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Abstract. Scale-space feature hierarchies can be conveniently repre-
sented as graphs, in which edges are directed from coarser features to
finer features. Consequently, feature matching (or view-based object match-
ing) can be formulated as graph matching. Most approaches to graph
matching assume a one-to-one correspondence between nodes (features)
which, due to noise, scale discretization, and feature extraction errors,
is overly restrictive. In general, a subset of features in one hierarchy,
representing an abstraction of those features, may best match a sub-
set of features in another. We present a framework for the many-to-
many matching of multi-scale feature hierarchies, in which features and
their relations are captured in a vertex-labeled, edge-weighted graph. The
matching algorithm is based on a metric-tree representation of labeled
graphs and their low-distortion metric embedding into normed vector
spaces. This two-step transformation reduces the many-to-many graph
matching problem to that of computing a distribution-based distance
measure between two such embeddings. To compute the distance be-
tween two sets of embedded, weighted vectors, we use the Earth Movers
Distance under transformation. To demonstrate the approach, we tar-
get the domain of multi-scale, qualitative shape description, in which
an image is decomposed into a set of blobs and ridges with automatic
scale selection. We conduct an extensive set of view-based matching tri-
als, and compare the results favorably to matching under a one-to-one
assumption.
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1 Introduction

The problem of object recognition is often formulated as that of matching con-
figurations of image features to configurations of model features. Such config-
urations are often represented as vertex-labeled graphs, whose nodes represent
image features (or their abstractions), and whose edges represent relations (or
constraints) between the features. For scale-space structures, represented as hi-
erarchical graphs, relations can represent both parent/child relations as well as
sibling relation. To match two graph representations (hierarchical or otherwise)
means to establish correspondences between their nodes. To evaluate the quality
of a match, one defines an overall distance measure, whose value depends on
both node and edge similarity.

Due to the importance of the recognition problem (reformulated in terms
of graph matching), there has been a growing interest in developing efficient
algorithms for matching vertex-labeled graphs. Previous work on graph match-
ing (see Section 2) has typically focused on the problem of finding a one-to-one
correspondence between the vertices of two graphs. However, the assumption
of one-to-one correspondence is a very restrictive one, for it assumes that the
primitive features (nodes) in the two graphs agree in their level of abstraction. In
scale-space (hierarchical) structures, this restrictive assumption takes the form
of assuming that corresponding features exist at the same level. Unfortunately,
there are a variety of conditions that may lead to graphs that represent visually
similar image feature configurations yet do not contain a single one-to-one node
correspondence. For example, due to noise or segmentation errors, a single fea-
ture (node) in one graph may map to a collection of broken features (nodes) in
another graph. Or, due to scale differences, a single, coarse-grained feature in one
graph may map to a collection of fine-grained features in another graph. In gen-
eral, we seek not a one-to-one correspondence between image features (nodes),
but rather a many-to-many correspondence.

Several existing approaches to the problem of many-to-many graph match-
ing suffer from computational inefficiency and/or from an inability to handle
small perturbations in graph structure. This paper seeks a solution to this prob-
lem while addressing drawbacks of existing approaches. Drawing on recently-
developed techniques from the domain of low-distortion graph embedding, we
have explored an efficient method for mapping a graph’s structure to a set of
vectors in a low-dimensional space. This mapping not only simplifies the origi-
nal graph representation, but it retains important information about both local
(neighborhood) as well as global graph structure. Moreover, the mapping is stable
with respect to noise in the graph structure.

The above embedding is applicable only to undirected graphs, in which a met-
ric (undirected) distance can be defined between every pair of nodes. Although
scale-space structures may contain undirected edges, information is mostly en-
coded by hierarchical, non-metric relations, such as parent/child relations. We
accommodate these constraints by moving this information into the nodes as fea-
ture distributions over the values of incident, oriented edges. Although pulling
the oriented edge information into the node would seem to weaken the repre-
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sentation, it’s important to note that the resulting node encodes contextual (or
neighborhood) information about its relations to adjacent nodes in the graph.

Armed with a low-dimensional, robust vector representation of an input
graph’s structure, many-to-many graph matching can now be reduced to the
much simpler problem of matching weighted distributions of points in a normed
vector space, using a distribution-based similarity measure. We consider one such
similarity measure, known as the Earth Mover’s Distance, and show that the
many-to-many vector mapping that realizes the minimum Earth Mover’s Dis-
tance corresponds to the desired many-to-many matching between nodes of the
original graphs. The result is a more efficient and more stable approach to many-
to-many graph matching that, in fact, includes the special case of one-to-one
graph matching. To illustrate the approach, we apply it to the problem of view-
based object recognition, in which views are represented as graphs.

2 Related Work

The problem of object recognition is often reformulated as that of matching
feature graphs. Several researchers have developed algorithms that find one-to-
one correspondences between graph nodes. Shapiro and Haralick [21] proposed
a matching algorithm based on comparing weighted primitives (weighted at-
tributes and weighted relation tuples) using a normalized distance for each prim-
itive property that is inexactly matched. Pellilo et al. [17] devised a quadratic
programming framework for matching association graphs using a maximal clique
reformulation, while Gold and Rangarajan [8] used graduated assignment for
matching graphs derived from feature points and image curves. Siddiqi et al.
combined a bipartite matching framework with a spectral decomposition of graph
structure to match shock graphs [23], while Shokoufandeh et al. [22] extended
this framework to directed acyclic graphs that arise in multi-scale image repre-
sentations. Hancock and his colleagues have also proposed numerous frameworks
for graph matching, including [15].

The problem of many-to-many graph matching has also been studied, most
often in the context of edit-distance (see, e.g., [14,20]). In such a setting, one
seeks a minimal set of re-labelings, additions, deletions, merges, and splits of
nodes and edges that transform one graph into another. However, the edit-
distance approach has its drawbacks: 1) it is computationally expensive (poly-
nomial-time algorithms are available only for trees); 2) the method in its current
form does not accommodate edge weights; and 3) the cost of an editing operation
often fails to reflect the underlying visual information (for example, the visual
similarity of a contour and its corresponding broken fragments should not be
penalized by the high cost of merging the many fragments). In the context of
line and segment matching, Beveridge and Riseman [4] addressed this problem
via exhaustive local search. Although their method found good matches reliably
and efficiently (due to their choice of the objective function and a small neigh-
borhood size), it is unclear how this can be generalized to other types of feature
graphs and objective functions.
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In contrast to advances in solving matching problems on specially-structured
graphs, such as trees or directed acyclic graphs, there has been much less progress
in solving the problem of many-to-many matching in general graphs. In a novel
generalization of Scott and Longuet [19], Kosinov and Caelli [11] showed how
inexact graph matching can be solved using the re-normalization of projections
of vertices into the eigenspaces of graphs along with a form of relational clus-
tering. Our framework differs from their approach in that: (1) it can handle
information encoded in a graph’s nodes, which is desirable in many vision ap-
plications; (2) it does not require an ad hoc clustering step; and (3) it provides
a well-bounded, low-distortion metric representation of graph structure. In re-
lation to low-distortion metric representations of graphs, Indyk [10] provides
a comprehensive survey of recent advances and applications of low-distortion
graph embedding. For recent results related to the properties of low-distortion
tree embedding, see [13,1,16].

3 Metric Embedding of Graphs

During the last decade, low-distortion embedding has become recognized as a
very powerful tool for designing efficient algorithms. In low-distortion embedding
of metric spaces into normed spaces, we consider mappings f : A — B, where A
is a set of points in the original metric space, with distance function D(.,.), B is
a set of points in the (host) d-dimensional normed space ||.||x, and for any pair
p,q € A we have

D) < [1£®) - 7@l < Dp,0) 1)

for a certain parameter ¢, known as the distortion. Intuitively, such an embedding
will enable us to reduce problems defined over difficult metric spaces, (A4, D), to
problems over easier normed spaces, (B, ||.||x)- As can be observed from Equa-
tion 1, the closer ¢ is to 1, the better the target set B mimics the original set .A.
Consequently, the distortion parameter c is a critical characteristic of embedding,
I

Perhaps the most fundamental existence result in computational embedding
is due to Bourgain [5]:

Lemma 1. Any finite metric space (A, D) can be embedded into a finite normed
space ||.||2 of dimension at most log|A| with distortion O(log |A|).

This result is important since even an exponential® matching algorithm in the
normed space may be tractable. However, O(log |.A|) distortion is too high; we
seek an embedding with a much lower distortion.

3.1 Low-Distortion Embedding

Our interest in low-distortion embedding is motivated by its ability to trans-
form the problem of many-to-many matching in finite graphs to geometrical

% in the dimension of the target space.
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problems in low-dimensional vector spaces. Specifically, let G; = (A1, E1,D1),
G2 = (Aa, E2,D2) denote two graphs on vertex sets A; and As, edge sets E; and
Es, under distance metrics D; and D, respectively (D; represents the distances
between all pairs of nodes in G;). Ideally, we seek a single embedding that can
map each graph to the same vector space, in which the two embeddings can be
directly compared. However, in general, this is not possible without introducing
unacceptable distortion.

We will therefore tackle the problem in two steps. First, we will seek low-
distortion embeddings f; that map sets A; to normed spaces (B, ||.||x), ¢ € {1, 2}.
Next, we will align the normed spaces, so that the embeddings can be directly
compared. Using these mappings, the problem of many-to-many vertex matching
between G; and G is therefore reduced to that of computing a mapping M
between subsets of B; and Bs.

In practice, the robustness and efficiency of mapping M will depend on
several parameters, such as the magnitudes of distortion of the D;’s under the
embeddings, f;’s, the computational complexity of applying the embeddings, f;’s,
the efficiency of computing the actual correspondences (including alignment)
between subsets of By and B, and the quality of the computed correspondence.
The latter issue will be addressed in Section 5.

The problem of low-distortion embedding has a long history for the case
of planar graphs, in general, and trees, in particular. More formally, the most
desired embedding is the subject of the following conjecture:

Congecture 1. [9] Let G = (A, E) be a planar graph, and let M = (A, D) be
the shortest-path metric for the graph G. Then there is an embedding of M into
[|-||p with O(1) distortion.

This conjecture has only been proven for the case in which G is a tree. Although
the existence of such a distortion-free embedding under |[|.||r-norms was estab-
lished in [12], no deterministic construction was provided. One such deterministic
construction was given by MatousSek [16], suggesting that if we could somehow
map our graphs into trees, with small distortion, we could adopt Matousek’s
framework.

3.2 Tree Metric of a Distance Function

Before we can proceed with Matousek’s embedding, we must choose a suitable
tree metric for our graphs. Let G = (A, E) denote an edge-weighted graph
with real edge weights W(e), e € E. We will say that D is a metric for G
if, for any three vertices u,v,w € A, D(u,v) = D(v,u) > 0, D(u,u) = 0, and
D(u,v) < D(u,w) + D(w,v). In general, there are many ways to define metric
distances on a weighted graph. The best-known metric is the shortest-path metric
4(.,.), i.e., D(u,v) = 6(u,v), the shortest path distance between u and v for all
u,v € A. We will say that the edge weighted tree ¥ = T5(V', E') is a tree metric
for G, with respect to distance function D, if for any pair of vertices wu,v, the
length of the unique path between them in ¥ is equal to D(u,v). The problem
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of approximating (or fitting) an n x n distance matrix D by a tree metric ¥ is
known as the Numerical Taxonomy problem.

The Numerical Taxonomy problem is closely related to that of constructing
an additive metric distance, i.e., a metric distance D that satisfies the 4-point
condition, D[z, y]+ D[z, w] < max{D|z, z]+ D[y, w], D[z, w]+ Dy, 2]} Vz,y, z, w.
A stronger version of the 4-point condition is the wltra-metric condition. A metric
D is an ultra-metric if, for all points z,y, 2,, D[z,y] < max{D|z, 2], D[y, 2]}
Observe that an ultra-metric is a type of tree metric defined on rooted trees,
where the distance to the root is the same for all leaves in the tree. This is a
critical property in the construction of metric trees for distance functions.

The following Theorem relates the existence of a tree metric to the 4-point
condition:

Theorem 1. (see [6]) A metric D is additive if and only if it is a tree metric.

In fact, if there is a tree metric ¥ coinciding exactly with D, it is unique and
constructible in linear time [25]. If D is not an additive metric there might be
no tree metric ¥ that exactly coincides with D. In this case, we can approximate
D under norms, such as ||.||x, £ > 1. That is, we want to find a tree metric T
minimizing ||T — D||.

In the event that G is not a tree, we will use an approximation framework
proposed by Agarwala et al. [1]. They consider the approximate numerical tax-
onomy problem for additive metrics under the ||.||coc norm. The construction of
a tree metric ¥ in their algorithm is achieved by transforming the general tree
metric problem to that of ultra-metrics. Their algorithm will generate an ap-
proximation tree metric ¥, to an optimal additive metric under ||.||c in time
O(n?) (see [1] for details). It should be noted that this construction does not
maintain the vertex set of G invariant, i.e., V(G) C V'(%). We will have to make
sure that in the embedding process (see Section 3.4), the extra vertices generated
during the metric tree construction are eliminated.

An example of the embedding applied to a multi-scale blob decomposition [22]
is shown in Figure 1. The gesture image (a) consists of 5 regions (the topmost
region is not shown in the image). The complete graph in (b) captures the
Euclidean distance between the centroids of the regions, while (c) is the metric
tree representation of the multi-scale decomposition (with additional vertices).

3.3 Path Partition of a Graph

The construction of the embedding depends on the notion of a path partition of a
graph. In this subsection, we introduce the path partition, and then use it in the
next subsection to construct the embedding. Given a weighted graph G = (V, E)
with metric distance D(.,.), let ¥ = (V', €) denote a metric tree representation
of G, whose vertex distances are approximately D(.,.). In the event that G is a
tree, ¥ = G; otherwise ¥ is the metric tree of G. To construct the embedding,
we will assume that ¥ is a rooted tree. It will be clear from the construction that
the choice of the root does not affect the distortion of the embedding.

The dimensionality of the embedding of ¥ depends on the caterpillar dimen-
sion, denoted by cdim(%), and is recursively defined as follows [16]. If ¥ consists
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Fig. 1. Metric tree embedding of Euclidean distances for blob and ridge decomposition.

of a single vertex, we set cdim(%¥) = 0. For a tree ¥ with at least 2 vertices,
cdim(%) < k + 1 if there exist paths Py, ..., P. beginning at the root and other-
wise pairwise disjoint, such that each component ¥; of € — €(P;) — &(P) —---—
€(P,) satisfies cdim(%;) < k. Here, ¥ — &(P;) — €(P») — - - - — €(F;) denotes the
tree T with the edges of the P;’s removed, and the components ¥; are rooted at
the single vertex lying on some F;. The caterpillar dimension can be determined
in linear time for a rooted tree ¥, and it is known that c¢dim(%) < log(|V'|)
(see [16]).

The construction of vectors f(v), for v € V, depends on the notion of a
path partition of ¥. The path partition B of ¥ is empty if B is single vertex;
otherwise B consists of some paths Py,..., P. as in the definition of cdim(¥),
plus the union of path partitions of the components of ¥ — €(P;) — E(P) —--- —
¢(P,). The paths Py,..., P. have level 1, and the paths of level k& > 2 are the
paths of level k — 1 in the corresponding path partitions of the components of
T — &(P) — €(P2) — --- — €(P,.). Note that the paths in a path partition are
edge-disjoint, and their union covers the edge-set of ¥.

To illustrate these concepts, consider the tree shown in Figure 2. The three
darkened paths from the root represent the three level 1 paths. Following the
removal of the level 1 paths, we are left with 6 connected components that, in
turn, induce seven level 2 paths, shown with lightened edges.® Following the
removal of the seven level 2 paths, we are left with an empty graph. Hence, the
caterpillar dimension (cdim(%¥)) is 2. It is easy to see that the path partition P
can be constructed using a modified depth-first search in O(|V’|) time.

3.4 Construction of the Embedding

Given a path partition 9B of T, we will use m to denote the number of levels in
B, and let P(v) represent the unique path between the root and a vertex v € V.
The first segment of P(v) of weight I; follows some path P! of level 1 in 3, the
second segment of weight o follows a path P? of level 2, and the last segment
of weight I, follows a path P* of level a < m. The sequences (P!,..., P%)

5 Note that the third node from the root in the middle level 1 branch is the root of a
tree-component consisting of five nodes that will generate two level 2 paths.
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Level 1
— — —lLeve2

° o
o o
Fig. 2. Path partition of a tree.

and {l1,...,ls) will be referred to as the decomposition sequence and the weight
sequence of P(v), respectively.

To define the embedding f : V' — B under |[|.||2, we let the relevant coordi-
nates in B be indexed by the paths in 8. The vector f(v), v € V, has non-zero
coordinates corresponding to the paths in the decomposition sequence of P(v).
Returning to Figure 2, the vector f(v) will have 10 components (defined by three
level 1 paths and seven level 2 paths). Furthermore, every vector f(v) will have
at most two non-zero components. Consider, for example, the lowest leaf node
in the middle branch. Its path to the root will traverse three level 2 edges corre-
sponding to the fourth level 2 path, as well as three level 1 edges corresponding
to the second level 1 path.

Such embedding functions have become fairly standard in the metric space
representation of weighted graphs [13,16]. In fact, Matousek [16] has proven
that setting the i-th coordinate of f(v), corresponding to path P* 1 < k < a,
in decomposition sequence (P',..., P%), to

Fw); = \/lk [lk + 3% max (0,1 — I /2m)]

will result in a small distortion of at most y/loglog|V’|. It should be mentioned
that although the choice of path decomposition 3 is not unique, the resulting
embeddings are isomorphic up to a transformation. Computationally, construc-
tions of ¥, 3, and B are all linear in terms of |V'| and |€|. It should be noted that
although the tree ¥ has been defined based on set V', we have only embedded
the vertices of G (set V).

4 Encoding Scale-Space Features

The distance metric defined on the graph structure is based on the undirected
edge weights. While the above embedding has preserved the distance metric, it
has failed to preserve any oriented relations, such as the hierarchical relations
common to scale-space structures. This is due to the fact that oriented relations
do not satisfy the symmetry property of a metric. We can retain this important
information in our embedding by moving it into the nodes as node attributes, a
technique used in the encoding of directed topological structure in [23], directed
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geometric structure in [22], and shape context in [3]. Encoding in a node the
attributes of the oriented edges incident to the node requires computing distri-
butions on the attributes and assigning them to the node. For example, a node
with a single parent at a coarser scale and two children at a finer scale might
encode a relative scale distribution (histogram) as a node attribute. The result-
ing attribute provides a contextual signature for the node which will be used by
the matcher (Section 5) to reduce matching ambiguity.

Specifically, let G = (V, E) be a graph to be recognized. For every pair of
vertices, we let R, , denote the attribute vector associated with the pair (u,v).
The entries of each such vector represent the set of oriented relations R between
u,v. For a vertex u € V, we let N(u) denote the set of vertices v € V adjacent to
u. For a relation p € R, we will denote P(u,p) as the set of values for relation p
between u and all vertices in N (u), i.e., P(u,p) corresponds to entry p of vector
R, for v € N(u). Feature vector P, for point w is the set of all P(u,p)’s for
p € R. Observe that every entry P(u,p) of vector P, can be considered as a
local distribution (histogram) of feature p in the neighborhood N(u) of u. We
adopt the method of [22], in which the distance function for two such vectors
P, and P, is computed through a weighted combination of Hausdorff distances
between P(u, p) and P(u', p) for all values of p.

5 Distribution-Based Many-to-Many Matching

By embedding vertex-labeled graphs into normed spaces, we have reduced the
problem of many-to-many matching of graphs to that of many-to-many match-
ing of weighted distributions of points in normed spaces. However, before we can
match two point distributions, we must map them into the same normed space.
This involves reducing the dimension of the higher-dimensional distribution and
transforming one of the distributions with respect to the other. Given a pair of
weighted distributions in the same normed space, the Earth Mover’s Distance
(EMD) framework [18] is then applied to find an optimal match between the
distributions. The EMD approach computes the minimum amount of work (de-
fined in terms of displacements of the masses associated with points) it takes to
transform one distribution into another.

5.1 Embedding Point Distributions in the Same Normed Space

Embeddings produced by the graph embedding algorithm can be of different
dimensions and are defined only up to a distance-preserving transformation (a
translated and rotated version of a graph embedding will also be a graph embed-
ding). Therefore, in order to apply the EMD framework, we must first perform
a “registration” step, whose objective is to project the two distributions into the
same normed space. The resulting transformation is expected to minimize the
initial EMD between the distributions.
Our transformation is based on Principal Components Analysis (PCA). Namely,

the projection of the original vectors onto the subspace spanned by the first K
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right singular vectors of the covariance matrix retains the maximum information
about the original vectors among all projections onto subspaces of dimension K.
Hence, projecting the two distributions onto the first K right singular vectors of
their covariance matrices will equalize their dimensions while losing minimal in-
formation. Specifically, assuming that K is the minimum of the two dimensions,
we define embeddings Py (x;) = W, (; — p1z) /05 and Py (y;) = W, (yi — py) /0y
as follows:

B (2 wiTs) /Yo wi

Ng « (E, wzyz)/zz w;

oy Qi willzi — pell)/ 2 wi

oy — (s willyi — wyl) /22 wi

Yoo — Qo wilwi — pe) (i — Nm)T)/Ez Wi
Yo = Uy D, VT is the SVD of X,

W, < first K columns of V

Zyy — (O wilys — py) (Wi — py) ") /12 wi
Zyy = U,D,V," is the SVD of %,
W, < first K columns of V,,

5.2 The Earth Mover’s Distance

The Earth Mover’s Distance (EMD) [18,7] is designed to evaluate dissimilarity
between two multi-dimensional distributions in some feature space. The EMD
approach assumes that a distance measure between single features, called the
ground distance, is given. The EMD then “lifts” this distance from individual
features to full distributions. Moreover, if the weights of the distributions are the
same, and the ground distance is a metric, EMD induces a metric distance [18].
However, the main advantage of using EMD lies in the fact that it subsumes
many histogram distances and permits partial matches in a natural way. This
important property allows the similarity measure to deal with uneven clusters
and noisy data sets.

Computing the EMD is based on a solution to the well-known transportation
problem [2], whose optimal value determines the minimum amount of “work”
required to transform one distribution into the other. More formally, let P =
{1, wp,), -+, (Pm,wp,,)} be the first distribution with m points, and let Q =
{(¢1,wq,),--+,(gn,wy,)} be the second distribution with n points. Let D = [d;;]
be the ground distance matrix, where d;; is the ground distance between points
p; and g;. Our objective is to find a flow matrix F' = [f;;], with f;; being the
flow between points p; and g;, that minimizes the overall cost:

Work(P,Q, F) = Z:il Z?:l fijdij
subject to the following list of constraints:
fij20,1<i<m, 1<j<n
i fig Swp, 1<i<m
Yoimy fij Swg;, 1<j<m

i 2?21 fij = min (221 Wp; 5 2?21 wqj)
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The optimal value of the objective function, Work(P, @), F'), defines the Earth
Mover’s Distance between the two distributions.

The above formulation assumes that the two distributions have been aligned.
However, recall that a translated and rotated version of a graph embedding will
also be a graph embedding. To accommodate pairs of distributions that are
“not rigidly embedded”, Cohen and Guibas [7] extended the definition of EMD,
originally applicable to pairs of fixed sets of points, to allow one of the sets to
undergo a transformation. Assuming that a transformation T' € T is applied to
the second distribution, distances d;f’; are defined as dz-Tj = d(p;, T(g5)), and the
objective function becomes Work(P,Q, F,T) = >>1*, 37, fijd};. The minimal
value of the objective function defines the Earth Mover’s Distance between the
two distributions that are allowed to undergo a transformation from 7.

Cohen and Guibas [7] also suggested an iterative process (which they call
FT, short for “an optimal Flow and an optimal Transformation”) that achieves
a local minimum of the objective function. Starting with an initial transforma-
tion T € T from a given T®) € T, they compute the optimal flow F = F(¥)
that minimizes the objective function, Work(P,T*)(Q), F), and from a given
optimal flow, F*), they compute an optimal transformation, T = T*+1 ¢ T
that minimizes the objective function, Work(P, T(Q), F(¥)). The iterative pro-
cess stops when the improvement in the objective function value falls below a
threshold. The resulting optimal pair (F,T') depends on the initial transforma-
tion T, Starting the iteration from several initial transformations increases
the chances of obtaining a global minimum.

5.3 Choosing an Appropriate Transformation

For our application, the set 7 of allowable transformations consists of only those
transformations that preserve distances. Therefore, we use a weighted version of
the Least Squares Estimation algorithm [24] to compute an optimal distance-
preserving transformation given a flow between the distributions. Specifically,
given a set of pairings {(z;,y;, w;)} (the flow of weight w; is sent from point z;
to point y;), we define the transformation T'(z) = cRz+t in accordance with [24]
as follows:

po (0 wiTi) /3o, wi
By Qo wiys) /30, ws
oy (i wil|wi — pal|)/ 25 wi
oy — (s willyi — wyl) /22 wi

Ypy (Ez wi(y; — /"’y)(xz - ,uz)T)/Ez Wi
R « UVT, where UDVT is the SVD of X,
¢ oylog

The original proof of optimality of the transformation [24] is easily adapted
to the weighted case. Namely, assuming that the flows from the z;’s to the y;’s
are integer, each weighted pairing {(x;,y;,w;)} is replaced by w; unweighted
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pairings {(;ci , yf )}, which makes the original proof applicable. Collecting appro-
priate terms, we get weighted versions of the original equations. Fractional flows
are reduced to integer flows by multiplying all fractions by their least common
denominator.

5.4 The Final Algorithm

Our algorithm for many-to-many matching is a combination of the previous
procedures. Specifically, given two vertex-labeled graphs G and G, we first
find isometric embeddings of the graphs into low-dimensional normed spaces,
obtaining two weighted distributions. We then “register” one distribution with
respect to the other so as to minimize the (original) EMD between them. We then
apply the FT iteration of the transformation version of the EMD framework [7]
to minimize the (extended) EMD. The pairing of points minimizing the EMD
corresponds to a weighted many-to-many pairing of nodes. We summarize our
approach in Algorithm 1.

Algorithm 1 Many-to-many graph matching
1: Compute the metric tree ¥; corresponding to Gj.
2: Construct low-distortion embeddings f;(%;) of T; into (B, ||-||2) according to Sec-
tion 3.4.
3: Compute low-distortion embeddings & = P;(f;(%;)) into (B,]||.||2) according to
Section 5.1.
4: Compute the EMD between &;’s by applying the FT iteration (Section 5.2), com-
puting the optimal transformation T according to Section 5.3.
5: Interpret the resulting optimal flow between &;’s as a many-to-many vertex match-
ing between G;’s.

6 Experiments

We tested the many-to-many matching algorithm on the COIL-20 database of
Columbia University consisting of 72 views per object. A representative view of
each object is shown in Figure 3(a). The multi-scale blob decomposition is then
computed for each view using the algorithms described in [22] (and illustrated
in Figure 1). For the experiments, we compute the tree metric corresponding
to the complete edge-weighted graph defined on the regions of the scale-space
decomposition of the view. The edge weights are computed as a function of the
distances between the centroids of the regions in the scale-space representation.
Next, each tree will be embedded into a normed space with low distortion. This
procedure results in a database of weighted point-sets, each representing an
embedded graph.

To test the matching algorithm on the resulting database, we removed 36 (of
the 72) representative views of each object (every other view) and used these as
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Fig. 3. Columbia University Image Library (COIL-20) database.

queries to the remaining view database (the other 36 views for each of the 20
objects). We then computed the distance between each “query” view and each
of the remaining database views. Ideally, for any given query view ¢ of object 7,
v;,;, the matching algorithm should return either v;11 ; or v;—1,; as the closest
view. We will classify this as a correct matching. Figure 4 presents a subset of
the matching experiments for Object 9 of the COIL-20 database, with a correct
matching in almost all cases.

The results of the experiment is presented in Figure 5, with darker points
representing the closer matches. Based on the overall matching statistics, we
observed that in all but 10.74% of the experiments, the closest match selected
by our algorithm was a neighboring view. This is clearly evident from the darker
diagonal entries of Figure 5. Among the mismatches, the closest view belonged
to the same object in 80% of the cases. It should be noted that these results
can be considered worst case for two reasons. First, the original 72 view per
object sampling resolution was tuned for an eigenimage approach. Given the
high similarity among neighboring views, it could be argued that our matching
criterion is overly harsh, and that perhaps a measure of “viewpoint distance”, i.e.,
“how many views away was the closest match” would be less severe. In any case,
we anticipate that with fewer samples per object, neighboring views would be
more dissimilar, and our matching results would improve. Second, and perhaps
more importantly, many of the objects are symmetric, and if a query neighbor
has an identical view elsewhere on the object, that view might be chosen (with
equal distance) and scored as an error. Many of the objects in the database are
rotationally symmetric, yielding identical views from each viewpoint and likely
errors.

Both the embedding and matching procedures can accommodate occlusion.
This is due to the fact that the path partitions for unoccluded portions of the
graph are unaffected by occlusion. During the projection step, the projections
of unoccluded nodes will also be unaffected by occlusion. Finally, the matching
procedure is an iterative process driven by flow optimization which, in turn,
depends only on local features, and is thereby unaffected by occlusion. We are
in the process of conducting occlusion experiments and expect to report them
shortly.



14 M. Fatih Demirci et al.

e e

7.05 6.54 [ 7.78 | 10.37 | 5.89 | 13.41 | 12.30 [ 20.34 | 13.90 [ 19.60 | 19.53

Model

g

5.56 5.18 7.98 | 10.30 | 4.24 | 12.34 | 11.23 [ 20.01 | 12.24 | 18.40 | 17.73

2.34 2.68 | 4.17 5.97 5.94 | 17.03 | 15.87 | 25.28 | 16.74 | 22.99 | 22.17

4.04 4.04 || 3.17 4.44 6.64 | 17.26 | 15.92 [ 25.82 | 17.17 | 23.53 | 22.80

6.39 6.55 [ 5.31 3.88 8.26 | 18.20 | 16.88 [ 26.74| 17.85 | 24.57 | 23.81

5.31 4.20 5.25 5.67 3.21 5.63 | 17.08 | 15.86 | 25.20 | 17.07 | 23.49 | 22.79

9.61 | 11.65 |11.21 | 13.81 | 16.00 || 6.80 7.07 8.20 | 14.92( 9.05 [13.74| 14.65

i'E 13.64 [ 15.32 | 14.85 | 17.35 | 19.28 | 11.80 || 2.69 3.70 | 14.20( 6.75 [10.93 | 12.19

14.34 [ 16.03 | 15.23 | 17.92 | 19.90 | 12.21 | 5.28 3.54 || 14.61 | 4.61 8.96 | 10.33

13.50 | 14.90 | 14.41 | 17.39 | 19.32 | 11.44 | 6.56 4.13 || 15.00 | 5.25 8.97 9.98

17.16 | 18.97 | 18.34 | 21.28 | 23.11 | 15.70 | 7.95 7.85 [13.52 || 4.23 4.73 6.17

20.53 | 22.30 (21.25 | 24.17 | 26.18 | 18.77 | 11.46 | 11.59 | 14.48 | 7.14 3.02 2.75

20.19 | 20.90 [ 19.92 [ 22.89 | 24.87 | 18.18 | 12.19 | 12.27 | 14.91 | 7.94 | 6.53 3.24

Fig. 4. Sample matching results for object 9 of the COIL-20 database, in which rows
and columns can be interleaved to form the set of sequential views. The diagonal and
next lower diagonal therefore represent the neighboring views of the query (row). Only
one query, entry (10,8), was incorrectly matched.

7 Conclusions and Future Work

We have presented a computationally efficient approach to many-to-many match-
ing of multi-scale feature representations in terms of blobs and ridges. The ap-
proach is based on a combination of metric tree representation and low-distortion
embedding of graphs to normed spaces with a distribution-based similarity mea-
sure. The matching framework presented attempts to exploit both topologi-
cal and geometrical properties of multi-scale feature hierarchies. Due to the
strengths of the two components, our approach is able to establish robust, many-
to-many correspondences in the presence of noise. Preliminary matching exper-
iments on the COIL-20 database demonstrate that our method performs very
well subject to view sampling constraints. Our work on matching of multi-scale
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Fig. 5. The matching results for the COIL-20 database. The rows represent the query
views (36 views per object), and the columns representing model views (36 views per
object). Each row represents the matching results for a query view against the whole
database. The intensity of entries represents the quality of the matching, with black
representing maximum similarity between the views and white minimum similarity.

features is in its preliminary stages, and we plan to extend its scope in several
directions: 1) to study the viewpoint invariance of the multi-scale blob decom-
position within our many-to-many matching framework; 2) to study the initial
conditions of the FT iteration to improve matching results; 3) to exploit the
possibility of using embedded vector representations as signatures for indexing
purposes; and 4) to conduct occlusion and noise sensitivity experiments.
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