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ABSTRACT 

Useful diagnosis of lung lesions in computed tomography (CT) depends on many factors including the ability of 
radiologists to detect and correctly interpret the lesions.  Computer-aided Diagnosis (CAD) systems can be used to 
increase the accuracy of radiologists in this task.  CAD systems are, however, trained against ground truth and the 
mechanisms employed by the CAD algorithms may be distinctly different from the visual perception and analysis tasks 
of the radiologist. In this paper, we present a framework for finding the mappings between human descriptions and 
characteristics and computed image features.  The data in our study were generated from 29 thoracic CT scans collected 
by the Lung Image Database Consortium (LIDC). Every case was annotated by up to 4 radiologists by marking the 
contour of nodules and assigning nine semantic terms to each identified nodule; fifty-nine image features were extracted 
from each segmented nodule. Correlation analysis and stepwise multiple regression were applied to find correlations 
among semantic characteristics and image features and to generate prediction models for each characteristic based on 
image features. From our preliminary experimental results, we found high correlations between different semantic terms 
(margin, texture), and promising mappings from image features to certain semantic terms (texture, lobulation, 
spiculation, malignancy).  While the framework is presented with respect to the interpretation of pulmonary nodules in 
CT images, it can be easily extended to find mappings for other modalities in other anatomical structures and for other 
image features.   
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1. INTRODUCTION 
Research studies have shown that double reading by two or more radiologists improves the detection of lung cancers, 
and the same have shown that interpretation performance varies greatly among radiologists.1  Computer-aided diagnosis 
(CAD) systems can be used as a second reader to improve the overall accuracy of radiologists in this task. Since the 
CAD algorithms typically operate very differently from human perception it can be difficult at times to understand how 
certain findings were made.   

The purpose of this research is to provide a quantitative approach for finding the relationships between image features 
and medical terms (semantic concepts) used for diagnosis and finding mappings from image features to semantic terms. 
Our approach can assist radiologists in interpreting lung nodules by providing either an initial or secondary estimate of 
the semantic values based on the calculation and subsequent analysis of image features.  This can serve to increase the 
accuracy of a single reader and improve the consistency among multiple readers. 

2. RELATED WORK 
Several research studies have designed CAD systems that can help estimate the probability of cancer based on nodule 
characteristics (such as nodule size, shape, and internal structures) and clinical information (such as age, gender, history 
of smoking, and history of cancer). 
 



 
 

 
 

McNitt-Gray et al.2, 3 used nodule size, shape and co-occurrence texture features as nodule characteristics to design a 
linear discriminant analysis classification system for malignant versus benign nodules.  Lo et al.4 used direction of 
vascularity, shape and internal structure to build an artificial neural network classification system for prediction of the 
malignancy of the nodules.  Armato and MacMahon5 used nodule appearance and shape to build a LDA classification 
system of pulmonary nodules in malignant versus benign classes.  Takashima et al.6, 7 used shape information to 
characterize malignant versus benign lesions in the lung.   
 
While these systems are based on just nodule characteristics, there are also studies that make use of clinical information. 
J. Gurney designed a Bayesian classification system8, 9 based on clinical information in addition to radiological 
information. Y. Matsuki et al.10 also used clinical information in addition to sixteen features scored by radiologists to 
design an ANN for malignancy versus benign classification.  M. Aoyama et al.11 used two clinical features in addition to 
forty-one image features to determination of the likelihood measure of malignancy for pulmonary nodules on low-dose 
CT images.  For a more detailed literature review on the analysis of computed tomography scans of the lung, we 
recommend the recent survey by I. Sluimer et al.12  
 
All these studies are performed on different data sets and therefore, a comparison of the algorithms presented by these 
studies is not reliable.  The necessity of creating benchmark data sets has been recognized and the Lung Image Database 
Consortium13 (LIDC) benchmark is a first step undertaken in this direction.  The LIDC has been already used for the 
validation of two detection algorithms. Using the LIDC cases, Liu and Li14 also proposed a new method for nodule 
detection based on gradient and intensity combined level set methods that generated stable and accurate segmentation 
results for complex organic structures like lung bronchia and nodules.    
 
All studies used a combination of features to characterize the size, shape and internal structure of the nodules. In that 
way, they indirectly encoded radiologists’ knowledge about indicators of malignancy12. However, the real question is if 
indeed the nodule characteristics as encoded by the CAD systems correspond to the same concepts as the ones used by 
the radiologists.  In other words, it is important to have a correct mapping between the nodule image features and the 
semantic concept used by radiologist to annotate the nodule. For example, can we give a positive answer to the question: 
are the computerized texture features quantifying the texture as perceived by radiologists? In other words, is computed 
texture the same as the perceived texture?  Furthermore, is the texture of a nodule perceived the same by two different 
radiologists? It was shown that when human ratings of nodule characteristics are used to train computer systems, such 
ratings are not always reliable and reproducible15-18.   Moreover, in practice, physicians use several perceptual categories 
to make diagnoses.  First steps have already been taken in creating frameworks for a common language when making 
diagnosis.  Leroy and Chen19 developed a tool (Medical Concept Mapper) based on the Unified Medical Language 
System20 (UMLS) and WordNet21 that connects patient information to human-created ontologies.  Barb et al.22proposed a 
framework that uses semantic methods to describe visual abnormalities and exchange knowledge in the medical domain.  
Our work can also be considered one of the initial steps in the direction of mapping image features to perceptual 
categories encoding the radiologists’ knowledge for lung interpretation. 
 

3. METHODOLOGY 
In this section we present our proposed methodology for finding the mappings between the nodule image features and 
the physician annotations as summarized in Figure 1.  In Section 3.1 we present the data set.  In Section 3.2 we present 
the image processing algorithms used to perform automatic nodule feature extraction and in Section 3.3 we present the 
data analysis and machine learning algorithms used to map the image features to the physicians’ annotations.  
 



 
 

 
 

 
Figure 1: Diagram of the proposed mapping framework 

3.1 Data Set 

The data used in this study were generated from 29 cases of thoracic CT collected by the Lung Image Database 
Consortium (LIDC).13 In the LIDC’s marking process, up to 4 radiologists marked the boundary of lung nodules with 
sizes between 3 mm and 3 cm for every slice on which the nodule appears and rated nine semantic characteristics for 
each identified nodule.  The nine semantic characteristics chosen by the LIDC are shown in the Table 1, along with our 
notes and references on the meaning of these characteristics based on our literature review, and the range of possible 
scores from which the rating radiologists could choose.  In the marking process, there is no forced agreement on the 
existence of a nodule, its location, its boundary, or its characteristics13. 

Table 1: LIDC nodule characteristics with corresponding lung nodules 
Characteristic Notes and References Possible Scores 
Calcification calcification appearance in the nodule - The smaller the nodule, 

the more likely it must contain calcium in order to be 
visualized.23 Benignity is highly associated with central, non-
central, laminated, and popcorn calcification.24,25  

1. Popcorn 
2. Laminated 
3. Solid 
4. Non-central 
5. Central 
6. Absent 

Internal structure expected internal composition of the nodule 1. Soft Tissue 
2. Fluid 
3. Fat 
4. Air 

Lobulation whether a lobular shape is apparent from the margin or not - 
lobulated margin is an indication of benignity.12

1. Marked 
2. . 
3. . 
4. . 
5. None 

Malignancy likelihood of malignancy of the nodule - Malignancy is 
associated with large nodule size while small nodules are more 
likely to be benign.24,26 Most malignant nodules are non-
calcified3 and have spiculated margins.27

1. Highly Unlikely 
2. Moderately Unlikely 
3. Indeterminate 
4. Moderately Suspicious 
5. Highly Suspicious 

Margin how well defined the margins of the nodule are 1. Poorly Defined 
2. . 
3. . 
4. . 
5. Sharp 

Sphericity dimensional shape of nodule in terms of its roundness 1. Linear 
2. . 
3. Ovoid 
4. . 
5. Round 



 
 

 
 

Spiculation degree to which the nodule exhibits spicules, spike-like 
structures, along its border - Spiculated margin is an indication of 
malignancy.25,28

1. Marked 
2. . 
3. . 
4. . 
5. None 

Subtlety difficulty in detection - Subtlety refers to the contrast between the 
lung nodule and its surroundings 

1. Extremely Subtle 
2. Moderately Subtle 
3. Fairly Subtle 
4. Moderately Obvious 
5. Obvious 

Texture internal density of the nodule - Texture plays an important role 
when attempting to segment a nodule, since part-solid and non-
solid texture can increase the difficulty of defining the nodule 
boundary.26

1. Non-Solid 
2. . 
3. Part Solid/(Mixed) 
4. . 
5. Solid 

 

3.2 Feature extraction 

In order to quantify the image content, we calculated four types of image features for each nodule: size, shape, intensity, 
and texture; this feature extraction stage generated 59 image features as presented in Table 2.  The choice of these 
features was based on a literature review of the most common image features used for pulmonary nodule detection and 
diagnosis by existent CAD systems28, 29.   
 
Table 2: The entire set of image features extracted from each segmented lung nodule. 

Shape Features Size Features Intensity Features Texture Features 
Circularity Area MinIntensity 
Roughness ConvexArea MaxIntensity 
Elongation Perimeter MeanIntensity 
Compactness ConvexPerimeter SDIntensity 
Eccentricity EquivDiameter MinIntensityBG 
Solidity MajorAxisLength MaxIntensityBG 

11 Haralick features calculated from co-occurrence 
matrices (Contrast, Correlation, Entropy, Energy, 
Homogeneity, 3rd Order Moment, Inverse 
Differential Moment, Variance, Sum Average, 
Cluster Tendency, Maximum Probability) 

Extent MinorAxisLength MeanIntensityBG 
RadialDistanceSD   SDIntensityBG 
  IntensityDifference 

24 Gabor features - mean and standard deviation of 
Gabor filters consistency of four orientations and 
three scales. 

 
In order to quantify the shape of a nodule, we used eight common image shape features: circularity, roughness, 
elongation, compactness, eccentricity, solidity, extent, and the standard deviation of the radial distance.  Circularity is 
measured by dividing the area of the region by the area of a circle with the same convex perimeter.  Roughness can be 
measured by dividing the perimeter of the region by the convex perimeter. A smooth convex object, such as a perfect 
circle, will have a roughness of 1.0. The eccentricity is obtained using the ellipse that has the same second-moments as 
the region. The eccentricity is the ratio of the distance between the foci of the ellipse and its major axis length. The value 
is between 0 (a perfect circle) and 1 (a line).  Solidity is defined in terms of the convex hull corresponding to the region 
being the proportion of the pixels in the convex hull that are also in the region.  Extent is the proportion of the pixels in 
the bounding box (the smallest rectangle containing the region) that are also in the region.  Finally, the 
RadialDistanceSD is the standard deviation of the distances from every boundary pixel to the centroid of the region. 

For the size of a nodule, the following seven features were found to be the most common ones: area, convexArea, 
perimeter, convexPerimeter, equivDiameter, majorAxisLength, minorAxisLength.  The area and perimeter image 
features measure the actual number of pixels in the region and on the boundary, respectively.  The convexArea and 
convexPerimeter measure the number of pixels in the convex hull and on the boundary of the convex hull corresponding 
to the nodule region.  EquivDiameter is the diameter of a circle with the same area as the region.  Lastly, the 
majorAxisLength and minorAxisLength give the length (in pixels) of the major and minor axes of the ellipse that has the 
same normalized second central moments as the region. 

Gray-level intensity features used in this study are simply the minimum, maximum, mean, and standard deviation of the 
gray-level intensity of every pixel in each segmented nodule image and the same four values for every background pixel 
in the bounding box containing each segmented nodule image. Another feature, intensityDifference, is the absolute value 



 
 

 
 

of the difference between the mean of the gray-level intensity of the segmented nodule image and the mean of the gray-
level intensity of its background. 

Normally texture analysis can be grouped into four categories: model-based, statistical-based, structural-based, and 
transform-based methods.  Structural approaches seek to understand the hierarchal structure of the image, while 
statistical methods describe the image using pure numerical analysis of pixel intensity values. Transform approaches 
generally perform some kind of modification to the image, obtaining a new “response” image that is then analyzed as a 
representative proxy for the original image, and model-based methods are based on the concept of predicting pixel 
values based on a mathematical model.  Based on our previous texture analysis work31, in this research we focus on two 
well-known texture analysis techniques: co-occurrence matrices (a statistical-based method), and Gabor filters (a 
transform-based method).  

Co-occurrence matrices focus on the distributions and relationships of the gray-level intensity of pixels in the image.  
They are calculated along four directions (0º, 45º, 90º, and 135º) and five distances (1, 2, 3, 4 and 5 pixels) producing 20 
co-occurrence matrices.  Once the co-occurrence matrices are calculated, eleven Haralick texture descriptors31 are then 
calculated from each co-occurrence matrix. Although each Haralick texture descriptor is calculated from each co-
occurrence matrix, we averaged the features by distance and then select the minimum value by direction resulting in 11 
(instead of 11*4*5) Haralick features per image.  

Gabor filtering32 is a transform based method which extracts texture information from an image in the form of a response 
image. A Gabor filter is a sinusoid function modulated by a Gaussian and discretized over orientation and frequency. We 
convolve the image with 12 Gabor filters: four orientations (0º, 45º, 90º, and 135º) and three frequencies (0.3, 0.4, and 
0.5), where frequency is the inverse of wavelength. The size of each Gabor filter is set constant at9 .  Our Gabor 
filter design is based on the work by Andrysiak and Choras,

9×
 32 where Gabor filters were used to encode the image 

content for image retrieval. We then calculate means and standard deviations from the 12 response images resulting in 
24 Gabor features per image. 
 
At the end of the image feature extraction process, each nodule image is encoded using a set of fifty-nine image features 

and nine radiologist annotations 59,1, …=if i 9,1, …=jc j  (semantic concepts).  Therefore, the nodule 

representation is given by the vector representation [ ]9215921 ,,,,, cccfff …… ; Figure 2 shows an example of feature 
values for a nodule representation.  We should note here that each nodule might produce up to four images in the data set 
given that same nodule can be delineated differently by the four radiologists.  Furthermore, since the same nodule can be 
rated differently by the four radiologists, for the same nodule image there might be up to four vector representations each 
representation encoding the rating of one of the radiologists. 

 
Figure 2: An example of nodule characteristics assigned by a radiologist and features extracted from the segmented nodule. 

 



 
 

 
 

3.3 Automatic Mappings Extraction 

In the image indexing and retrieval community, the lack of coincidence between the information that one can extract 
from the visual data and the interpretation that the same data has for a user in a given situation is known as the semantic 
gap problem.  A look on the state-of-the-art in the image indexing and retrieval domain shows the importance and the 
complexity of the semantic problem.  In this paper, we address this problem as encountered in the lung nodule image 
interpretation by proposing two basic statistical techniques to identify the relationships between the digital representation 
of a nodule image and its interpretation as perceived by up to four radiologists.   
 
Because the radiologists were asked to provide quantified semantic descriptions, this data set lends itself well to basic 
statistical methods.  First, we chose to concentrate on correlations among all pairs of semantic ratings as well as all 
(semantic rating, image feature) pairs.  Using the nodule vector representation introduced in the previous section, the 
Spearman’s rank correlation coefficient34 among two semantic ratings is defined as follows: ji cc ,
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where stands for the number of data points (nodule images), , are the ranks of the semantic ratings , 

respectively.  Similarly, the correlation among a semantic rating  and an image feature is defined as follows: 
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where 
jfr is the rank of the image feature . Values of the correlation coefficient jf ρ close to 1 will indicate a positive 

strong correlation between the considered pairs.  Further, the pair-wise results for basic correlations can be used to 
compare our results to what has been reported in previous studies regarding the relationship between lung nodule 
semantic descriptions and physical descriptions of the nodule.   
 
However, the correlation models can only account for pair-wise groupings of semantic ratings and thus provide limited 
predictive power.  To investigate further the interaction of all images features and their combined relationship to the 
semantic ratings, we used a stepwise multiple regression. 

Stepwise multiple regression analysis33 was applied to generate prediction models for each characteristic based 

on all image features : 
iM ic

jf

i
pk

kkii fcM εββ ++= ∑
= …,1

0:   (3) 

 
where p is the number of image features used in the regression model, iβ are the regression coefficients, and iε are the 

prediction errors per model.  A model was considered to be a good fit if the  (the square of the adjusted 
correlation coefficient) was greater than 0.8 which implies that the model captured more than 80% of the variance in the 
data:   
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The adjusted value of the correlation coefficient 2R was used to take into account the multi-colinearity in the data (two 
or more image features are dependent).  Unlike the 2R , the can decline if the addition of variable does not 
improve the regression model.   
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Besides modeling each semantic term or characteristic with respect to only the image features and thus including all the 
nodule images in the analysis, we also looked into the modeling of the relationships among the features and semantic 
terms when:  1) at least 2 radiologists and 2) at least 3 radiologists agreed on the same rating for the characteristic to be 
predicted.  The adj_R2 calculated for each characteristic was also used to measure the improvement in the predicted 
multiple regression models when there was better agreement among the radiologists.  The stepwise feature selection 
incorporated into the regression model also provided a way to measure the contribution of each of the selected image 
features to predict the corresponding semantic characteristic.  Furthermore, the linear combination of the most important 
features can be used to quantify the human perception of the corresponding visual characteristics as perceived by the 
radiologists and thus allows the integration of semantics and low-level image content.  

4. RESULTS 
From our experiments, we found many interesting correlations among nodule characteristics and image features, and 
statistically significant prediction models were obtained for several nodule characteristics.   
 
4.1 Correlation analysis 

For this work, we calculated 42 correlation coefficients for comparing semantic ratings.  The data set for each rating was 
simply the set of scores that all radiologists provided for all nodules; the calcification and internal structure ratings were 
not included in the correlation analysis since they have categorical values.  Since all ratings appear together for each 
nodule, the correspondence between features is trivial.  We also calculated 413 correlation coefficients for each 
combination of semantic rating and image feature.  While the number of coefficients was large, this kind of a basic 
statistical analysis gives us a very good picture of relationships between semantic concepts and between concepts and 
image features. 

Given the variability in the radiologist ratings and the complexity of such an annotation process, we considered as 
meaningful associations even those associations that produced correlation values greater than 0.3.  As shown in Figure 3, 
we found that:  
1) Subtlety and malignancy (as assessed by the radiologists) are correlated with each other and both of them are 
correlated with many size features (Area, ConvexArea, Perimeter, ConvexPerimeter, EquivDiameter, MajorAxisLength, 
and MinorAxisLength). These findings were also supported by the literature review that malignancy is associated with 
the nodule size.25,27  

2) Sphericity is correlated with some shape features that are related to roundness of the region (Elongation, Eccentricity, 
Extent, and Circularity) as expected. 

3) Margin and texture are correlated with each other and this correlation was in concordance with other research studies 
showing that texture plays an important role in nodule segmentation since ‘part-solid’ and ‘non-solid’ texture can 
increase the difficulty of defining the nodule boundary.30 Furthermore, margin and texture are not directly correlated 
with any of the individual image features.  Same pattern was noticed for lobulation and spiculation which were 
correlated with each other but not correlated with any of the individual image features.  



 
 

 
 

 
Figure 3: Correlations among nodule characteristics and image features 

 
4.2 Stepwise multiple regression analysis 

The adj_R2 values of all regression models for all characteristics are presented in Table 3. The second column indicates 
the results on all nodules in the data set, while the third column shows results only for images on which at least two 
radiologists agreed on a rating for that nodule.  The fourth column shows similar results for nodules on which at least 
three radiologists agreed on a rating.  From the stepwise multiple regression analysis, we learned that the image features 
collected for this study can be used to produce good prediction models for malignancy, lobulation, texture, and 
spiculation ( values of 0.990, 0.877, 0.843, and 0.840 respectively); all the models were statistically significant 
(

2_ Radj
05.0=α ) as well. 

As we expected, the prediction models improved as the agreement among the radiologists improved; for example, the 
 went up from .310 to 0.641 when instead of considering all nodules we considered the ones on which at least 

two radiologists agreed on malignancy and further went up to 0.990 when at least three radiologists agreed for the same 
feature.  The prediction models for the nodule data on which at least three radiologists agreed are presented in Figures 4, 
5, 6, and 7.   The regression coefficients and their corresponding p-values show the contribution and significance of each 
feature to the regression model; the large values for the F-tests show a strong support for the found linear regression 
models.  The image features that show up in the models are the most important features and they are selected if the p-
values for the tests showing their contributions to the model are less than 0.05. 

2_ Radj

Table 3: Adj_R2 of the stepwise multiple regression models of each characteristic; in all cases, the number of images and 
the number of nodules included in the dataset are shown in parentheses.  The largest adj_R2 values; a cell for which 
there is a dash indicates that radiologist agreement occurred only for a single rating.   

Characteristics Entire dataset 
(1106 images, 73 nodules) 

At least 2 radiologists agreed At least 3 radiologists agreed 

Calcification 0.397 0.578 (884, 41) 0.645 (644, 21) 
Internal Structure 0.417 - (855, 40) - (659, 22) 
Lobulation 0.282 0.559 (448, 24) 0.877 (137, 6) 
Malignancy 0.310 0.641 (489, 23) 0.990 (107, 5) 
Margin 0.403 0.376 (519, 28) - (245, 7) 
Sphericity 0.239 0.481 (575, 27) 0.682 (207, 9) 
Spiculation 0.320 0.563 (621, 29) 0.840 (228, 9) 
Subtlety 0.301 0.282 (659, 25) 0.491 (360, 10) 
Texture 0.181 0.473 (736, 33) 0.843 (437, 15) 



 
 

 
 

 

Calcification

Lobulation

InternalStructure

Malignancy

Margin

Spiculation

Sphericity

Texture

Subtlety

Characteristics

Regression 
Coefficients p-value

F-value = 963.560
p-value = 0.000

Estimated Malignancy = 5.377275 - 0.02069 Gabormean_45º_0.5 + 0.003819 MinIntensityBG 
- 28.5314 Energy - 0.00315 Gabormean_0º_0.4 
+ 0.000272 IntesityDifference + 6.317133 InverseVariance 
+ 0.009743 Gabormean_45º_0.4 - 0.00667 Gabormean_90º_0.4 
- 0.39183 Correlation + 5.16E-06 ClusterTendency 
- 0.00291 ConvexPerimeter

Adj_R2 = 0.990

(Constant) 5.377275 1.64E-54
Gabormean_45º_0.5 -0.02069 7.80E-07
MinIntensityBG 0.003819 3.30E-82
Energy -28.5314 3.31E-12
Gabormean_0º_0.4 -0.00315 5.80E-14
IntesityDifference 0.000272 0.003609
InverseVariance 6.317133 3.41E-05
Gabormean_45º_0.4 0.009743 0.000259
Gabormean_90º_0.4 -0.00667 5.79E-05
Correlation -0.39183 5.67E-05
ClusterTendency 5.16E-06 0.000131
ConvexPerimeter -0.00291 0.023032

 
Figure 4: A prediction model for malignancy. 

 

 
Figure 5: A prediction model for spiculation 

 
 



 
 

 
 

 
Figure 6: A prediction model for texture 

 
Figure 7: A prediction model for lobulation 



 
 

 
 

5. CONCLUSIONS 
In the past, researchers have developed several CAD systems for the detection and classification of pulmonary nodules.  
Most of these systems mimic domain knowledge in order to extract image content and they use a comparison with 
ground truth for diagnosis. They do so, however, in an algorithmic fashion that is only tenuously related to human 
perception and characterization of image features.  Through the use of stepwise multiple regression, we proposed a 
quantitative model for finding the mappings between these two types of information. We found that the radiologists’ 
perception with respect to lobulation, spiculation, texture and malignancy is captured with high accuracy based on the 
low-level image features used in this study. Our preliminary results are promising and can be considered the foundation 
of building computerized systems for detection, diagnosis, and medical image retrieval using radiologist-defined 
semantics. Although the approach is presented for the lung nodules, it can be easily extended to other modalities, 
anatomical structures and image features.   Furthermore, we also provide an approach for finding the correlations among 
different semantic concepts used to describe the same visual pattern; in the long term, this approach can help create a 
domain-specific ontology of image feature descriptors.    
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