
Many-to-Many Feature Matching Using

Spherical Coding of Directed Graphs

M. Fatih Demirci1, Ali Shokoufandeh1, Sven Dickinson2, Yakov Keselman3,
and Lars Bretzner4

1 Department of Computer Science, Drexel University,
Philadelphia, PA 19104, USA

{mdemirci,ashokouf}@mcs.drexel.edu
2 Department of Computer Science, University of Toronto,

Toronto, Ontario, Canada M5S 3G4
sven@cs.toronto.edu

3 School of Computer Science, Telecommunications and Information Systems,
DePaul University, Chicago, IL 60604, USA

ykeselman@cs.depaul.edu
4 Computational Vision and Active Perception Laboatory,
Department Of Numerical Analysis and Computer Science,

KTH, Stockholm, Sweden
bretzner@nada.kth.se

Abstract. In recent work, we presented a framework for many-to-many
matching of multi-scale feature hierarchies, in which features and their re-
lations were captured in a vertex-labeled, edge-weighted directed graph.
The algorithm was based on a metric-tree representation of labeled graphs
and their metric embedding into normed vector spaces, using the embed-
ding algorithm of Matous̆ek [13]. However, the method was limited by
the fact that two graphs to be matched were typically embedded into
vector spaces with different dimensionality. Before the embeddings could
be matched, a dimensionality reduction technique (PCA) was required,
which was both costly and prone to error. In this paper, we introduce
a more efficient embedding procedure based on a spherical coding of di-
rected graphs. The advantage of this novel embedding technique is that
it prescribes a single vector space into which both graphs are embedded.
This reduces the problem of directed graph matching to the problem
of geometric point matching, for which efficient many-to-many match-
ing algorithms exist, such as the Earth Mover’s Distance. We apply the
approach to the problem of multi-scale, view-based object recognition,
in which an image is decomposed into a set of blobs and ridges with
automatic scale selection.

1 Introduction

The problem of object recognition is often formulated as that of matching con-
figurations of image features to configurations of model features. Such config-
urations are often represented as vertex-labeled graphs, whose nodes represent

2 M. F. Demirci et al.

image features (or their abstractions), and whose edges represent relations (or
constraints) between the features. For scale-space structures, represented as di-
rected graphs, relations can represent both parent/child relations as well as sib-
ling relations. To match two graph representations (hierarchical or otherwise)
means to establish correspondences between their nodes. To evaluate the quality
of a match, an overall distance measure is defined, whose value depends on both
node and edge similarity.

Previous work on graph matching has typically focused on the problem of
finding a one-to-one correspondence between the vertices of two graphs. However,
the assumption of one-to-one correspondence is a very restrictive one, for it
assumes that the primitive features (nodes) in the two graphs agree in their
level of abstraction. Unfortunately, there are a variety of conditions that may
lead to graphs that represent visually similar image feature configurations yet
do not contain a single one-to-one node correspondence.

The limitations of the one-to-one assumption are illustrated in Figure 1,
in which an object is decomposed into a set of ridges and blobs extracted at
appropriate scales [19]. The ridges and blobs map to nodes in a directed graph,
with parent/child edges directed from coarser scale nodes to overlapping finer
scale nodes, and sibling edges between nodes that share a parent. Although
the two images clearly contain the same object, the decompositions are not
identical. Specifically, the ends of the fingers in the right hand have been over-
segmented with respect to the left hand. It is quite common that due to noise
or segmentation errors, a single feature (node) in one graph can correspond
to a collection of broken features (nodes) in another graph. Or, due to scale
differences, a single, coarse-grained feature in one graph can correspond to a
collection of fine-grained features in another graph. Hence, we seek not a one-to-
one correspondence between image features (nodes), but rather a many-to-many
correspondence.

In recent work [10, 7], we presented a framework for many-to-many match-
ing of undirected graphs and directed graphs, respectively, where features and
their relations were represented using edge-weighted graphs. The method began
with transforming a graph into a metric tree. Next, using the graph embed-
ding technique of Matous̆ek [13], the tree was embedded into a normed vector
space. This two-step transformation allowed us to reduce the problem of many-
to-many graph matching to a much simpler problem of matching weighted distri-
butions of points in a normed vector space. To compute the distance between two
weighted distributions, we used a distribution-based similarity measure, known
as the Earth Mover’s Distance under transformation.

The previous procedure suffered from a significant limitation. Namely, each
graph was embedded into a vector space of arbitrary dimensions, and before the
embeddings could be matched, a dimensionality reduction step was required,
which was both costly and prone to error. Specifically, we used an inefficient
Principal Components Analysis (PCA)-based method to project the two distri-
butions into the same normed space. In this paper, we present an entirely dif-
ferent embedding method based on a spherical coding algorithm. This efficient

Many-to-Many Feature Matching 3

Fig. 1. The Need for Many-to-Many Matching. In the two images, the two objects are
similar, but the extracted features are not necessarily one-to-one. Specifically, the ends
of the fingers in the left hand have been over-segmented in the right hand.

(linear-time) method embeds metric trees into vector spaces of prescribed dimen-
sionality, precluding the need for a dimensionality reduction step. We demon-
strate the framework on the problem of multi-scale shape matching, in which an
image is decomposed into a set of blobs and ridges with automatic scale selection.

2 Related Work

The problem of many-to-many graph matching has been studied most often in
the context of edit-distance (see, e.g., [14, 12, 15, 18]). In such a setting, one seeks
a minimal set of re-labelings, additions, deletions, merges, and splits of nodes
and edges that transform one graph into another. However, the edit-distance ap-
proach has its drawbacks: 1) it is computationally expensive (p-time algorithms
are available only for trees); 2) the method, in its current form, does not ac-
commodate edge weights; 3) the method does not deal well with occlusion and
scene clutter, resulting in much effort spent in “editing out” extraneous graph
structure; and 4) the cost of an editing operation often fails to reflect the un-
derlying visual information (for example, the visual similarity of a contour and
its corresponding broken fragments should not be penalized by the high cost of
merging the many fragments).

In the context of line and segment matching, Beveridge and Riseman [3]
addressed this problem via exhaustive local search. Although their method found
good matches reliably and efficiently (due to their choice of the objective function
and a small neighborhood size), it is unclear how the approach can be generalized
to other types of feature graphs and objective functions.

In a novel generalization of Scott and Longuet-Higgins [17], Kosinov and
Caelli [11] showed how inexact graph matching could be solved using the re-

4 M. F. Demirci et al.

normalization of projections of vertices into the eigenspaces of graphs combined
with a form of relational clustering. Our framework differs from their approach in
that: (1) it can handle information encoded in a graph’s nodes, which is desirable
in many vision applications; (2) it does not require an explicit clustering step;
(3) it provides a well-bounded, low-distortion metric representation of graph
structure; (4) it encodes both local and global structure, allowing it to deal with
noise and occlusion; and 5) it can accommodate multi-scale representations.

Low-distortion embedding techniques haven proven to be useful in a number
of graph algotithms, including clustering and, most recently, on-line algorithms.
Indyk [9] provides a comprehensive survey of recent advances and applications
of low-distortion graph embedding. Gupta [8] proposes a randomized procedure
for embedding metric trees into a vector space of prescribed dimensions. Our
spherical coding is a deterministic variation of this procedure. For recent results
related to the properties of low-distortion tree embedding, see [1, 13].

3 Notation and Definitions

Before describing our many-to-many matching framework, some definitions are
in order. To begin, a graph G is a pair (A, E), where A is a finite set of vertices
and E is a set of connections (edges) between the vertices. An edge e = (u, v)
consists of two vertices such that u, v ∈ A. A graph G = (A, E) is edge-weighted,
if each edge e ∈ E has a weight, W(e) ∈ R. Let G = (A, E) denote an edge-
weighted graph with real edge weights W(e), e ∈ E. We will say that D is a
metric for G if, for any three vertices u, v, w ∈ A, D(u, v) = D(v, u) ≥ 0, with
D(u, v) = 0 if and only if u = v, and D(u, v) ≤ D(u,w) + D(w, v).

One way of defining metric distances on a weighted graph is to use the
shortest-path metric δ(., .) on the graph or its subgraphs, i.e., D(u, v) = δ(u, v),
the shortest path distance between u and v for all u, v ∈ A. We will say that
the edge weighted tree T = TG(A′, E′) is a tree metric for G, with respect to
distance function D, if for any pair of vertices u, v in G, the length of the unique
path between them in T is equal to D(u, v).

An ultra-metric is a special type of tree metric defined on rooted trees, where
the distance to the root is the same for all leaves in the tree, an approximation
that introduces small distortion. A metric D is an ultra-metric if, for all points
x, y, z, we have D[x, y] ≤ max{D[x, z],D[y, z]}. Unfortunately, an ultra-metric
does not satisfy all the properties of a tree metric distance. To create a general
tree metric from an ultra-metric, we need to satisfy the 4-point condition (see [4]):
D[x, y] + D[z, w] ≤ max{D[x, z] + D[y, w],D[x,w] + D[y, z]}, for all x, y, z, w. A
metric that satisfies the 4-point condition is called an additive metric.

A metric embedding is a mapping f : A → B, where A is a set of points in
the original metric space, with distance function D(., .), B is a set of points in
the (host) d-dimensional normed space ||.||k, and for any pair p, q ∈ A we have

1

c
D(p, q) ≤ ||f(p) − f(q)||k ≤ D(p, q) (1)

Many-to-Many Feature Matching 5

Level 1

Level 2

Fig. 2. Path partition of an example tree. The three level 1 paths are bold, while the
seven level 2 paths are dashed (there are no other levels in this particular case - see
text).

for a certain parameter c, known as the distortion. Intuitively, such an embedding
will enable us to reduce problems defined over difficult metric spaces, (A,D), to
problems over easier normed spaces, (B, ||.||k). As can be observed from Equa-
tion 1, the distortion parameter c is a critical characteristic of embedding f , i.e.,
the closer c is to 1, the better the target set B mimics the original set A.

To capture the topological structure of a tree, we use the concept of caterpillar

decomposition and caterpillar dimension. We illustrate the caterpillar decompo-
sition of a rooted tree with no edge weights in Figure 2. The three darkened
paths from the root represent three edge-disjoint paths, called level 1 paths. If
we remove these three level 1 paths from the tree, we are left with the 7 dashed,
edge-disjoint paths. These are the level 2 paths, and if removing them had left
additional connected components, the process would be repeated until all the
edges in the tree had been removed. The union of the paths is called the cater-
pillar decomposition, denoted by P, and the number of levels in P is called the
caterpillar dimension, denoted by m.

The caterpillar decomposition P can be constructed using a modified depth-
first search in linear time. Given a caterpillar decomposition P of T, we will use
L to denote the number of leaves of T, and let P (v) represent the unique path
between the root and a vertex v ∈ A. The first segment of P (v) of weight l1
follows some path P 1 of level 1 in P, the second segment of weight l2 follows a
path P 2 of level 2, and the last segment of weight lα follows a path P α of level
α ≤ m. The sequences

〈

P 1, . . . , Pα
〉

and 〈l1, . . . , lα〉 will be referred to as the
decomposition sequence and the weight sequence of P (v), respectively.

Finally, we introduce the notion of spherical codes in our embedding pro-
cedure. A spherical code is the distribution of a finite set of n points on the
surface of a unit sphere such that the minimum distance between any pair of
points is maximized [6]. Equivalently, one can try to minimize the radius r of
a d-dimensional sphere such that n points can be placed on the surface, where
any two of the points are at angular distance 2 from each other. Recall that the
angular distance between two points is the acute angle subtended by them at
the origin.

6 M. F. Demirci et al.

4 Metric Embedding of Graphs via Spherical Coding

4.1 Problem Formulation

Our interest in low-distortion embedding is motivated by its ability to trans-
form the problem of many-to-many matching in finite graphs to the problem
of geometric point matching in low-dimensional vector spaces. For graphs, the
problem of low-distortion embedding is a challenging one. Let G1 = (A1, E1,D1),
G2 = (A2, E2,D2) denote two graphs on vertex sets A1 and A2, edge sets E1 and
E2, under distance metrics D1 and D2, respectively (Di represents the distances
between all pairs of nodes in Gi). Ideally, we seek a single embedding mechanism
that can map each graph to the same vector space, in which the two embeddings
can be directly compared.

We will tackle the problem in two steps. Given a d-dimension target space
R

d, we will seek low-distortion embeddings fi that map sets Ai to sets Bi under
distance function ||.||k, i ∈ {1, 2}. The fixed-dimension embedding is based on
a novel spherical coding of the shortest-path metric on a tree. To apply this
embedding to our directed acyclic graphs therefore requires that we map them to
trees with low distortion. It is here that we introduce the concept of relative scale
to the points, allowing us to match hierarchical graphs. Using these mappings,
the problem of many-to-many hierarchical vertex matching between G1 and G2

is reduced to that of computing a mapping M between subsets of B1 and B2.
It is known that a minimum-distortion embedding of a metric tree into the

d-dimensional Euclidean space will have distortion of O(L
1

d−1

√

min(log L, d)),
where L is the number of leaves in the tree [8]. Observe that as the dimension
d of the target space decreases, the distortion of the embedding increases. We
would therefore like to strike a good balance between distortion and dimension.

4.2 Construction of a Tree Metric for a Distance Function

Let G = (A, E) denote an edge-weighted graph and D denote a shortest-path
metric for G, i.e., D(u, v) = δ(u, v), for all u, v ∈ A. The problem of approx-
imating (or fitting) an n × n distance matrix D by a tree metric T is known
as the Numerical Taxonomy problem. Since the numerical taxonomy problem is
an open problem for general distance metrics, we must explore approximation
methods.

The numerical taxonomy problem can be approximated by converting the
distance matrix D to the weaker ultra-metric distance matrix. To create a gen-
eral tree metric from an ultra-metric, we need to satisfy the 4-point condition.
Observe that a metric D is additive if and only if it is a tree metric (see [4]).
Therefore, our construction of a tree metric will consist of: 1) constructing an
ultra-metric from D, and 2) modifying the ultra-metric to satisfy the 4-point con-
dition. For details of one such approximation framework, see Agarwala et al. [1].
The construction of a tree metric in their algorithm is achieved by transforming
the general tree metric problem to that of ultra-metrics. Their algorithm, which
follows the two-step procedure outlined above, generates an approximation (tree

Many-to-Many Feature Matching 7

(a) (b) (c)

Fig. 3. Metric tree representation of the Euclidean distances between nodes in a graph.
The gesture image (a) consists of 6 regions (the region representing the entire hand is
not shown). The complete graph in (b) captures the Euclidean distances between the
centroids of the regions, while (c) is the metric tree representation of the multi-scale
decomposition (with additional vertices).

metric T) to an optimal additive metric in time O(n2). It should be noted that
this construction does not necessarily maintain the vertex set of G invariant.
We will have to make sure that in the embedding process (see Section 4), the
extra vertices generated during the metric tree construction are eliminated. An
example of constructing a metric tree from a graph is shown Figure 3.

4.3 Construction of Spherical Codes

To embed our metric trees into Euclidean spaces of fixed dimension, we intro-
duce the concept of spherical codes. Such codes, in turn, will allow us to directly
compare two embeddings. The embedding framework is best illustrated through
an example, in which a weighted tree is embedded into R

2, as shown in Figure 4.
To ease visualization, we will limit the discussion to the first quadrant. The
weighted tree contains 4 paths 〈a, b, c〉, 〈a, d, f, h〉, 〈d, e〉, and 〈f, g〉 in its cater-
pillar decomposition. In the embedding, the root is assigned to the origin. Next,
we seek a set of 4 vectors, one for each path in the caterpillar decomposition,
such that their inner products are minimized, i.e., their endpoints are maximally
apart. These vectors define the general directions in which the vertices on each
path in the caterpillar decomposition will be embedded.

Three of the four vectors will be used by the caterpillar paths belonging to
the subtree rooted at vertex d, and one vector will be used by the path belonging
to the subtree rooted at vertex b. This effectively subdivides the first quadrant
into two cones, Cb and Cd. The volume of these cones is a function of the number
of caterpillar paths belonging to the subtrees rooted at b and d. The cone Cd,
in turn, will be divided into two smaller cones, Ce and Cf , corresponding to the
subtrees rooted at e and f , respectively. The extreme rays of subcones Cb, Ce,
and Cf will correspond to the 4 directions defining the embedding. Finally, to
complete the embedding, we translate the subcones away from the origin along
their directional rays to positions defined by the path lengths in the tree. For

8 M. F. Demirci et al.

a

c

h
g

d
b

f
e

2.0

1.5

1.0

0.5
 1.0

0.5
 1.0

a

b

c

d

e

f

g

h

C
b

C

d

C
e

C
f

Fig. 4. An edge weighted tree and its spherical code in 2D. The Cartesian coordinates
of the vertices are: a = (0, 0), b = (0, 1.0), c = (0, 1.5), d = (2.0, 0), e = (2.5, 0.87),
f = (3.5, 0), g = (3.93, 0.25), and h = (4.5, 0).

example, to embed point b, we will move along the extremal ray of Cb and will
embed b at (0, 1.0). Similarly, the subcone Cd will be translated along the other
extremal ray, embedding d at (2.0, 0).

In d-dimensional Euclidean space R
d, computing the embedding f : A → B

under ||.||2 is more involved. Let L denote the number of paths in the caterpillar
decomposition. The embedding procedure defines L vectors in R

d that have a
large angle with respect to each other on the surface of a hypersphere Sd of radius
r. These vectors are chosen in such a way that any two of their endpoints on the
surface

∑

d are at least spherical distance 2 from each other. We will refer to such
vectors as well-separated. Consider the set of hyperplanes Hi = (0, 2, 4, . . . , 2i),
and let

∑

d(i) = Hi∩
∑

d. Since each of the
∑

d(i) are hypercircles, i.e., surfaces of
spheres in dimension d−1, we can recursively construct well-separated vectors on
each hypercircle

∑

d(i). Our construction stops when the sphere becomes a circle
and the surface becomes a point in 2 dimensions. It is known that taking r to be
O(dL1/d−1), and the minimum angle between two vectors to be 2/r provides us
with L well-separated vectors [6]. In Figure 4, we have 4 such vectors emanating
from the origin.

Now that the embedding directions have been established, we can proceed
with the embedding of the vertices. The embedding procedure starts from the
root (always embedded at the origin) and embeds vertices following the embed-
ding of their parents. For each vertex in the metric tree T, we associate with
every subtree Tv a set of vectors Cv, such that the number of vectors in Cv

equals the number of paths in the caterpillar decomposition of Tv. Initially, the
root has the entire set of L vectors. Consider a subtree rooted at vertex v, and
let us assume that vertex v has k children, v1, . . . , vk. We partition the set of

Many-to-Many Feature Matching 9

vectors into k subsets, such that the number of vectors in each subset, Sv, equals
the number of leaves in Tv. We then embed the vertex vl (1 ≤ l ≤ k) at the
position f(v) + wl ∗ xl, where wl is the length of the edge (v, vl) and xl is some
vector in Cv. We recursively repeat the same process for each subtree rooted at
every child of v, and stop when there are no more subtrees to consider.

4.4 Encoding Directed Edges

The distance metric defined on the graph structure is based on the undirected
edge weights. While the above embedding has preserved the distance metric, it
has failed to preserve any oriented relations, such as the hierarchical relations
common to scale-space structures. This is due to the fact that oriented relations
do not satisfy the symmetry property of a metric. We can retain this important
information in our embedding by moving it into the nodes as node attributes, a
technique used in the encoding of directed topological structure in [20], directed
geometric structure in [19], and shape context in [2]. Encoding in a node the
attributes of the oriented edges incident to the node requires computing distri-
butions on the attributes and assigning them to the node. For example, a node
with a single parent at a coarser scale and two children at a finer scale might
encode a relative scale distribution (histogram) as a node attribute. The result-
ing attribute provides a contextual signature for the node which will be used by
the matcher (Section 5) to reduce matching ambiguity.

Specifically, let G = (A, E) be a graph to be embedded. For every pair of
vertices, (u, v), we let Ru,v denote the attribute vector associated with the pair.
The entries of each such vector represent the set of oriented relations R between
u, v. For a vertex u ∈ A, we let N(u) denote the set of vertices v ∈ A adjacent to
u. For a relation p ∈ R, we will denote P(u, p) as the set of values for relation p
between u and all vertices in N(u), i.e., P(u, p) corresponds to entry p of vector
Ru,v for v ∈ N(u). Feature vector Pu for point u is the set of all P(u, p)’s for
p ∈ R. Observe that every entry P(u, p) of vector Pu can be considered as a
local distribution (histogram) of feature p in the neighborhood N(u) of u. We
adopt the method of [19], in which the distance function for two such vectors
Pu and Pp is computed through a weighted combination of Hausdorff distances
between P(u, p) and P(u′, p) for all values of p.

5 Distribution-Based Many-to-Many Matching

By embedding vertex-labeled graphs into normed spaces, we have reduced the
problem of many-to-many matching of graphs to that of many-to-many matching
of weighted distributions of points in normed spaces. Given a pair of weighted
distributions in the same normed space, the Earth Mover’s Distance (EMD)
framework [16] is then applied to find an optimal match between the distribu-
tions. The EMD approach computes the minimum amount of work (defined in
terms of displacements of the masses associated with points) it takes to trans-
form one distribution into another. The EMD approach assumes that a distance

10 M. F. Demirci et al.

measure between single features, called the ground distance, is given. The EMD
then “lifts” this distance from individual features to full distributions. The main
advantage of using EMD lies in the fact that it subsumes many histogram dis-
tances and permits partial matches in a natural way. This important property
allows the similarity measure to deal with uneven clusters and noisy datasets.
Details of the method, along with an extension, are presented in [10].

The standard EMD formulation assumes that the two distributions have been
aligned. However, recall that a translated and rotated version of a graph embed-
ding will also be a graph embedding. To accommodate pairs of distributions
that are “not rigidly embedded”, Cohen and Guibas [5] extended the definition
of EMD, originally applicable to pairs of fixed sets of points, to allow one of the
sets to undergo a transformation. They also suggested an iterative process (which
they call FT, short for “an optimal Flow and an optimal Transformation”) that
achieves a local minimum of the objective function. Details on how we compute
the optimal transformation can be found in [10, 7].

5.1 The Final Algorithm

Our algorithm for many-to-many matching is a combination of the previous
procedures, and is summarized as follows:

Algorithm 1 Many-to-many graph matching

1: Compute the metric tree Ti corresponding to Gi according to Section 4 (see [1]
for details).

2: Construct low-distortion embeddings fi(Ti) of Ti into (Bi, ||.||2) according to Sec-
tion 4.

3: Compute the EMD between Ei’s by applying the FT iteration, computing the
optimal transformation T according to Section 5 (see [10] for details).

4: Interpret the resulting optimal flow between Ei’s as a many-to-many vertex match-
ing between Gi’s.

6 Experiments

As an illustration of our approach, let’s first return to the example shown in
Figure 1, where we observed the need for many-to-many matching. The results
of applying our method to the these two images is shown in Figure 5, in which
many-to-many feature correspondences have been colored the same. For example,
a set of blobs and ridges describing a finger in the left image is mapped to a set
of blobs in ridges on the corresponding finger in the right image.

To provide a more comprehensive evaluation, we tested our framework on
two separate image libraries, the Columbia University COIL-20 (20 objects, 72
views per object) and the ETH Zurich ETH-80 (8 categories, 10 exemplars per

Many-to-Many Feature Matching 11

Fig. 5. Applying our algorithm to the images in Figure 1. Many-to-many feature cor-
respondences have been colored the same.

category, 41 views per exemplar)5. For each view, we compute a multi-scale blob
decomposition, using the algorithm described in [19]. Next, we compute the tree
metric corresponding to the complete edge-weighted graph defined on the regions
of the scale-space decomposition of the view. The edge weights are computed as
a function of the distances between the centroids of the regions in the scale-space
representation. Finally, each tree is embedded into a normed space of prescribed
dimension. This procedure results in two databases of weighted point sets, each
point set representing an embedded graph.

For the COIL-20 database, we begin by removing 36 (of the 72) represen-
tative views of each object (every other view), and use these removed views as
queries to the remaining view database (the other 36 views for each of the 20
objects). We then compute the distance between each “query” view and each
of the remaining database views, using our proposed matching algorithm. Ide-
ally, for any given query view i of object j, vi,j , the matching algorithm should
return either vi+1,j or vi−1,j as the closest view. We will classify this as a cor-
rect matching. Based on the overall matching statistics, we observe that in all
but 4.8% of the experiments, the closest match selected by our algorithm was a
neighboring view. Moreover, among the mismatches, the closest view belonged
to the same object in 81.02% of the cases. In comparison to the many-to-many

5 Arguably, the COIL database is not the ideal testbed for an image representation (in
our case, a multi-scale blob and ridge decomposition) whose goal is to describe the
coarse shape of an object. Unlike the PCA-based image characterization for which
the COIL database was originally created, the multi-scale blob and ridge decom-
position provides invariance to translation, rotation, scale, minor part deformation
and articulation, and minor within-class shape deformation. Although a standard
database for recognition testing, the COIL database does not exercise these invari-
ants.

12 M. F. Demirci et al.

Fig. 6. Views of sample objects from the Columbia University Image Library (COIL-
20) and the ETH Zurich (ETH-80) Image Set.

matching algorithm based on PCA embedding [7] for a similar setup, the new
procedure showed an improvement of 5.5%.

It should be pointed out that these results can be considered worst case for
two reasons. First, the original 72 views per object sampling resolution was tuned
for an eigenimage approach. Given the high similarity among neighboring views,
it could be argued that our matching criterion is overly harsh, and that perhaps
a measure of “viewpoint distance”, i.e., “how many views away was the closest
match” would be less severe. In any case, we anticipate that with fewer samples
per object, neighboring views would be more dissimilar, and our matching results
would improve. Second, and perhaps more importantly, many of the objects are
symmetric, and if a query neighbor has an identical view elsewhere on the object,
that view might be chosen (with equal distance) and scored as an error. Many of
the objects in the database are rotationally symmetric, yielding identical views
from each viewpoint.

For the ETH-80 database, we chose a subset of 32 objects (4 from each of
the 8 categories) with full sampling (41 views) per object. For each object, we
removed each of its 41 views from the database, one view at a time, and used
the removed view as a query to the remaining view database. We then computed
the distance between each query view and each of the remaining database views.
The criteria for correct classification was similar to the COIL-20 experiment. Our
experiments showed that in all but 6.2% of the experiments, the closest match
selected by our algorithm was a neighboring view. Among the mismatches, the
closest view belonged to the same object in 77.19% of the cases, and the same
category in 96.27% of the cases. Again, these results can be considered worst
case for the same reasons discussed above for the COIL-20 experiment.

Both the embedding and matching procedures can accommodate local per-
turbation, due to noise and occlusion, because path partitions provide locality. If
a portion of the graph is corrupted, the projections of unperturbed nodes will not
be affected. Moreover, the matching procedure is an iterative process driven by
flow optimization which, in turn, depends only on local features, and is thereby

Many-to-Many Feature Matching 13

Perturbation 5% 10% 15% 20%

Recognition rate 91.07% 88.13% 83.68% 77.72%

Table 1. Recognition rate as a function of increasing perturbation. Note that the
baseline recognition rate (with no perturbation) is 95.2%

unaffected by local perturbation. To demonstrate the framework’s robustness,
we performed four perturbation experiments on the COIL-20 database. The ex-
periments are identical to the COIL-20 experiment above, except that the query
graph was perturbed by adding/deleting 5%, 10%, 15%, and 20% of its nodes
(and their adjoining edges). The results are shown in Table 1, and reveal that
the error rate increases gracefully as a function of increased perturbation.

7 Conclusions

We have presented a novel, computationally efficient approach to many-to-many
matching of directed graphs. To match two graphs, we begin by constructing
metric tree representations of the graphs. Next, we embed them in a geometric
space with low distortion using a novel encoding of the graph’s vertices, called
spherical codes. Many-to-many graph matching now becomes a many-to-many
geometric point matching problem, for which the Earth Mover’s Distance algo-
rithm is ideally suited. Moreover, by mapping a node’s geometric and structural
“context” in the graph to an attribute vector assigned to its corresponding point,
we can extend the technique to deal with hierarchical graphs that represent
multi-scale structure. We evaluate the technique on two major image databases,
using a multi-scale image representation that captures coarse image structure,
and include a set of structural perturbation experiments to show the algorithm’s
robustness to graph “noise”.

8 Acknowledgment

Ali Shokoufandeh acknowledges the partial support provided by grants from
the National Science Foundation and the Office of Naval Research. The work
of Yakov Keselman is supported, in part, by the NSF grant No. 0125068. Sven
Dickinson acknowledges the support of NSERC, CITO, IRIS, PREA, and the
NSF. The authors would also like to thank Shree Nayar and Bernt Schiele for
their COIL-20 and ETH-80 databases, respectively.

References

1. R. Agarwala, V. Bafna, M. Farach, M. Paterson, and M. Thorup. On the approx-
imability of numerical taxonomy (fitting distances by tree metrics). SIAM Journal
on Computing, 28(2):1073–1085, 1999.

14 M. F. Demirci et al.

2. S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using
shape contexts. IEEE PAMI, 24(4):509–522, April 2002.

3. R. Beveridge and E. M. Riseman. How easy is matching 2D line models using
local search? IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(6):564–579, June 1997.

4. P. Buneman. The recovery of trees from measures of dissimilarity. In F. Hodson,
D. Kendall, and P. Tautu, editors, Mathematics in the Archaeological and Historical
Sciences, pages 387–395. Edinburgh University Press, Edinburgh, 1971.

5. S. D. Cohen and L. J. Guibas. The earth mover’s distance under transformation
sets. In Proceedings, 7th International Conference on Computer Vision, pages
1076–1083, Kerkyra, Greece, 1999.

6. J. H. Conway and N. J. A. Sloane. Sphere Packing, Lattices and Groups. Springer-
Verlag, New York, 1998.

7. F. Demirci, A. Shokoufandeh, Y. Keselman, S. Dickinson, and L. Bretzner. Many-
to-many matching of scale-space feature hierarchies using metric embedding. In
Scale Space Methods in Computer Vision, 4th International Conference, pages 17–
32, Isle of Skye, UK, June, 10–12 2003.

8. A. Gupta. Embedding tree metrics into low dimensional euclidean spaces. In
Proceedings of the thirty-first annual ACM symposium on Theory of computing,
pages 694–700, 1999.

9. P. Indyk. Algorithmic aspects of geometric embeddings. In Proceedings, 42nd
Annual Symposium on Foundations of Computer Science, 2001.

10. Y. Keselman, A. Shokoufandeh, F. Demirci, and S. Dickinson. Many-to-many
graph matching via low-distortion embedding. In Proceedings, IEEE Conference
on Computer Vision and Pattern Recognition, Madison, WI, June 2003.

11. S. Kosinov and T. Caelli. Inexact multisubgraph matching using graph eigenspace
and clustering models. In Proceedings of SSPR/SPR, volume 2396, pages 133–142.
Springer, 2002.

12. T.-L. Liu and D. Geiger. Approximate tree matching and shape similarity. In
Proceedings, 7th International Conference on Computer Vision, pages 456–462,
Kerkyra, Greece, 1999.

13. J. Matous̆ek. On embedding trees into uniformly convex Banach spaces. Israel
Journal of Mathematics, 237:221–237, 1999.

14. B. Messmer and H. Bunke. Efficient error-tolerant subgraph isomorphism detec-
tion. In D. Dori and A. Bruckstein, editors, Shape, Structure and Pattern Recog-
nition, pages 231–240. World Scientific Publ. Co., 1995.

15. R. Myers, R. Wilson, and E. Hancock. Bayesian graph edit distance. IEEE PAMI,
22(6):628–635, 2000.

16. Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as a metric
for image retrieval. International Journal of Computer Vision, 40(2):99–121, 2000.

17. G. Scott and H. Longuet-Higgins. An algorithm for associating the features of two
patterns. Proceedings of Royal Society of London, B244:21–26, 1991.

18. T. Sebastian, P. Klein, and B. Kimia. Recognition of shapes by editing shock
graphs. In IEEE International Conference on Computer Vision, pages 755–762,
2001.

19. A. Shokoufandeh, S.J. Dickinson, C. Jönsson, L. Bretzner, and T. Lindeberg. On
the representation and matching of qualitative shape at multiple scales. In Pro-
ceedings, 7th European Conference on Computer Vision, volume 3, pages 759–775,
2002.

20. K. Siddiqi, A. Shokoufandeh, S. Dickinson, and S. Zucker. Shock graphs and shape
matching. International Journal of Computer Vision, 30:1–24, 1999.

