Single click volumetric segmentation of abdominal organs in
Computed Tomography images

Brian W. Whitney?, Nathan J. Backman®, Jacob D. Furst‘, Daniela S. Raicu®
®Northern Kentucky University, Nunn Drive, Highland Heights, K, 41099, USA
"Whitworth College, 300 W. Hawthorne Road, Spokane, WA, 99251, USA
“Intelligent Multimedia Processing Laboratory, School of Computer Science, Telecommunications,
and Information Systems, DePaul University, Chicago, Illinois, 60604, USA

ABSTRACT*

Current segmentation techniques require user intervention to fine-tune thresholds and parameters, plot initial contours,
refine seed placement, and engage in other optimization strategies. This can cause difficulties for physicians trying to
use segmentation tools as they may not have the time or resources to overcome steep learning curves. In order to
segment volumetric regions from sequential slices of computed tomography (CT) images with minimal user
intervention, we propose an algorithm based on volumetric seeded region growing that employs an adaptive and
prioritized expansion. This algorithm requires a user only to identify a voxel in an organ to perform volumetric
segmentation. This approach overcomes the need to manually select threshold values for specific organs by analyzing
the histogram of voxel similarity to automatically determine a stopping criterion. The homogeneity criterion used for
region growth in this approach is calculated from volumetric texture descriptors derived from co-occurrence matrices
which consider voxel-pairs in a 3-dimensional neighborhood of a given voxel. Preliminary segmentation results of the
kidneys, spleen, and liver were obtained on 3D data extracted from 700 sequential CT images from various studies
collected by Northwestern Memorial Hospital. We believe this approach to be a viable segmentation technique that
requires significantly less user intervention when compared to other techniques by necessitating only one user
intervention, namely the selection of a single seed point.
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1. INTRODUCTION

Image segmentation is by definition a separation of a region of interest from the rest of the data within an image. High-
quality segmentation of CT images, particularly in the volumetric sense, is exceptionally appealing to a number of
medical imaging and other applications, such as content-based image retrieval, face and hand recognition, object
tracking, various forms of 3-dimensional computer-aided diagnoses, improving classification approaches, as well as
many others. Specifically within the medical field, while the typical users’ expertise may not be computing, there is
still a strong requirement for a very high degree of accuracy®.

However, many current segmentation algorithms require an excess of user intervention in order to properly segment an
organ, and often do not provide the degree of accuracy required within the medical domain. For example, active
contours and deformable models have difficulty segmenting regions of interest with intricate boundaries, grey-level
threshold techniques can not capture regions of varying textures, and edge finding algorithms can not segment a single
region of interest within an image. These various techniques also encumber those within the medical domain, whose
expertise is rightly focused in the medical field, as they require user intervention to fine tune thresholds and parameters,
plot initial contours, redefine seed placement, and engage in other optimization strategies which require region-
dependent a priori knowledge®. The current unsupervised segmentation algorithms do not consistently uphold the same
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degree of accuracy as the more cumbersome supervised segmentation algorithms. However, In order to improve
workflow and efficiency in the medical domain, physicians must not be required to overcome steep learning curves or
with fine-tuning parameters and thresholds on an organ-by-organ basis to receive accurate results.

An important aspect of the medical imaging domain is the existence of multiple 3-dimensional image modalities. Along
with the increased data in 3-dimensional imaging studies comes a need for complex volumetric segmentation. The
results from volumetric segmentation can not only be used for new intentions such as 3-dimensional visualization, but
can also be an improved preprocessing step for other classification and analysis algorithms, as it may provide more
accurate results which take advantage of the additional data.

According to Smith and Chang!, texture refers to a visual pattern that demonstrates properties of homogeneity.
Previous studies have demonstrated the ability to perform pixel-level texture extraction within 2-dimensional CT
studies®. Now that CT studies are isotropic in all three dimensions, it is sought-after to extend this work into the third
dimension for additional texture extraction. In order to accomplish this, we implemented a voxel-level texture
extraction using Haralick’s® co-occurrence model on a volumetric co-occurrence® matrix extracted from a 3-dimensional
neighborhood surrounding each voxel. From these texture features we then produced a homogeneity criterion, which is
used to differentiate a region of interest.

The approach used to segment each region of interest is a modified form of seeded region growing, the original being
proposed by Adams and Bischof'. The modified form used here involves an adaptive and prioritized search as well as
voxel-level texture feature extraction to determine the homogeneity criterion. The texture features are dynamically
extracted from each voxel as they are included in the region and are used to determine the texture features which
characterize the region of interest as it grows. With this, it is possible to keep a prioritized list of all pixels adjacent to
the region of interest, ordered by their similarity to the texture features of the region average®. By continuously adding
the voxel from the front of this list, it is ensured that the most similar voxel is always included first, while preserving the
integrity of the region average. Also from this list we are capable of producing a histogram of all voxels included in the
region and adjacent to it. From this we can visualize the frequency of the similarities between visited voxels and the
region average. We will therefore note a bell-shaped formation, representing the given region of similarity, which is the
region of interest. The cut-off threshold can then be determined based on this bell-curve, which will be unique to each
region, and the most similar voxels will be included in the region until this threshold is met.

It is important to provide a more efficient means of segmentation, which requires minimal user intervention. Because
this algorithm is capable of dynamically determining texture features that quantify the user’s selected region of interest,
and calculate a stopping criterion based on the texture features, the user is required to do nothing more than select the
seed voxel. This limited user intervention should be ideal for the medical domain, assuming the results meet the
required level of precision.

2. METHODOLOGY

2.1 Data Compression

The CT data used consisted of 3D images of consecutive 2D DICOM (Digital Imaging and Communications in
Medicine) slices, where each individual slice was 512 by 512 pixels with a 12-bit grey-level resolution. Because co-
occurrence matrices were to be used in the texture feature extraction, the number of grey-levels was reduced by a factor
of 16, leading to 256 intensities, rather than 4096. This greatly reduced computational complexity, as the number of
grey-levels determines the size of each co-occurrence matrix. As proposed in a previous image compression study,
Clipped Binning can be used to reduce 4096 grey-levels into 256 grey-levels, while still providing adequate
discriminatory power between abdominal organs when considering soft-tissues by means of texture features'’,

Clipped binning linearly reduces a set range of grey-levels to a smaller range, while clipping all values above and below
into single bins surrounding the selected range’, as shown in Figure 1. Radiologists from Northwestern Memorial
Hospital asserted that soft-tissues in CT images were comprised of the grey-level range [856,1368], which was affirmed
by Lerman’ via the use of a k-means clustering algorithm. Clipped binning was therefore used to reduce all grey-levels



above and below the soft-tissue range into the two appropriate bins, and linearly distribute all soft-tissue pixels into the
remaining 254 bins. As a result, with the use of the clipped binning technique on our 4096 grey-level DICOM images,
grey-levels [0-855] were mapped to grey-level 0, grey-levels [856,1368] were linearly distributed to grey-levels [1,254],
and grey-levels [1369,4095] were mapped to grey-level 255.

0 856 1368 4095
C y, g Y
01 254 255

Figure 1: Clipped Binning
2.2 Voxel-level texture extraction
Any region growing algorithm calls for a criterion of homogeneity in order to facilitate the evaluation of voxels to
determine if they should be considered part of a region’. Voxel-level feature extraction was used to calculate the 3-
dimensional texture features for each individual voxel, in order to compare it to the texture features of the region
average. This method is similar to the 2-dimensional pixel-level texture extraction as proposed by Kalinin®, as it applies
to an additional dimension.

In order to calculate the texture features of a given voxel, we consider a 3x3x3 neighborhood surrounding the voxel,
from which we produce a single 2-dimensional co-occurrence matrix. This co-occurrence matrix will be of size n by n,
where n is the number of grey-levels in the CT images. Our volumetric co-occurrence matrix sums intensity value
pairs, such that the location [x,y] will be the accumulation of voxel pairs of intensities X and y. In determining the voxel
pairs for our co-occurrence matrix, we orderly iterate through the 3x3x3 neighborhood such that there is no repetition in
the voxel pair calculation.

From this co-occurrence matrix, we calculate four texture descriptors as proposed by Haralick®: entropy, mean,
variance, and cluster tendency. The definitions of these texture descriptors can be seen in Table 1. Because the texture
features of an individual voxel were to be compared with the texture features of the region average, it was necessary to
determine the distribution of each texture feature throughout our study. To determine the distribution of each texture
feature, we recorded approximately 10,000 random voxels as samples, and calculated their texture features. Within our
study, we found the distributions of variance and mean to characterize a fairly normal distribution, while cluster
tendency and variance portrayed exponential distributions. In order to normalize the distributions of cluster tendency

Texture Feature Formula Description
M N Provides a measurement of the
Entropy - Z z P[i, j] log P[i, j] randomness of a gray-level
j distribution

N

M .
Mean 22 2Pl ]+ el ) O el e region
M
z

Provides the variance of the
(I— P[I j] j— P[I j]) distribution of gray-levels in the

N
2\ !

i region
M

>

Variance

I\Jll—‘

2 Provides a measurement of

N
Z( — U+ ] —,uj) P[i, J] groupings of voxels with similar
j gray-levels

Cluster Tendency

Table 1: Texture features



and variance, we took the logarithmic value of each. In this we were capable of determining the four texture features of
an independent voxel as it compares with the texture features of the region average.

Once the distributions of the texture features were determined, we were capable of finding a quantitative measurement
to find the probability between two values of texture features. As such, we calculated the Mahalanobis distance of each
texture feature of an individual voxel from the corresponding texture feature of the region average. With the four
Mahalanobis distance values, we computed the Manhattan distance, to achieve the quantitative measurement of the
similarity of an individual voxel and the region average, as shown in Figure 2.
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Figure 2: Mahalanobis distance
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2.3 Region Growth

Once there is a means of determining the similarity between a voxel and the region average, we can begin the region
growth. Following the user’s selection of a single voxel as the seed, the region average will be defined as the seed’s
texture alone. The algorithm then proceeds to evaluate voxels adjacent to the region, compute their similarity to the
region, and maintain a prioritized list of these voxels®. It then selects the most similar voxel from the list, includes it in
the region, recalculates the region average, and includes the voxel’s neighbors in the prioritized list. This process is
then repeated, continuously spreading to the most similar voxels first.

After the user has selected a single voxel as the seed, it is necessary to allow an initial period of region growth with no
stopping criterion. While this initial growth is much smaller than any region of interest, it will facilitate the
development of the region average. This is very beneficial, as the region average will better reflect the texture of the
selected region, rather than the individual voxel selected™. After the initial growth, the prioritized list of voxels, as well
as voxels already in the region, can be used to generate a histogram which displays voxels as sorted by their similarity
to the region average. By evaluating such a histogram at various points in time, we are able to determine the
characteristics of region growth, identify region boundaries, and formulate a stopping criterion. An example of such a
histogram can be seen in Figure 3. After the initial period of growth, this histogram will begin representing a bell-
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Figure 3: Histogram of a bell-shaped curve denoting a region of interest



shaped curve. At any given time, this bell-shaped curve effectively characterizes a region of interest, with the right-
most voxels not yet added to the region as a result of their dissimilarity. The right half of the bell-curve illustrates a
decrease in voxel occurrences as the dissimilarity of the voxels from the region average increases. This development
from a large number of voxels similar to the region average to a lower number of dissimilar voxels can be interpreted as
the border of a region of interest.

Seeing as the right tail of the histogram denotes the border of a region, it would appear that a stopping criterion could
simply be based on growing right up to this boundary. However, continuing region growth completely up to the
apparent borders continues development of the region average, and its histogram representation, and can lead to
leakage. We claim, however, that it is possible to segment a region before filling every voxel up to the border. We
claim that you can instead find the core texture of the region, then apply morphological operators to fill in holes and
soften edges®. With this in mind, we define a threshold value relative to the right tail of the bell-curve, such that a voxel
with similarity less than the value will not be included in the region.

Because the initial periods of growth may not be enough to characterize a full region, it is necessary for us to
dynamically redefine our threshold value. The threshold value is first defined after the initial growth period as the first
bin which is 90% less than, and to the right of, the peak. Seeing as the earlier stages of growth do not yet characterize
the region, the threshold value is again calculated when the most similar voxel is more dissimilar than the current
threshold. Once recalculated, the threshold value will portray all region growth up to that point. If the most similar
voxel still exceeds the newly calculated threshold, then we have truly met our stopping criterion, and the region growing
process is concluded. The majority and shape of the region has been determined, and morphological operators are
applied. Dilation is used to fill in dense portions of the segmented region, and blurring rounds the edges, resulting in a
fully segmented region.

Figure 4 illustrates a portion of the user-interface developed for the algorithm. Note the two vertical bars within the
histogram. The right-most bar portrays the current threshold, and the left-most bar portrays the most recently evaluated
voxel. The left-most bar will obviously move as voxels are evaluated, and will eventually reach the threshold bar, at
which time the threshold value will be recalculated. Also note from this figure that the vast majority of voxels to the
right of the threshold bar have not been added to the region, but are instead neighboring voxels waiting in the prioritized
list.
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Figure 4: An example of a histogram derived from a prioritized list

It’s important to note that the threshold value’s precision directly depends on the number of bins within our histogram.
If too many bins are used in relation to the amount of data, then the bell-curve is very jagged and determining the
threshold can be difficult. If too few bins are used, a great amount of precision is lost when determining the threshold.
Seeing as the amount of statistical data available for the histogram will increase with the size of the region, it is
beneficial to increase the number of bins in the histogram, to benefit the growing need for, and availability of, precision.
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Equation 1: Equation for the logarithmic bin inflation

numOfBins =75+10%*

Equation 1 portrays the equation used for the increased number of histogram bins. An initial amount of 75 bins is then
increased logarithmically as the region expands. This accompanies greater precision with the growing amount of data.
The logarithmic increase of histogram bins will provide increased precision for a growing region, but will not result in
an excess of bins for enormous regions such as a liver.

3. RESULTS

Our segmentation results were obtained on 3D data extracted from 700 sequential CT images from various studies
collected by Northwestern Memorial Hospital. The 3D image data consisted of consecutive 2D DICOM (Digital
Imaging and Communications in Medicine) slices, each slice being of size 512 by 512 with 12-bit gray level resolution.
The following figures were segmented by our algorithm via the selection of a single voxel and no other user
intervention or modification of parameters. This only involves the user scrolling through the list of CT images and
clicking within a region of interest, as shown in the user interface of Figure 5. Each of the following figures is divided
into three different sections. Moving from left to right, those sections are the original CT image, the image with a
boundary around the segmented region computed by our algorithm, and the isolated region segmented by our algorithm.
Although these regions were segmented volumetrically, only a single slice of the segmentation is shown.
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Figure 5: The user interface implemented in the algorithm

Figure 6 depicts one slice of the 3-dimensional results of a segmented left kidney. The two holes in the segmentation
are representative of the renal pelvis which is not the goal of our segmentation. This example shows that our algorithm
is capable of successfully segmenting organs that have not only external boundaries but internal boundaries as well. It
should be noted that these kinds of phenomena prevent active contours and deformable models from proper
segmentations.



Figure 6: One slice of the 3-dimensional results of a segmented left kidney

Figure 7 depicts one slice of the 3-dimensional results of a segmented right kidney. It is noteworthy that our
segmentation algorithm did not spread from the kidney to the renal vein, which is as intended. This example also
demonstrates the ability to capture irregular shapes.

Figure 7: One slice of the 3-dimensional results of a segmented right kidney

Figure 8 depicts one slice of the 3-dimensional results of a segmented spleen.

Figure 8: One slice of the 3-dimensional results of a segmented spleen

Figure 9 depicts one slice of the 3-dimensional results of a segmented liver. In this figure it is important to note that the
portal vein, seen in the middle of the liver, was accurately classified as not part of the region.



Figure 9: One slice of the 3-dimensional results of a segmented liver

A large advantage of volumetric segmentation is how well it lends itself to 3-dimensional visualizations. Figure 10 is
an example of a kidney segmented by our algorithm and depicted within 3D Slicer, a 3D visualization program. This
can be of particular use in the medical domain, as 3-dimensional examination of individual abdominal organs can be

obtained by merely clicking the desired region, and using a standard 3-dimensional visualization application on the
segmentation results.

Figure 10: A 3-dimensional rendering of a segmented kidney

Figures 11 and 12 are visualizations of a set of segmented kidneys and a spleen within 3D Slicer. The segmentation
results of our algorithm were used as coordinates in ‘highlighting’ the selected organs. This demonstrates yet another
advantage and use of volumetric segmentation in the medical domain.



Figure 11: A 3-dimensional visualization of a set of segmented kidneys and spleen

Figure 12: A 3-dimensional visualization of a set of segmented kidneys and spleen



4. CONCLUSIONS

The immediately observable benefit of our algorithm is the production of quality volumetric segmentation with a
parameter-less user-interface, which requires only a selection of a single seed voxel as user intervention. In particular,
the nearly automatic nature of our algorithm allows novice computer users to generate quality segmentation results.
This is specifically appealing for the medical domain, which greatly benefits from decreased user intervention while still
providing quality results. The results can then be used in a variety of medical diagnoses, or other areas such as
generating databases of organs for later similarity-based retrieval.

However, this approach does come with drawbacks. Due to the massive amount of data in isotropic or nearly isotropic
volumetric studies, segmentation of very large organs, such as a liver, can take hours. Although speed can be optimized
in a development environment that is not research-based, there will still be the computational costs of keeping a
prioritized list of all neighboring voxels, and other expensive computations. It is also important to note that the
algorithm assumes a criterion of texture homogeneity for a region. Therefore, it will be difficult to segment organs of
more complex texture, such as the heart.

For future work it would be worthwhile to experiment with new texture descriptors, or new combinations of texture
descriptors, as some may be more discriminating for specific organs. Alternate image compression strategies such as
continuously clipped binning” may also provide more distinguished grey-levels between regions of interest, or help to
lower computational complexity by reducing the number of grey-levels further. We are also investigating the potential
for unsupervised segmentation which would make use of an autonomous multi-seed placement strategy.
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