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Abstract 

Co-occurrence matrices are one of three texture 
algorithms commonly used on Computed Tomography 
(CT) images. In this paper we analyze the directional 
invariance of Co-occurrence matrices for the purpose of 
reducing their runtime by reducing the number of 
directions analyzed without negatively affecting the 
quality of the texture data extracted.  
 
 
1. Introduction 
 

rgans can be classified using a variety of methods 
including spatial location [1], shape descriptors [2], 

and pixel/region texture models [3], [4]. Geographic and 
shape-based classifiers can be unreliable; exact organ 
shape and location fluctuate slightly between patients, 
and organs are often in close proximity to each other, 
making it difficult to determine where one organ ends 
and another begins. In addition to avoiding these issues, 
pixel-based texture classifiers can not only classify 
organs pixel by pixel but can also flag possible tumors 
and abnormalities.  

According to Tuceryan and Jain [5] there are four 
families of texture extraction: statistical, 
transform/signal processing, structural/geographic, and 
model-based. Each of these families uses a different 
approach to extracting texture features. Statistical 
textures focus on probabilities, counts of specific pixel 
pair occurrences, etc. The transform textures transform 
an image in such a way as to emphasize patterns or 
structures before extracting features. The structural 
texture approach is actually a subset of the geographic 
family which analyses image primitives to extract 
features while model-based textures analyze how an 
image compares to models that predict pixel values. 

In this paper we examine the directional redundancy 
of Co-occurrence, a statistical texture extraction 
algorithm. To do this we first use a 3D algorithm to 
gather data for each direction. Then we compare each 
direction, identifying which directions produce identical 
information. We expect that this will allow us to analyze 
a minimal number of directions in the future while still 
extracting all relevant data. To compare algorithms we 
used region-based classification, which is similar to 
pixel-level classification but is not as computationally 
expensive. The regions were chosen as small cubes 

within the Computed Tomography (CT) volume. 
The rest of this paper is organized as follows: 

background and similar work are discussed in section 2, 
our methodology is explained in section 3, the results of 
our experiment are shown in section 4, our conclusions 
are discussed in section 5, and future work is described 
in section 6. 
 
2. Background 
 
Feature comparisons have been around for a long time 
[6] however, it is not a highly researched field with 
respect to co-occurrence and directionality since for 
each environment and methodology (e.g. CT scans of 
soft tissue, radar imagery of ice, etc) there is a finite 
answer that baring significant technological advances, 
does not change. Barber and LeDrew [7] found that 
when using co-occurrence matrices, one could use a 
directional subset while maintaining high classification 
scores. However, Barber and LeDrew analyzed 
synthetic aperture radar (SAR) images of sea ice and 
used only three directions (0°, 45°, 90°). While Barber 
and LeDrew’s findings are relevant, we are interested in 
the directional redundancy of co-occurrence matrices 
using thirteen directions when applied to the 3D human 
CT data. The authors of this paper introduced the main 
algorithm for 3D co-occurrence matrices and follow up 
work consisted only in minor modifications of this 
algorithm.  The base approach to 3D co-occurrence 
matrices was expanded upon by Kovalev et al. through 
use of gradient vectors [9].  Furthermore, comparisons 
of 2D and 3D algorithms used metrics that are difficult 
to apply to non segmentation applications [8].  

In this paper we will use two different families of 
approaches to find the optimal directions for 
classification. Those families are feature selection and, 
feature comparison. . Guyon, and Elisseef compared 
two types of feature selection [10]; the first was feature 
ranking of which principle component analysis (PCA) is 
an example. The other type of feature selection is 
feature subset selection, of which there are three core 
methods: Backwards Elimination, Forward Selection, 
and Step-wise Regression. 

As both [10] and [11] state, backwards elimination 
starts with a set S of all features. It then slowly removes 
each feature that does not significantly contribute to the 
accuracy. Once completed one is left with only the 
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features that actively influence the results. Forward 
selection is the mirrored counterpart in that it starts with 
an empty set and slowly adds features. Step-wise 
Regression is a combination of the two: during each 
iteration a feature may be add to or removed from the 
set. 

An example of an approach for feature comparison 
would be the least significant different (LSD) tests. LSD 
tests compare each feature to all other features, 
statistically identifying which are identical and which 
are significantly different. 
 
3. Methodology 
 
3.1 Data 
 

To perform our experiments we first had to create 3D 
regions from each patient’s CT slices. From these 3D 
regions we extracted texture data using the co-
occurrence model. This texture data was then used to 
classify each 3D region as liver or non-liver using a 
decision tree classifier. These experiments were run on 
Pentium 4 computers with 3.19GHz CPU’s and 1 
gigabyte of RAM each. 

For this paper we were given explicit permission to 
use the 20 patients provided for the MICCAI (Medical 
Image Computing and Computer Assisted Intervention) 
2007 Grand Challenge and later maintained for the 
Segmentation of the Liver Competition 2007 [12]. 
Patients were given a contrast agent and scanned using a 
variety of scanners from different manufacturers using 
different numbers of detector rows (4, 16, and 64 rows). 
Due to the variety of manufacturers and number of 
detector rows; intra-slice spacing varies between .55mm 
and .8mm with an inter-slice distance of between 1mm 
and 3mm. There was, however, no overlap between 
slices. The ground truth was determined by radiological 
experts and includes all internal tumors and blood 
vessels.  

Using liver and non-liver masks derived from the 
ground truth segmentation, we extracted as many 203 
pixel cubes from the original CT volume as possible.  
We observed that the number of non-liver cubes 
substantially outnumbered the number of liver cubes so 
non-liver cubes were randomly selected from each 
corresponding patient until we had an equal number of 
liver and non-liver cubes for each patient. The 
remaining non-liver cubes were set aside and effectively 
discarded.  

As a pre-processing step we separately normalized all 
voxels within each cube by their mean and standard 
deviation (z-score normalization) in an attempt to 

overcome errors introduced by scanner variation. 
 
3.2 Co-occurrence matrices 
 

Co-occurrence matrices operate by finding repetitive 
pixel/voxel intensity patterns. This is done by tallying 
the number of times two different pixel intensities are 
geographically separated by a set number of pixels in a 
specific direction. These tally results are saved in a 
matrix with the results for other pixel intensity pairs 
separated by the same distance and direction. Usually 
this analysis is performed on multiple directions and 
several different distances.  

These matrices are often quite sparse so many 
researchers will rescale the range of grayscale pixel 
values to a lower number. This not only prevents matrix 
population sparsity but also reduces noise, something 
that statistical texture extraction methods are sensitive 
to.  For this paper we rescaled the range of grey levels 
down to 16. This decision is supported by [9] in which it 
was empirically determined that 4-16 gray levels are 
optimal.  

Directional post-processing may be performed by 
averaging [13] or adding the directional data together 
[9], leaving you with one matrix for each distance. This 
approach aims to create a pseudo-invariance to 
direction. However, as we are trying to analyze the 
various directions, we chose to keep all of the matrices. 

Co-occurrence matrices are also commonly used in 
2D algorithms, which only use four directions. As CT 
technology advanced, 3D co-occurrence matrices 
became an option. Figure 1 below illustrates the 
directional difference between 2D and 3D co-
occurrence algorithms. It should be noted that for ease 
of viewing the image has been rotated 90° to the left. 

 
Figure 1.  All thirteen directions with 

corresponding offsets. 
 
Directions 1-4 are the four directions commonly used 

in 2D co-occurrence matrices while directions 5-13 are 
the additional nine directions used in 3D co-occurrence 
matrices. The pixel offset and degree equivalent is 
shown below in Table 1. 
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For this paper we used four voxel distances; 1 voxel 
(neighboring voxels), 2, 4, and 8 voxels. We used a non-
linear sequence of distance to span distances from 
“near” to “far” with a minimal number of distances, 
which, in turn, increases the processing speed.  
 Once all the Co-occurrence matrices are created one 
needs to extract features from the matrices. We used 
four Haralick features [14]. All of the features used are 
listed below in Table 2. 
 

Table 1. All thirteen directions 
Offset Location by degree

1 0,1,0 0°,0° (off the horizontal)
2 -1,1,0 45°,0°
3 -1,0,0 90°,0°
4 -1,-1,0 135°,0°
5 0,1,-1 0°,45°
6 0,0,-1 null,90° (vertical line)
7 0,-1,-1 0°,135°
8 -1,0,-1 90°,45°
9 1,0,-1 90°,135°

10 -1,1,-1 45°,45°
11 1,-1,-1 45°,135°
12 -1,-1,-1 135°,45°
13 1,1,-1 135°,135°  

 
Table 2. Co-occurrence features 

Feature Description

1 Energy
Measures the occurrence of repeated 
pairs within an image

2 Correlation
Measures correlation of intensity 
between pixel pairs

3 Contrast Measures local contrast
4 Homogeneity Measures the "purity" of the image  

3.3 Principle component analysis (PCA) 
 

The first analysis performed upon the data extracted 
in section 3.2 was PCA. We organized the data such that 
each column represented a direction and then 
partitioned the data by distance, performing PCA on 
each distance set separately. Finally, we recombined the 
data and performed PCA for the fifth time. A sample of 
our results is shown in Table 3 in section 4.  

While this test was not imperative, feature ranking 
tests have the potential to immediately identify 
important features as  it is the case of this paper where 
we want to identify the most important directions.  
 
3.4 Least significant difference 
 

With the data extracted in section 3.2 we organized it 
much like in Section 3.3 where each column is 
associated with a direction. Next the data was 

partitioned by feature and distance which separated it 
into 16 parts. We then performed LSD tests upon these 
subsets. We then reorganized the data, separating it by 
distance only and performed LSD tests on these four 
subsets. The result of one of these tests is shown in 
Table 4 in Section 4. From these results we were able to 
group the directions by similarity, for example 
directions 10-13 are often statistically identical.  

In theory, using one direction from each group would 
provide sufficient data to correctly classify the liver and 
non-liver cubes. 
 
3.5 Backwards elimination 
 

We chose to use backwards elimination as it is simple 
and accurate and with only thirteen directions, 
algorithmic speed was not an issue. We used the 
classification accuracy (True Positive + True 
Negative)/(All) for the evaluation stage.. When applied 
to the data set the direction set (1, 4, 6) (as denoted in 
Table 1) was selected as optimum. 
 
3.6 Classification 
 

We assigned thirteen patients to the training set and 
the remaining seven to the testing set. We then used 
decision trees to classify our results. The particular tree 
we used was the Classification & Regression (C&RT) 
tree [15]. There is one parameter for this type of tree; 
the minimum number of cases required for a nodule to 
split. We experimented with twelve different parameter 
values (2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 
and 4096) and selected the one with the best test set 
accuracy. 
 
4. Results 
 
4.1 Principle component analysis 
 

In Table 3 below, we show the eigenvectors produced 
by PCA when analyzing all distances. The first column 
identifies direction and the bottom row identifies how 
much of the statistical variance of the whole data set is 
contained within that component. Components 6-13 are 
not shown as they contain less than 1% of the total 
variance each. 

 
Table 3. PCA results when analyzing all 

distances together. 
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Comp 1 Comp 2 Comp 3 Comp 4 Comp 5
#1 0.2179 0.1976 0.1017 -0.2599 0.2128
#2 0.2777 -0.4476 0.1105 -0.032 0.2071
#3 0.2487 -0.1994 -0.349 -0.0788 0.2202
#4 0.2727 0.2508 -0.346 0.2302 0.2837
#5 0.2815 0.2604 0.5238 0.0352 -0.0481
#6 0.2406 0.2561 0.1583 -0.4067 -0.3006
#7 0.2615 0.1939 -0.083 -0.4387 -0.2751
#8 0.2938 -0.1992 -0.189 0.1495 -0.4224
#9 0.2851 -0.0071 -0.047 -0.0914 0.2709
#10 0.3153 -0.3506 0.414 0.4068 -0.2464
#11 0.2882 -0.3936 -0.014 -0.359 0.1984
#12 0.2992 0.1436 -0.45 0.2372 -0.3842
#13 0.3067 0.3857 0.1347 0.3631 0.3394

92.02% 2.09% 1.57% 1.42% 1.09%  
 
Considering that component 1 contains 92.02% of the 

variance, that is the primary component of interest, and 
in the above table we see that while most directions 
contribute similar amounts of data to component 1, 
directions 1, 3, and 6 contribute the least.  

When analyzing the distances separately we found 
that the amount of data contained within the first 
component decreases as the distance increases, starting 
at 97.8% at a distance of 1 voxel and dropping to 88.6% 
when the distance increases to 8 voxels. However, 
component 2 is only 3% at that point, still insignificant. 
It should also be noted that directions 1, 3, and 6 
consistently contribute relatively low amounts of 
variance to component 1 throughout the distances. 
 
4.2 Least significant difference (LSD) 
 

As stated in Section 3.4 we performed 20 LSD tests. 
In Table 4 we show the results of the LSD test 
performed upon all features at a distance of 4 voxels. 

 
 
 
 
 
 
 
 
 
 
Table 4. LSD on all features at a distance =4  

#1 0
#2 1 0
#3 0 0 0
#4 1 0 0 0
#5 1 0 1 0 0
#6 1 0 0 0 1 0
#7 1 0 1 0 0 0 0
#8 1 0 1 0 0 1 0 0
#9 1 0 1 0 0 1 0 0 0
#10 1 1 1 1 0 1 1 0 0 0
#11 1 1 1 0 0 1 0 0 0 0 0
#12 1 1 1 1 0 1 0 0 0 0 0 0
#13 1 1 1 1 0 1 1 0 0 0 0 0 0
Direction #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13  

In the above table ‘1’ indicates that the two directions 
are significantly different while ‘0’ indicates that they 
are identical. From this table, we can also organize the 
directions into two groups, (1, 2, 3, 4, 6) and (2, 4, 5, 7-
13); note that the two groups do overlap. We then select 
the primary direction from each group, (3, 8) for table 4, 
and add it to the list of direction sets to test though 
classification. A primary direction is defined as the 
direction within each group that is identical to all group 
members. In the above table direction one is not a 
primary direction as it is not identical to any of its group 
members, save direction three. 

From analyzing all 20 tables we found that as the 
distance increases, so does the variability; meaning that 
at greater distances, direction is less important. We also 
found that the higher directions (10-13) tended to be 
identical, which is interesting as those are the 3D 
counterparts of directions 2 and 4. While this initially 
seems to conflict with our PCA results as it seems 
intuitive to assume that as more directions become 
statistically identical the directions would become more 
correlated and thus component 1 would retain more 
information. However, further analysis of the PCA 
results showed that as distance increased the coefficient 
mean for component 1 remained steady. The standard 
deviation did change; when the distance is one voxel the 
standard deviation is .064 however it drops to .03 by the 
time the distance is eight voxels. So while the amount of 
information retained within component 1 may be 
reduced as distance increases, the directions contribute 
more equally.  

After we have compiled direction sets to test, we 
tallied how many times each direction had appeared in 
that list. This is seen below in Table 5. From this list we 
found that directions 1, 3, 7, and 12 were represented 
the most so we added (1, 3, 12) to the list of direction 
sets to be tested, as (1, 3, 7) was already in the list.  

 
 
 
 

Table 5. Tally of each direction and how many 
times it was represented. 
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Direction Count
1 7
2 2
3 4
4 2
5 1
6 1
7 3
8 1
9 1

10 0
11 2
12 3
13 0  

 
4.3 Classification Results 
 

As stated in section 3.6, classification was performed 
to determine which direction sets are the best. As a 
default we first performed the classification an each 
direction independently, only the 2D directions (1, 2, 3, 
4), and all 13 directions. Table 6 summarizes all our 
accuracy results for all possible combinations. We 
bolded and italicized the highest accuracy and bolded all 
accuracies that are statistically identical to it. 

From this table we see that many of the direction sets 
used are statistically identical to (1, 4, 6), the best 
direction set tested. We also see that when we split 
(1,4,6) into pairs, only (1,6) is statistically identical. We 
also see that there are two other statistically identical bi-
directional direction sets, and no single direction is 
statistically identical to (1, 4, 6). This indicates that the 
optimal direction set has only two directions. 

 
5. Conclusions 
 

In this paper we hypothesized that there is a certain 
amount of directional variability within the human liver 
when using co-occurrence matrices, and that this 
variance would allow one to reduce the number of 
directions analyzed without reducing the classification 
accuracy.  Our results showed us that one can reduce the 
number of directions needed from the original four used 
in 2D co-occurrence matrices down to two without a 
reduction in classification accuracy. Thus one can 
significantly reduce the co-occurrence matrices runtime; 
we found that when analyzing 136 liver cubes, the 
average runtime for 2D Co-Occurrence matrices 
(Directions 1,2,3,4) was reduced by 40%, a significant 
reduction in time. 

 
 

Table 6. Each direction set tested with its 
highest accuracy score 

Directions Accuracy
1,2,3,4 0.88177

1,2,3,4,5,6,7,8,9,10,11,12,13 0.88604
1 0.87085
2 0.86657
3 0.87844
4 0.84663
5 0.85138
6 0.85518
7 0.84853
8 0.85043
9 0.85423

10 0.8604
11 0.8528
12 0.8509
13 0.85708
1,6 0.89174

1,2,3,5,6,10 0.88082
1,2,3 0.89221
1,2,6 0.89221

1,2,3,6 0.88604
1,2,5,6,10 0.88841
2,3,5,6,10 0.87939

1,2,4,6,7,10 0.88984
1,2,3,5,6,7,10 0.88224

1,2,5,6 0.88794
2,3,10 0.87987

1,2 0.86515
2,5,12 0.8699
1,6,9 0.89364

1,3,7,12 0.87464
1,4,7,12 0.86467

1,4,11 0.8661
1,3,7 0.87464
1,2,3 0.89079

3,8 0.88604
1,11 0.868

1,3,12 0.89079
3,6 0.89031

1,4,6 0.89459
1,4 0.87037
4,6 0.87417  

 
 
 
 
6. Future Work 
 

The patients we received from the MICCAI Grand 
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Challenge (2007) are in no way uniform as the voxel 
sizes vary between patients; this problem could be 
bypassed by extracting data based on actual volume (in 
millimeters) as opposed to extracting a set number of 
voxels. This problem is slowly becoming moot as more 
and more accurate CT scanners are developed, 
producing more isometric voxels.  

Our results do raise a question however; if co-
occurrence matrices have some directional invariance 
within the human liver, what about other texture 
algorithms such as Markov Random Fields? We are also 
interested to explore if these findings apply to all soft 
tissue within the human body or just liver; two 
questions we hope to answer in the future. 
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