboring pixels
with the same properties, it is more efficient to use a single description for the
entire region. Thus, if image x is more complex than image y, the Kolmogorov
complexity of x, which is approximated by the size of compressed x, will be
larger than that of y. With lossy compression, a group of pixels can be replaced
with an average color to create a more compact description of the region, at the
expense of slight distortions. To make the best approximation of Kolmogorov
complexity, the best possible compression must be used. The approximation of
Kolmogorov complexity is limited by the fact that it is not possible to design
the best system of image compression: whichever compression we use, there is
always a possibility for improvement.

NCD determines image similarity based on the theory that the visual content
of an image is encoded into its raw data. Theoretically, this makes NCD a suitable
metric for Content-Based Image Retrieval (CBIR) which attempts to find similar
images based on a query image’s content. The application of NCD for CBIR in [7]
has shown to produce statistically significant dissimilarity measures when tested
against a null hypothesis of random retrieval. The NCD between images was used
as a metric to search the visual content encoded in the raw data directly, thus
bypassing feature selection and weighting. This approach performed well even
when compared against several feature based methods. Although the approach
in [7] uses a variety of real-world data sets, different compressors were used for
each experiment and the method of linearization was unclear. In particular, the
ability of a string to represent a 2D image is not clear. This paper expects to
determine the effects of different methods of linearization on NCD.

Similarly, [13] investigates the parameters of visual similarity and verifies
that NCD can be used as a predictor for image similarity as experienced by
the human visual system. While NCD performs well as a model for similarities
involving addition or subtraction of parts, it fails to determine similarity among
objects that involve distortions involving form, material, and structure. Results
also imply that when two images are very similar, this similarity may be better
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approximated by other similarity measures, such as the pixel-by-pixel difference
of two images. Although [13] determined that the use of different compression
algorithms and transformations have varying effects on NCD, only one photo-
graph and one type of linearization (row-by-row) was used for NCD calculations.
Therefore, it is unclear whether the results are universally applicable to images
of different content. We present an experiment to illustrate the effects of different
methods of linearization and transformations on a database of 100 images.

Due to the compression approximation of Kolmogorov complexity, all of the
above examples create a linear string from a 2D image and then find its relative
similarity to other strings and therefore other images. Each string was created
with a linearization technique; however, an effective formal analysis was not
conducted to evaluate the impact of the linearization method. Each lineariza-
tion produces a distinctly different string and it is important to understand how
the 2D signal (image) is converted to a 1D string. Thus, a question is still left
standing: Can a string effectively represent a 2D image? This paper explores four
different linearization techniques and their impact on the similarity measure of
spatially transformed images, and tests the null hypothesis that all lineariza-
tions result in the same NCD across several transformations. Section 2 describes
the basis of Kolmogorov Complexity, presents the methodology behind the four
linearization techniques: Row-Major, Column-Major, Hilbert-Peano, and Self-
Describing Context Based Pixel Ordering (SCPO) and presents the methodology
of producing the dataset; Section 3 shows results of measuring image similarity
distance between an image and a spatially transformation version of an image;
and Section 4 contains discussion along with comments on future work.

2 Methodology

2.1 Kolmogorov Complexity and Derivations

To understand the necessity of linearization, a short derivation of Kolmogorov
complexity is helpful. Kolmogorov complexity describes the smallest number of
bits used to represent an object x [12]. K(x) is the length of the shortest program
or string x* to produce x. Furthermore, conditional Kolmogorov complexity,
K(x∣y), is the length of the shortest program to compute x given y. The condi-
tional complexity of two objects begins the notion of similarity. Building upon
conditional complexity, information distance, E(x, y), is the max{K(x∣y),K(y∣x)}
and describes the absolute bit change needed to convert one object into another.
E(x, y) is not normalized. Normalization provides the Normalized Information
Distance (NID),

NID(x, y) =
max{K(y∣x∗),K(x∣y∗)}

max{K(y),K(x)}
. (1)

NID describes the theoretical conception of object similarity. It is shown by
[10] that this measure is universal, in that it captures all other semi-computable
normalized distance measures. However, because this measure is also upper semi-
computable, the complexity of an object, K(x), is approximated using modern
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compression algorithms, denoted by C(x). This is referred to as the Normalized
Compression Distance,

NCD(x, y) =
C(xy)−min{C(x), C(y)}

max{C(x), C(y)}
. (2)

This is the standard formula applied to most applications of Kolmogorov com-
plexity similarity measures and also the basic algorithm used in the CompLearn
toolkit[2]. Because this approximation uses compression, and compression tech-
niques currently depend on string inputs, the images must be transformed into
linear strings [10]. We present four common linearization methods.

2.2 Linearization Methods

The scan-line is a standard scanning method that traverses an image line by line.
There are two main scan-line methods: Row-Major and Column-Major. Row-
Major concatenates pixel intensities to a string row by row, starting with the
upper left pixel and then continuing across the row, and then proceeding down
each row. Column-Major follows much the same, but begins in lower right pixel
and continues up the first column, before moving toward the right, proceeding
column by column. There are variations to this, but all are in a linear fashion.

The Hilbert-Peano curve tranverses all pixels in a quadrant of an image before
it linearizes the next quadrant and as a result, this method of linearization
has an inherently strong locality property [9]. The Hilbert-Peano space-filing
curve guides the exploration of a two dimensional array and linearizes it into
a continuous one dimensional string that contains information from all pixels
in the plane while respecting neighborhood properties. As described by [9], a
Hilbert-Peano curve subdivides a unit square into four sub-parts and after a finite
number of well adapted iterations, every pixel is captured by the Hilbert-Peano
curve. The Hilbert-Peano Curve can be approximated by self similar polygons
and grows recursively following the same rotation and reflection at each vertex of
the curve. The self similarity of polygons allows efficient computation of discrete
versions of curves while preserving locality. Therefore, a search along a space-
filling linearization will result in points that are also close in the original space.
This type of linearization is simple and requires no contextual knowledge of the
data set. In [5], the fixed space-filling curve approach has been shown to use
much less computational resources compared to clustering and other context-
based image linearizations. The entropy of a pixel-sequence obtained by Hilbert-
Peano curves converges asymptotically to the two-dimensional entropy of the
image, resulting in a compression scheme that is optimal with encoders that
take advantage of redundant data [6].

[6] also proposes the use of a context-based space filing curve to exploit
the inherent coherence in an image. Ideally, an adaptive context-based curve
would find and merge multiple Hamiltonian circuits to generate a context-based
Hamiltonian path that would traverse every pixel. [8] proposes a self-describing
context-based pixel ordering for images that uniquely adapts to each image at
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hand and is inherently reversible. SCPO uses pixel values to guide the exploration
of the two-dimensional image space, in contrast to universal scans where the
traversal is based solely on the pixel position [8]. SCPO incrementally explores
the region by exploring sections with pixel intensities most similar to a current
pixel and by maintaining a frontier of pixels that has already been explored.
Neighboring pixels around the current pixel are added to the frontier and are
concatenated to a string. Then, the pixel in the frontier with the closest intensity
to the starting point is chosen as the next point about which to explore and is
also removed from the frontier. The outcome is a one-dimensional representation
of an image with enhanced autocorrelation. Empirical results in [8] show that this
method of linearization, on average, improves the compression rate by 11.56%
and 5.23% compared to raster-scans and Hilbert-Peano space-filling curve scans,
respectively.

Fig. 1. Linearization of four images. Beginning in upper left, Row-Major, Column-
Major, Hilbert, SCPO

2.3 Null Hypothesis Test

To gain an understanding of the effects of linearization on an image, a similar-
ity test is chosen in which theoretically, linearization should not affect results.
Although different methods of linearizations produce distinct strings, identical
spatial transformations to the image would theoretically result in the same NCD.
In this experiment, a battery of spatial transformations is applied to a large stan-
dard image library. The resulting image transformations are then compared to
the original and the relative similarity distance is calculated. This process is
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done for each of the described linearization techniques from Section 2.2. Our
null hypothesis, Eq. 3, states that each linearization technique produces the
same relative distance for each transformation. This would demonstrate that
linearization can effectively represent a 2D image.

Our null hypothesis Ho states that different types of linearizations will pro-
duce the same NCD values across identical spatial transformations of images.
Our alternative hypothesis states that at least one of the linearizations will pro-
duce a different NCD across identical spatial transformations. Formally, the null
hypothesis and alternative hypothesis are presented as follows:

Ho : ∀s, t NCDs(x, y) = NCDt(x, y) s ∕= t (3)

Ha : ∃s, t NCDs(x, y) ∕= NCDt(x, y) s ∕= t (4)

where s,t denote any of the 4 different linearizations, x denotes the original image
and y denotes one of the 7 spatial transformations comparisons.

2.4 Dataset and Transformations

In this experiment, we selected 100 images from the Corel image database and
converted the color images to grayscale by calculating a weighted sum of R, G,
and B components using the following equation:

I = 0.2989× R + 0.5870×G + 0.1140× B (5)

To measure the effect of linearizations on different spatial transformations,
we employed 7 different types of transformations. The original bitmap image has
8 different versions: original, left shifted, down shifted, 90∘, 180∘, 270∘ rotation
clockwise, and reflections across the x and y axis. All transformations were au-
tomated for 100 original images in Photoshop 7.0, thus creating a experimental
test set of 100 originals x 8 versions = 800 images. Shifted versions were trans-
lated 35 pixels. It should be noted that the empty space created by these shifts
were replaced by white (255, 255, 255) pixels in Photoshop 7.0.

Using Matlab, we linearized the 800 bitmap images into text files by extract-
ing gray level intensities from each pixel in four different fashions. Row-by-row
(from left to right) and column-by-column (from bottom to the top) lineariza-
tion were performed by concatenating pixel intensities to a string. To linearize
an image in a column-by-column fashion, the image is flipped 90∘ clockwise
and then linearized row-by-row. The image is also linearized using a Hilbert-
Peano space-filling curve which grows incrementally, but is always bounded by
a square with finite area. The mathmatical deconstruction of the Hilbert-Peano
curve can be found in [9]. For each image, a position p(j) is computed along each
step in a Hilbert-Peano traversal of space. Then, our algorithm incrementally
reads gray-level values from an image at these coordinates. Thus, in order for
a Hilbert-Peano space-filling curve to traverse every pixel within the image, the
image is resized to 128x128 pixels, potentially distorting the image. Similarly,
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Fig. 2. Spatial Transforms of an image. From left to right: Original, Left-Shift, Ref-Y,
Down-Shift, 90∘, 2700∘, Ref-X,180∘
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SCPO images are reduced to 35% of its size, preserving the aspect ratio, in order
to expedite the computationally-heavy SCPO process. All distorted and reduced
images were compared to images with the same distortion, removing any com-
parison problems. In total, 800 images x 4 linearizations = 3200 text files were
compared within their respective linearization groups.

2.5 CompLearn

For this experiment, we used NCD(x,y) and a block sorting compression algo-
rithm (bzip2) built into Complearn, a data analysis toolkit that provides rela-
tive compression ratios. Bzip2 exploits frequently recurring character sequences
to compress data and detects patterns within a 900 kilobyte window [1]. Since
this compression algorithm takes advantage of redundancy in an image to shrink
its representation, it approximates the semicomputable Kolmogorov complexity
of a string. The NCD(x,y) between two images is calculated using Complearn.
Complearn takes several text files and compresses them, noting the bit length
each and applies Eq. 2 to find the NCD between two images. Complearn ulti-
mately creates a data set that reflects normalized compression distances between
all permutations of two files. The smaller the difference or the closer the NCD is
to 0, the more similar the text files. Likewise, the less redundancy between text
files, the closer the NCD is to 1. Although a majority of the distances collected
were between 0 and 1, some distances were slightly above 1. In [10], [4], and
[3] this is not uncommon; when comparing files that share very little informa-
tion, sometimes NCD can reach values greater than 1. Theoretically, this can
be explained by the region in which C(xy) − min{c(x), c(y)} is greater than
max{c(x), c(y)}.

The NCD between JPEG compressed images was also calculated to provide
a reference for the bzip2 compression algorithm. To measure the NCD between
JPEGs, the Complearn toolkit was not used as JPEG compression is not inte-
grated. Instead, Eq. 2 was determined with bc (Linux). First, two images were
concatenated side by side in Matlab. Next, the concatenated image and the two
originals were compressed to JPEG losslessly in Matlab with 100% quality. To
find NCD(x, y), bc (Linux) was used with the file bit lengths of the resulting
files as inputs to Eq. 2. Comparisons between 90∘ and 270∘ rotations could not
be made because two images of differing dimensions could not be concatenated.

2.6 Statistical Analysis

The NCD between each of the transformations and the original image were
averaged for 100 images to find the overall effect of each spatial transformation
on NCD. To determine if different linearizations produced statistically different
NCD values, an analysis of variance (ANOVA) test was performed. ANOVA
is a well-known statistical test that compares mean square differences between
groups and within groups to determine whether groups of data are statistically
different from each other.
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3 Results

The results are presented in Table 1, which shows the average NCD for each
linearization from the original image to each transformation. This was done for
100 different images chosen from the food subset located in the Corel Image
Database. There are several interesting averages to note. Although row and col-
umn major linearization could not easily recognize the transformed image when
it is rotated, these methods of linearization produced significantly lower NCDs
when the original image was compared to the down shifted, left shifted image. In
addition, Hilbert-Peano and SCPO linearizations produced NCDs consistently
over 0.96 when comparing the original image to its shifted copies. With respect
to transformations across the y and x axis, for row major linearization the mean
NCD was 0.383669 when the original was compared to its transformation that
was reflected across the x axis, while for column major linearization the mean
NCD was 0.382232 when the original was compared to its transformation that
was reflected across the y axis. For 90∘ and 270∘ rotations, Hilbert-Peano lin-
earizations produced the lowest average NCDs at 0.949334 and 0.935854 respec-
tively while SCPO produced average NCDs around 0.96 consistently across all
transformations. For JPEG compression, nearly all NCD values are over 1, which
indicating that JPEG compression found little or no redundancies between the
concatenation of two images.

Table 1. Mean Normalized Compression Distance (NCD)

Transform Row Column Hilbert SCPO JPEG

Original 0 0 0 0 1.0011
Down-Shift 0.4661 0.4811 0.9697 0.9629 1.0072
Left-Shift 0.4676 0.4594 0.9683 0.9607 1.0050
90∘ 0.9726 0.9725 0.9493 0.9640
180∘ 0.9634 0.9698 0.9664 0.9658 1.0011
270∘ 0.9727 0.9726 0.9358 0.9630
Ref-X 0.3836 0.9697 0.9638 0.9640 1.0013
Ref-Y 0.963 0.3822 0.9353 0.9625 0.9976

The ANOVA test results are shown in Table 2. The standard p-value threshold of

0.05 was used to test if the type of linearization significantly affected the NCD measure

across transformations. ANOVA results show that different types of linearizations pro-

duce statistically significant differences in NCD for identical spatial transformations.

Therefore, we can reject the null hypothesis that different types of linearizations will

produce the same NCD values for spatial transformations. This suggests that images

may not be fully expressible as a string, at least using current compression algorithms.

It certainly indicates that the method of linearization does matter.
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Table 2. ANOVA Normalized Compression Distance (NCD)

Transform Grouping Sum of Sq. df Mean Square F Sig.

Down-Shift
Between Groups 24.29344 3 8.09781 13063.1 0*
Within Groups 0.24547 396 0.0006198
Total 24.5389 399

Left-Shift
Between Groups 25.1020 3 8.36735 14643.3 0*
Within Groups 0.226278 396 0.0005714
Total 25.32834 399

90∘
Between Groups 0.036090 3 0.01203 49.1997 4.78458E-27
Within Groups 0.096828 396 0.0002445
Total 0.132918 399

180∘
Between Groups 0.002070 3 0.0006 7.51982 6.62437E-05
Within Groups 0.036336 396 9.17588E-05
Total 0.038406 399

270∘
Between Groups 0.090856 3 0.03028 128.202 4.90716E-58
Within Groups 0.093547 396 0.0002362
Total 0.184404 399

Ref-X
Between Groups 25.42660 3 8.475535 55040.8 0*
Within Groups 0.060978 396 0.0001539
Total 25.48758 399

Ref-Y
Between Groups 24.561154 3 8.187051 27445.8 0*
Within Groups 0.118125 396 0.0002982
Total 24.67928 399

*Approximates to 0

4 Discussion and Conclusion

It is shown that linearization techniques affect the measured relative distance
between two images. Nearby pixels in one linearization may not be near to the
same pixel in another. Thus, when applying Kolmogorov complexity as a simi-
larity metric, careful consideration of linearization technique must used, a topic
which has not been explained or explored. Also, our data suggests that the use
of multiple linearizations for one comparison pair may be effective. Using row
major and column major linearization to calculate NCD may be better at captur-
ing similar information between shifted copies. Our results are consistent with
[13], which show that row-major calculations of NCD can easily capitalize on
shared information among shifted copies. Additionally, row major linearization
may best recognize images that share characteristics across the x axis while col-
umn major linearization may best capture likeness among images similar across
the y axis.

In addition, Hilbert-Peano and SCPO linearizations produced NCDs con-
sistently over 0.96 when comparing the original to its shifted copies, showing
that these types of linearizations may not easily capture similarity among im-
ages that are strongly shifted. Statistically significant values of NCD created by
Hilbert-Peano linearization show that Hilbert-Peano linearization may capture
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similarity among rotated copies better than other forms of linearizations in this
experiment. Although SCPO has been shown to enhance the autocorrelation
and compression ratio within a single image[8], in this study it does not seem to
effectively describe the similarities between two images. Other conversion meth-
ods may need to be sought out to find types of linearizations that are robust to
spatial transformations.

Also, JPEG compression, a standard image compression algorithm, produces
dissimilar values of NCD and is shown in this study to be ineffective for finding
image similarity. Image compression algorithms may not yet approximate Kol-
mogorov complexity and future work for image compression algorithms may need
to be done to bypass the potentially flawed linearization process. Nonetheless,
because linearization affects the NCD, clearly a string does not fully or totally
represent a 2D image. More consideration on this topic must be taken.

4.1 Future Work

Further investigation will include linearization’s effect on similarity distance with
regard to intensity transformations, such as intensity shifts, introduction of noise,
and watermarking. The degree of a transformational change and its correlation
to the degree of NCD change will also be measured. Additionally, compression
algorithms need to be more rigorously compared, and as [13] demonstrated,
there is a qualitative difference between the performance of different compres-
sion algorithms. [2] also mentions file size limitations to compression algorithms
that may limit the sizes of files compared. We expect that efficiently linearizing
an image would lead to greater compression ratio, which in turn would lead to
more meaningful values of NCD if similarity exists between two images. We also
expect that certain linearizations will generate NCDs that are more consistent
with similarity measured by the human visual system and thus be more robust
to spatial transformations. Furthermore, linearizing an image into a one dimen-
sional string may not be the best method to represent an image. To accurately
approximate the Normalized Information Distance between two images, other
forms of image compression will need to be investigated.
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