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Abstract 
While the advances in computed tomography (CT) technology allow better detection of pulmonary 

nodules by generating higher-resolution images, the new technology also generates many more individual 
transverse reconstructions.  As a result, the efficiency and accuracy of the radiologists interpreting these 
images is reduced.  Double reading by two trained human observers has been shown to improve the 
detection of lung cancer on chest radiographs by a 3% - 30% increase in sensitivity.  Given the increased 
cost of interpretation of double reading and the variation among radiologists’ interpretation, the objective of 
this paper is to develop computer-aided tools that could be used as “second readers” when interpreting 
lung images by apriori rating the nodules based on automatically discovered image-semantics mappings.  
To attain the objective of this paper, we will test the working hypothesis that there is enough information in 
the low-level image features that can capture certain semantic meanings associated with the visual 
appearance of the nodules.  The working hypothesis will be tested using data mining techniques. The 
rationale is that successful completion of the proposed research will reduce the semantic gap in the medical 
image indexing and retrieval community, in particular, for lung image interpretation.  The acquisition of the 
mappings between the two types of features is also critical to the development of visual ontology for lung 
interpretation that can be used to automatically annotate new images (based on low-level image features) 
and provide context-sensitive tools for pulmonary nodule retrieval. 

Keywords: Computed Tomography, lung nodules, low-level features, semantic gap, logistic regression, 
decision trees, support vector machine, visual ontology 

 

1. Introduction 
The explosion of the medical imaging technologies has generated mountains of data; depending on the 

size of the institution, a radiology department can perform between 100 and 5,000 examinations daily, 
generating a myriad of images, patient data, report text, findings, and recommendations [10]. New digital 
image management systems, Picture Archiving and Communication Systems (PACS), have been developed 
for image acquisition, storage, transmission, processing and display of images for their analysis and further 
diagnosis.  Availability of digital data within the PACS raises a possibility of health care and research 
enhancements associated with manipulation, processing and handling of data by computers, that is a basis 
for computer-assisted radiology development. 

In general, radiology data is well organized but poorly structured, and structuring this data prior to 
knowledge extraction is an essential first step in the successful mining of radiological data [10].   
Compared to text, radiology images are enormous in size, highly variable over time, and quite difficult to 
mine.  Therefore, image processing and data mining techniques are necessary for structuring, management, 
retrieval, and interpretation of image data.    

In this paper, we present a framework for modeling the associations between image content and 
radiologists’ subjective assessments for lung nodule interpretation.   It is known that double reading by two 
trained human observers has been shown to improve the detection of lung cancer on chest radiographs by a 
3% - 30% (mean 13%) increase in sensitivity [43].   Given the increased cost of interpretation of double 
reading and the variation among radiologists’ interpretation, we expect that the proposed framework will be 
used as a “second reader” when interpreting lung images by apriori rating the nodules based on discovered 
associations.   

The paper is organized as follows.  We present a literature review relevant to our work in Section 2, the 
National Institutes of Health (NIH) Lung Image Database Consortium (LIDC) dataset used in this study in 
Section 3, the proposed framework (as outlined in Figure 1) in Section 4, and our preliminary models and 
visual ontologies for lung nodule interpretation in Section 5.  We conclude the paper by summarizing our 
findings and presenting future avenues for modeling image semantics in the medical field.   
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Figure 1: Diagram of the proposed mapping framework 

 

2. Related Work 
Diagnostic decision-making in medical imaging by radiologists has been augmented by computer-aided 

diagnosis (CAD) systems. Typically, a CAD system marks the location of a suspicious region and then 
makes a diagnosis based on the low-level image features calculated for the region of interest.  Increasing 
the sensitivity (the ratio between true positives and all positives) and reducing the number of false positives 
motivates current research ranging from image segmentation and feature extraction to data mining and 
knowledge discovery.  While beneficial as a tireless and increasingly accurate screening tool, CAD systems 
rarely offer supporting guidance about their diagnostic decision rationale or, when they do, this guidance 
does not match the perceptual tasks used by the radiologist in forming their diagnosis [9]. Recently, several 
approaches have been proposed to study the relationships between the human interpretation of the regions 
of interest and the computer-calculated image features with the final goal of integrating these relationships 
in the CAD systems.  

In the following subsections, we will provide a literature review for 1) existent lung CAD systems, 2) 
lung image datasets, 3) ontologies for medical interpretation, and 4) state-of-the-art research on modeling 
the relationships between image content and semantics. 
2.1. Low-level Image Features and CAD for Lung 

Several computer-aided diagnosis (CAD) systems have been developed to help estimate the probability 
of lung cancer based on nodule characteristics (such as nodule size, shape, texture and internal structure). 
McNitt-Gray et al. [33, 34] used nodule size, shape and co-occurrence texture features as nodule 
characteristics to design a linear discriminant analysis (LDA) classification system for malignant versus 
benign nodules.  Lo et al. [28] used direction of vascularity, shape and internal structure to build an 
artificial neural network (ANN) classification system for prediction of the malignancy of the nodules.  
Armato et al [3] used nodule appearance and shape to build an LDA classification system to classify 
pulmonary nodules into malignant versus benign classes.  Takashima et al. [53, 54] used shape information 
to characterize malignant versus benign lesions in the lung.   

Beside these systems that are based on just nodule characteristics, there are several studies that also 
incorporated some clinical information (such as age, gender, history of smoking, and history of cancer). 
Gurney [13, 14] designed a Bayesian classification system based on clinical information in addition to 
radiological information. Matsuki et al. [31] also used clinical information in addition to sixteen features 
scored by radiologists to design an ANN for malignant versus benign classification. Aoyama et al. [2] used 
two clinical features in addition to forty-one image features to estimate the likelihood of malignancy for 
pulmonary nodules on low-dose CT images. Li et al. [24] used two clinical features (age and gender) in 
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addition to fifty-six image features in their CAD system which assists radiologists in improving biopsy 
recommendations for small lung nodules. For more literature review on the analysis of computed 
tomography scans of the lung, we recommend the survey by Sluimer et al. [49]. 

2.2. Lung Image Benchmarks  

In all these CAD studies, most authors created their own datasets with their own ground truth for 
evaluation. The use of different datasets makes the comparison of these CAD systems not feasible and 
therefore, there is an immediate need for reference datasets that can provide a common ground truth for the 
evaluation and validation of these systems.   

The NIH Lung Image Database Consortium (LIDC) has created a dataset [4] to serve as an international 
research resource for development, training, and evaluation of CAD algorithms for detecting lung nodules 
on CT scans. Liu and Li [27] have already used the LIDC dataset to propose a new method for nodule 
detection based on gradient and intensity combined level set methods that generate stable and accurate 
segmentation results for complex organic structures like lung bronchia and nodules. While most nodule 
segmentation algorithms were designed for solid pulmonary nodule, Tachibana and Kido [52] developed an 
automated volumetric segmentation algorithm of small pulmonary nodules with ground-glass opacity and 
used lung images from LIDC to evaluate their algorithm. Opfer and Wiemker [41] also used lung images 
from LIDC to validate their general tumor segmentation approach which combines energy minimization 
methods with radial basis function surface modeling techniques.     

In this paper, we propose to use the LIDC dataset for modeling the radiologists’ nodule interpretations 
based on image content with the final goal of reducing the variability among radiologists and improving 
their interpretation efficiency.  To our best knowledge, this is the first use of the LIDC dataset for the 
purpose of modeling lung nodule semantics.  

2.3. Ontologies for Medical Image Interpretation 

Besides creating medical image datasets to be used as benchmarks for the evaluation of the CAD systems, 
first steps have also been taken in creating frameworks for a common language when making diagnoses.   

There are several ontologies available in the domain of biomedicine, which capture and represent the 
concepts and their relationships in that domain. The most notable, multi-purpose, and widely used is the 
National Library of Medicine’s “Unified Medical Language System” [26], which integrates a large number 
of distinct source terminologies. The concepts are categorized in several semantic categories such as: 
organisms, anatomical structures, biological functions, chemicals, events, physical objects, etc.  Rosse et al. 
[46] and Brinkley et al. [7] have argued that UMLS lacks the required granularity, adequate semantic types 
and relationships to comprehensively represent anatomical concepts, and hence they created the 
foundational model of anatomy as an enhancement to UMLS.  Along the same lines, Leroy and Chen [23] 
developed a tool (Medical Concept Mapper) based on the UMLS and WordNet [36] that connects patient 
information to human-created ontologies.  Hu et al. [19] built a breast imaging ontology based on the breast 
imaging reporting and data system (BI-RADS). Furthermore, Kahn et al. [20] constructed an ontology to 
represent radiological procedural knowledge for picture archiving and communication systems (PACS) 
integration. While all these ontologies are constructed based on textual concepts, there is some initial work 
that makes use of the image content as described in the following subsection.   

2.4. Mappings between Image Features and Semantic Interpretations  

Barb et al. [5] proposed a framework that uses semantic methods to describe visual abnormalities and 
exchange knowledge in the medical domain.  Ebadollahi et al. [11] proposed a system to link the visual 
elements of the content of an echocardiogram (including the spatial-temporal structure) to external 
information such as text snippets extracted from diagnosis reports.   Ogiela and Tadeusiewicz [40] has 
published some initial results to automatically generate linguistic descriptors of lesions in the coronary 
artery and in the urinary track, based on vessels’ patters detected with image processing. More information 
about ontology-based object learning and recognition can be found in the work proposed by Maillot [30] 
and Mezaris et al. [35]. Our previous work [45, 56] can be considered one of the initial steps in the 
direction of mapping lung nodule image features to perceptual categories encoding the radiologists’ 
knowledge for lung interpretation.   
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These studies provide strong support for the working hypothesis that low-level image features can be 
automatically linked to the medical concepts used for diagnosis.  Our recent findings that we will present in 
Section 5 based on the proposed mapping framework presented in Section 4 also support the working 
hypothesis and increase the probability that it will prove to be valid. 

3. Lung Image Database Consortium (LIDC) Dataset 
The LIDC [4] has developed a data collection process to identify, in thoracic CT scans, lesions that are 

considered by radiologists to belong to one of three categories: 1) nodules greater than or equal to 3 mm in 
maximum diameter but less than 30 mm (regardless of presumed histology), 2) nodules less than 3 mm (but 
only if not clearly benign), and 3) non-nodules greater than or equal to 3 mm.  The images and associated 
XML files that contain the radiologists’ annotations have been made publicly available through a web-
based archive.  To date, this archive contains 85 CT scans with associated XML files.  In the proposed 
research, the images that contain lesions marked as nodules > 3 mm by LIDC radiologists, along with the 
nodule outlines and nodule characteristics provided by the LIDC radiologists will be used.  The nine nodule 
characteristics and their possible ratings are shown in Table 1; the table also reports our interpretation for 
these characteristics based on our CAD systems review for lung nodules. 
Table 1: LIDC nodule characteristics with corresponding notes and possible ratings; a ‘.’ represents a rating on the 
scale for which a definition label was not provided. 

Characteristic Notes and References Possible Ratings 
Calcification Calcification appearance in the nodule - The smaller the nodule, the more 

likely it must contain calcium in order to be visualized [21]. Benignity is 
highly associated with central, non-central, laminated, and popcorn 
calcification [18, 58].  

1. Popcorn; 
2. Laminated 
3. Solid 
4. Non-central 
5. Central 
6. Absent 

Internal 
structure 

Expected internal composition of the nodule 1. Soft Tissue 
2. Fluid 
3. Fat 
4. Air 

Lobulation Whether a lobular shape is apparent from the margin or not - lobulated 
margin is an indication of benignity [49]. 

1. Marked 
2. . 
3. . 
4. . 
5. None 

Malignancy Likelihood of malignancy of the nodule - Malignancy is associated with 
large nodule size while small nodules are more likely to be benign [18, 48]. 
Most malignant nodules are non-calcified [34] and have spiculated margins 
[32]. 

1. Highly Unlikely 
2. Moderately Unlikely 
3. Indeterminate 
4. Moderately Suspicious 
5. Highly Suspicious 

Margin How well defined the margins of the nodule are 1. Poorly Defined 
2. . 
3. . 
4. . 
5. Sharp 

Sphericity Dimensional shape of nodule in terms of its roundness 1. Linear 
2. . 
3. Ovoid 
4. . 
5. Round 

Spiculation Degree to which the nodule exhibits spicules, spike-like structures, along its 
border - Spiculated margin is an indication of malignancy [58, 59]. 

1. Marked 
2. . 
3. . 
4. . 
5. None 

Subtlety Difficulty in detection - Subtlety refers to the contrast between the lung 
nodule and its surroundings 

1. Extremely Subtle 
2. Moderately Subtle 
3. Fairly Subtle 
4. Moderately Obvious 
5. Obvious 

Texture Internal density of the nodule - Texture plays an important role when 
attempting to segment a nodule, since part-solid and non-solid texture can 
increase the difficulty of defining the nodule boundary [48]. 

1. Non-Solid 
2. . 
3. Part Solid/(Mixed) 
4. . 
5. Solid 
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It is important to notice that the LIDC did not impose a forced consensus; rather, all of the lesions 
indicated by the radiologists were recorded and are available to users of the database.  Accordingly, each 
lesion in the database considered to be a nodule > 3 mm could have been marked as such by only a single 
radiologist, by two radiologists, by three radiologists, or by all four LIDC radiologists.  Therefore, there can 
be up to 4 different boundaries/images of a nodule marked by up to 4 radiologists on a slice as presented in 
Figure 2. If the nodule appears on X slices, there can be up to 4*X images for the nodule in the dataset. 

   
Reader 1 

 
Reader 2 

 
Reader 3 

 
Reader 4 

Figure 2: An example of four different boundaries of a nodule on a slice marked by 4 different radiologists 

From the current 85 cases available, 60 cases had 149 nodules greater than or equal to 3 mm in 
maximum diameter which generated 1989 nodule images.  From all nine semantic characteristics, we 
focused on the relationships between the image content and the radiologists’ subjective assessments with 
respect to seven semantic concepts: subtlety, lobulation, margin, sphericity, malignancy, texture, and 
spiculation.  Calcification and internal structure were not considered since most of the ratings for them 
were dominated by only one rating (‘no calcification’ appears in the nodule, and the internal composition of 
the nodule is ‘soft tissue’). 

4. Proposed Data Mining Framework for Image Semantics Modeling 
First, we quantify the lung nodule images using a set of low-level image features that satisfy the main 

requirements for feature extraction [29]: a) completeness/expressiveness (features should be a rich enough 
representation of the image contents to reproduce the essential information); b) compactness (the storage of 
the features should be compact to allow efficient access) and c) tractability (the distance between features 
should be efficient to compute).  Second, we model the uncertainty in the radiologists’ interpretations 
(characteristics/annotations) through probabilistic data mining approaches.  In other words, instead of 
predicting just a single rating per characteristic (for example, rating ‘1’ - ‘extremely subtle’ for “subtlety”), 
we propose to generate probabilities for all possible ratings (in this example, probabilities for all five 
ratings of the subtlety).  Table 2 shows an example of probabilistic predictions obtained using decision 
trees.  Finally, in the third stage, a visual-based ontology is constructed using the probabilistic mappings 
learned in the previous stage.  
Table 2: Predicted ratings (first column), probabilistic rules (second column), and annotated nodules (third column)   

Ratings Probabilistic Low-level image features-based rules Examples of nodules rated by the rule on the left 
1 

(Extremely 
Subtle) 

IF (MinorAxisLength <= 0.14683) AND (MaxIntensity <= 
0.226443) THEN 
subtlety =  1 with Pr (1) = 1.00 

 
Nodule# 65 

 

4 
(Moderately 

Obvious) 

IF (MinorAxisLength <= 0.14683) AND (MaxIntensity > 
0.226443) THEN 
subtlety =  4 with Pr (4) = 0.94 & Pr (5) = 0.06 

 
Nodule# 42 

 
Nodule# 47  

Nodule# 
105  

5 
(Obvious) 

IF (MinorAxisLength > 0.14683) THEN subtlety =  5 with 
Pr (5) = 0.99 & Pr (4) = 0.01 
  

Nodule# 24 
  

Nodule# 46 

 
Nodule# 68 
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4.1. Low-level Image Feature Extraction 

We propose to extract four types of features (Table 3) that encode the a) shape, b) size, c) intensity and d) 
texture of the region of interest (nodule) while satisfying the main requirements for feature extraction 
mentioned above.  The choice of these features was based on a literature review of the most common image 
features used for pulmonary nodule detection and diagnosis by existent CAD systems [12, 59]. 
 
Table 3: The entire set of image features extracted from each lung nodule’s boundary. 

Shape Features Size Features Intensity Features Texture Features 
11 Haralick features calculated from co-occurrence 
matrices (Contrast, Correlation, Entropy, Energy, 
Homogeneity, 3rd Order Moment, Inverse variance, 
Sum Average, Variance, Cluster Tendency, 
Maximum Probability) 
24 Gabor features which are mean and standard 
deviation of 12 different Gabor images (orientation = 
0°, 45°, 90°, 135° and frequency = 0.3, 0.4, 0.5) 

Circularity 
Roughness 
Elongation 
Compactness 
Eccentricity 
Solidity 
Extent 
RadialDistanceSD  

Area 
ConvexArea 
Perimeter 
ConvexPerimeter 
EquivDiameter 
MajorAxisLength 
MinorAxisLength 

MinIntensity 
MaxIntensity 
MeanIntensity 
SDIntensity 
MinIntensityBG 
MaxIntensityBG 
MeanIntensityBG 
SDIntensityBG 
IntensityDifference 5 MRF features which are mean of 4 different 

response images (orientation = 0°, 45°, 90°, 135°), 
along with the variance response image 

Shape Features 

We use eight common image shape features: circularity, roughness, elongation, compactness, 
eccentricity, solidity, extent, and the standard deviation of the radial distance.  Circularity is measured by 
dividing the circumference of the equivalent area circle by the actual perimeter of the nodule.  Roughness 
can be measured by dividing the perimeter of the region by the convex perimeter. A smooth convex object, 
such as a perfect circle, will have a roughness of 1.0. The eccentricity is obtained using the ellipse that has 
the same second-moments as the region. The eccentricity is the ratio of the distance between the foci of the 
ellipse and its major axis length. The value is between 0 (a perfect circle) and 1 (a line).  Solidity is defined 
in terms of the convex hull corresponding to the region being the proportion of the pixels in the convex hull 
that are also in the region.  Extent is the proportion of the pixels in the bounding box (the smallest rectangle 
containing the region) that are also in the region.  Finally, the RadialDistanceSD is the standard deviation 
of the distances from every boundary pixel to the centroid of the region. 

Size Features 

We use the following seven features to quantify the size of the nodules: area, ConvexArea, perimeter, 
ConvexPerimeter, EquivDiameter, MajorAxisLength, MinorAxisLength.  The area and perimeter image 
features measure the actual number of pixels in the region and on the boundary, respectively.  The 
ConvexArea and ConvexPerimeter measure the number of pixels in the convex hull and on the boundary of 
the convex hull corresponding to the nodule region.  EquivDiameter is the diameter of a circle with the 
same area as the region.  Lastly, the MajorAxisLength and MinorAxisLength give the length (in pixels) of 
the major and minor axes of the ellipse that has the same normalized second central moments as the region. 

Intensity Features 

Gray-level intensity features used in this study are simply the minimum, maximum, mean, and standard 
deviation of the gray-level intensity of every pixel in each segmented nodule image and the same four 
values for every background pixel in the bounding box containing each segmented nodule image. Another 
feature, IntensityDifference, is the absolute value of the difference between the mean of the gray-level 
intensity of the segmented nodule image and the mean of the gray-level intensity of its background. 

Texture Features 

Normally texture analysis can be grouped into four categories: model-based, statistical-based, structural-
based, and transform-based methods.  Structural approaches seek to understand the hierarchal structure of 
the image, while statistical methods describe the image using pure numerical analysis of pixel intensity 
values. Transform approaches generally perform some kind of modification to the image, obtaining a new 
“response” image that is then analyzed as a representative proxy for the original image, and model-based 
methods are based on the concept of predicting pixel values based on a mathematical model.  Based on our 
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previous texture analysis work [22], in this research we focus on three well-known texture analysis 
techniques: co-occurrence matrices (a statistical-based method), Gabor filters (a transform-based method), 
and Markov Random Fields (a model based method).  

Co-occurrence matrices focus on the distributions and relationships of the gray-level intensity of pixels in 
the image.  They are calculated along four directions (0º, 45º, 90º, and 135º) and five distances (1, 2, 3, 4 
and 5 pixels) producing 20 co-occurrence matrices.  Once the co-occurrence matrices are calculated, eleven 
Haralick texture descriptors [16] are then calculated from each co-occurrence matrix. Although each 
Haralick texture descriptor is calculated from each co-occurrence matrix, we averaged the features by 
distance and then select the minimum value by direction resulting in 11 (instead of 11*4*5) Haralick 
features per image.  

Gabor filtering [1] is a transform based method which extracts texture information from an image in the 
form of a response image. A Gabor filter is a sinusoid function modulated by a Gaussian and discretized 
over orientation and frequency. We convolve the image with 12 Gabor filters: four orientations (0º, 45º, 
90º, and 135º) and three frequencies (0.3, 0.4, and 0.5), where frequency is the inverse of wavelength. The 
size of each Gabor filter is set constant at 9 9× .  Our Gabor filter design is based on the work by Andrysiak 
and Choras [1], where Gabor filters were used to encode the image content for image retrieval. We then 
calculate means and standard deviations from the 12 response images resulting in 24 Gabor features per 
image. 

Markov Random Fields (MRFs) is a model based method which captures the local contextual 
information of an image [6]. We use the algorithm devised by Cesmeli [8] to calculate five features 
correspond to 4 orientations (0°, 45°, 90°, 135°) along with the variance. We calculated feature vectors for 
each pixel by using 9  estimation window. The mean of 4 different response images and the variance 
response image are used as our 5 MRF features. 

9×

At the end of the image feature extraction process, each nodule image is encoded using a set of sixty-four 
image features  and nine radiologist annotations , 1, 64if i = K 1 9jc , j ,= K  (semantic concepts).  Therefore, 

the nodule representation is given by the vector representation 1 2 64 1 2 9, , , , ,f f f c c c⎡ ⎤⎣ ⎦K K ; Figure 3 shows 
an example of feature values for a nodule representation. 

 

 
Figure 3: An example of nodule characteristics assigned by a radiologist and low-level features  

4.2. Mappings between Image Features and Semantic Interpretations  

Three approaches whose output can be expressed in terms of probabilities are investigated with respect to 
their power to model the radiologists’ subjective annotations through a set of objective image features: 
logistic regression, decision trees, and support vector machine (SVM).  All three approaches are 
appropriate for ordinal response variable (as it is the case for the radiologists’ annotations) and support 
several types of explanatory variables (binary, categorical, and continuous - low-level image features).  
Each one of the approaches has some advantages over the others.  Logistic regression takes into account the 
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order among the values for the categorical response variable, while decision trees and SVM separate well 
non-linear data.  Feature selection is automatically performed in decision tree learning, while it is optional 
in logistic regression and SVM.  Each one of the three approaches has the property of modeling 
probabilistically the ratings for each of the seven characteristics as we describe below. 

Logistic Regression 

Logistic regression [51] is a statistical data analysis technique that can be used to predict a categorical 
response variable based on a set of explanatory variables. The explanatory variables can be binary, 
categorical, continuous, or any combination of these types.  The response variable can be an ordinal or 
nominal variable. When the response variable is nominal (such as calcification) the generalized logits 
model can be applied.  For an ordinal response variable (such as malignancy, lobulation, spiculation, etc) 
the cumulative logits model will be more appropriate.  Furthermore, when predicting the response variable, 
the probabilities of all possible values are included in the outcome of the logistic model.  Given that all the 
semantic concepts we focus on in this paper are ordinal variables, we explain below the cumulative logits 
model.  

In cumulative logits model, the cumulative probabilities 
1

l

l
j

jθ π
=

= ∑ , l = 1,…(r-1); and its logits are 

calculated, where r is the number of ratings (all characteristics except calcification and internal structure 
have r =5) and jπ denotes the probability of rating j.  

logit( lθ ) = ln 
1

l

l

θ
θ

⎡ ⎤
⎢ ⎥−⎣ ⎦

= l i
i

ifα β+∑  (1) 

where regression coefficient iβ is the same for all logits, but the intercepts lα for different logits are not the 

same. From each of logit( lθ ) we can compute each cumulative probability lθ  

1
l

l
l

exp(log it( ))
exp(log it( ))

θ
θ

θ
=

+
   (2) 

and from all lθ  we can compute response probabilities for all categories, since . Then the highest 

response probability can be used for deciding the predicted category.  Furthermore, the goodness-of-the-fit 

of the regression model is measured through the coefficient of determination Nagelkerke’s ; the higher 

the value of is, the better the regression model will fit the data. 

1
1

r
j

j
π

=
=∑

2R
2R

Decision Trees 

Decision tree learning [37] is a data mining technique that can be used to map the low-level 
representation of the data to the high-level representation of the data encoded through class or category 
labels.  The low-level features are sorted based on some criterion that quantifies the discrimination power 
of the features with respect to the given classes.  The tree will be formed by placing the features with the 
highest discrimination power at the top and the features with lower discrimination power towards the 
bottom of the tree.  Each internal node in the tree is a test of an attribute and branches from the node 
correspond to the possible values of the attribute. Therefore, leaf nodes represent classifications and 
branches represent conjunctions of attributes that lead to those classifications.  The leaf nodes can also 
produce probabilistic classifications by dividing the number of cases for a certain class under the leaf node 
by the total number of cases grouped under the corresponding node.   The complexity of the tree measures 
the tradeoff between a small tree that generates a reasonable number of leaf nodes (or rules) and low 
classification errors obtained on the training set.  We use the minimum description length (MDL) principle 
[15] to encode the complexity of the tree as follows:  

)()(),( treedataCosttreeCostdatatreeCost +=   (3) 
=)(treeCost  2 2( i* log m ) ( j* log k )+    (4) 

=)( treedataCost 2( e* log n )    (5) 
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)(treeCost is the cost of encoding all the nodes in the tree and )( treedataCost  is encoded using the 
classification errors the tree commits on the training set. Each internal node of i internal nodes is encoded 
by the ID of the splitting attribute. The cost of encoding each attribute is log2 m bits, where m is the number 
of attributes. Each leaf node of j leaf nodes is encoded using the ID of the class it is associated with. The 
cost of encoding each class is log2 k bits, where k is the number of classes. Each error of e errors is encoded 
by log2 n bits, where n is the number of instances in the training set.  

The decision tree algorithm used in this study is C4.5 pruned tree (J48 in WEKA [57]) with the minimum 
objects per each leaf node being equal to 2 (best accuracies from all experiments with 2, 3, 4, and 5 objects 
per node) and the feature selection criterion for growing the tree being the information gain [37]: 

v
v

v A

S
IG( S ,A ) Entropy( S ) Entropy( S )

S∈
= − ∑  (6) 

where v is a value of attribute A, |Sv| is the subset of instances of S where A takes the value v, and |S| is the 
number of instances, and 

       (7) 2
1

C

i
i

Entropy( S ) p log p
=

= ∑ i

where pi is the proportion of instances in the dataset that has the target attribute as i from C categories. We 
did not perform any apriori discretization of our image features as a preprocessing step since the ranges that 
might work for predicting one of the radiologists’ characteristics might not work in predicting others and 
C4.5 can handle continuous data as well as discrete data by creating a threshold and splitting data whose 
attribute value is above the threshold from data whose attribute values is less than or equal to the threshold 
[44].  

Support Vector Machine 

Support vector machine (SVM) [17] is a supervised learning technique that performs classification by 
constructing an N-dimensional hyperplane that optimally separates the data into two categories. When data 
are not linearly-separable, SVM uses a kernel function to transform the data from a highly-dimensional 
input space into a new feature space in which the data can be linearly separable. The kernels that are usually 
used to transform the original feature space are: polynomial function, radial basis function (RBF), or 
sigmoid function. 

In the SVM approach, a predictor variable is called an attribute, and a transformed attribute that is used 
to define the hyperplane is called a feature. A set of features that describes one instance is called a vector. 
The vectors at the margin are called support vectors. SVM seeks for an optimal separating hyperplane 
which have the maximum margin. When the target variable has more than two classes, SVM can handle the 
problem by two approaches: 1) “one against all” where we classify one class from all other classes; and 2) 
“pair-wise” where n*(n-1)/2 models are constructed where n is the number of classes. 

In this study we used the sequential minimal optimization (SMO) algorithm [47] implemented in WEKA 
[57] which handle multi-class problems by using pair-wise classification. We used polynomial kernel with 
the exponent equals to 2 or “quadratic kernel” which provided the best results compared to the results when 
the exponent was set to be 1 or 3 or the results when the RBF kernel was used. Logistic models were fitted 
to SMO’s output to express it as posterior probabilities [50] for each characteristic.  

Image- Semantics Mappings Evaluation 

The performance metric for evaluating the results is accuracy (hit ratio). When evaluating the three 
approaches, the variability among radiologists with respect to 1) the detection of a lesion (present/absent at 
a certain location), 2) boundary delineation (same/multiple contours for the lesion), and 3) lesion multi-
level interpretation (for instance, two radiologists identify the lung nodule’s texture as solid and the other 
two as part-solid) are also analyzed to see how they influence the classification performance.  While it is 
expected the classification performance to improve as we build classifiers on images on which more 
agreement exists, the generalizability power (high accuracy on testing data) of the classifiers will decrease 
given the smaller number of images available for training and testing as we move from at least two 
radiologists’ agreement to at least three agree.  Therefore, we will use the leave-one out evaluation 
technique [15] designed to produce reliable results on small data sets.    

Visual-based Ontology  
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In addition to the prediction models, both logistic regression and decision trees produce rankings of the 
image features with respect to their classification power for each annotation.  For the logistic regression, the 
model coefficients whose α≤valuesp _  ( 5.0=α ) will generate the most important image features; for 
the decision tree approach, the features ranked with the highest information gain [15] will generate the most 
important features.  Unlike logistic regression and decision trees, the SVM model is hard to understand 
given the non-linear kernel applied to classify the data.   

After the most important features (f1, …,fk) are identified along with their appropriate values/ranges 
(Range1,…Rangek) for each semantic characteristic (in particular each rating), the visual-based ontology is 
constructed as indicated in the diagram from Figure 4. 

 

 
Figure 4: The diagram of the visual-based ontology for lung nodule interpretation; only the relationships for subtlety 

are shown, but all the other characteristics can be expanded similarly 
 
The visual ontology can be used to 1) show the computer interpretation of the corresponding radiologist 

rating in terms of a set of uniform and objective image features, 2) automatically annotate new images 
(based on low-level image features), and 3) provide context-sensitive tools for pulmonary nodule retrieval 
(for instance, if a pulmonary nodule is rated as highly spiculated, then the system will use only the 
corresponding image features for that rating to retrieve the most similar nodules based on image content). 
When integrating the visual ontology in the radiology lexicon, RadLex, this can help increase the efficiency 
of individual readers (radiologists) and reduce the inter-reader variability in interpreting lung CT studies.  
While there are some research studies [38, 39, 25, 55, 60] that attempt to find the best combination between 
image features and computer-based similarity measures used to retrieve the most similar images with the 
final goal of resembling the human (radiologist) perception of image similarity, our proposed work 
attempts to find the direct mappings from image features to radiologists’ annotations (spiculation, 
lobulation, texture, margin, etc) with the final goal of providing recommendations for automatic image 
annotation and markup.   
 
5. Preliminary Results  
The results presented in this section are obtained on the 149 unique nodules that generated 1989 nodule 
images.  The data was exempt from human subjects’ research regulation since the LIDC dataset was 
completely de-identified.  When evaluating the results, besides considering the variation in the data with 
respect to radiologists’ agreement, we also look at the results for the following two situations. First, the 
noise in the data was eliminated by removing the end caps (the first and the last slices of each nodule 
marked by each radiologist; in this study, we loose information for some nodules which have only one or 
two slices outlined by a radiologist, but we plan in a future study to remove only the end caps of nodules 
which have at least three slices outlined by a radiologist.  Second, the bias in the data was eliminated by 
using only one slice (the one with the largest nodule area) as the representative image for each nodule 
marked by each radiologist. Given the large number of experiments performed to compare the three 
approaches for the seven characteristics, in Table 7 to Table 15 we also report the overall accuracy 
calculated as the average of the seven accuracies weighted by the number of nodule images for each 
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characteristic.  Furthermore, although we got best results when all 4 radiologists agreed, we do not consider 
these models for building the ontology since 1) the models are based on very small data sets (consisting of 
two or three nodules) and the agreement among radiologists was with respect to only one rating  (lobulation 
= 1, margin = 5, subtlety = 5, and texture =5) or two ratings  (malignancy = {3 or 5}, sphericity = {3 or 4}, 
and spiculation = {1 or 5}) per characteristic.    

Logistic Regression Results 

From Table 4 to Table 6, we found that the goodness-of-fit of the regression models (Nagelkerke’s ) 
increase when there are more agreements among radiologists. For example, went up from 0.39 to 0.61 
when we considered the nodules on which at least two radiologists agreed on malignancy instead of 
considering all nodules; furthermore, it went up to 0.990 when at least three radiologists agreed and 0.999 
when all 4 radiologists agreed for the same feature (malignancy).  Furthermore, Table 5 shows that the 
goodness-of-fit of the models increase after removing end caps and Table 6 shows even better fits for the 
data when only one single slice with the largest nodule area was selected.    

2R
2R

Table 4: Nagelkerke’s R2 from logistic regression, multiple slices per nodule before removing end caps; the triplets 
represent the number of nodule images, number of nodules, and number of cases, respectively. 

Characteristics Entire dataset 
(1989 images, 149 
nodules, 60 cases) 

At least 2 radiologists 
agreed 

At least 3 radiologists 
agreed 

All 4 radiologists 
agreed 

Lobulation 0.1504 0.3361 (943, 73, 42) 0.8125 (331, 20, 19) - (20, 2, 2) 
Malignancy 0.3908 0.6182 (1090, 73, 42) 0.9987 (295, 19, 15) 0.9999 (85, 3, 3) 
Margin 0.3975 0.5172 (981, 77, 42) 0.9602 (452, 17, 12) - (128, 3, 3) 
Sphericity 0.2577 0.5245 (1028, 77, 45) 0.7929 (400, 27, 20) 0.9999 (28, 2, 2) 
Spiculation 0.1384 0.3464 (1145, 77, 43) 0.6829 (427, 27, 24) 0.9999 (40, 3, 3) 
Subtlety 0.4338 0.5087 (1308, 70, 41) 0.8724 (775, 25, 21) - (452, 10, 9) 
Texture 0.3528 0.5452 (1333, 79, 43) 0.9592 (801, 34, 24) - (482, 11, 11) 

 
Table 5: Nagelkerke’s R2 from logistic regression, multiple slices per nodule after removing end caps; the triplets 
represent the number of nodule images, number of nodules, and number of cases, respectively. 

Characteristics Entire dataset 
(1259 images, 112 
nodules, 52 cases) 

At least 2 radiologists 
agreed 

At least 3 radiologists 
agreed 

All 4 radiologists 
agreed 

Lobulation 0.2359 0.3742 (600, 55, 36) 0.9659 (214, 14, 14) - (4, 1, 1) 
Malignancy 0.3947 0.6489 (723, 59, 37) 0.9996 (175, 13, 11) 0.9999 (61, 3, 3) 
Margin 0.5129 0.6815 (630, 54, 36) 0.9987 (345, 16, 11) - (104, 3, 3) 
Sphericity 0.3405 0.6637 (645, 55, 38) 0.9937 (237, 23, 19) 0.9999 (12, 2, 2) 
Spiculation 0.2165 0.4624 (759, 59, 39) 0.9436 (263, 21, 20) 0.9999 (16, 3, 3) 
Subtlety 0.5016 0.5940 (932, 58, 38) 0.9991 (600, 23, 20) - (361, 10, 9) 
Texture 0.4363 0.6627 (898, 61, 39) 0.9958 (566, 31, 24) - (377, 11, 11) 

 
Table 6: Nagelkerke’s R2 from logistic regression, single slice per nodule; the triplets represent the number of nodule 
images, number of nodules, and number of cases, respectively. 

Characteristics Entire dataset 
(379 images, 149 
nodules, 60 cases) 

At least 2 radiologists 
agreed 

At least 3 radiologists 
agreed 

All 4 radiologists 
agreed 

Lobulation 0.2707 0.6878 (190, 73, 42) 0.9997 (63, 20, 19) - (8, 2, 2) 
Malignancy 0.5296 0.8196 (187, 73, 42) 0.9998 (61, 19, 15) 0.9999 (12, 3, 3) 
Margin 0.4981 0.8413 (186, 77, 42) 1.0000 (56, 17, 12) - (12, 3, 3) 
Sphericity 0.3748 0.8092 (197, 77, 45) 0.9998 (85, 27, 20) 0.9999 (8, 2, 2) 
Spiculation 0.2911 0.6790 (200, 77, 43) 0.9995 (87, 27, 24) 0.9999 (12, 3, 3) 
Subtlety 0.5779 0.8018 (194, 70, 41) 0.9999 (88, 25, 21) - (40, 10, 9) 
Texture 0.4932 0.8639 (222, 79, 43) 0.9992 (120, 34, 24) - (44, 11, 11) 

 
We used further the logistic regression to predict the radiologist interpretations. In Table 7 to Table 9, the 

classification accuracy of the models from logistic regression using leave-one-out cross validation are 
presented.  
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Table 7: Classification accuracy (hit ratio) from logistic regression, multiple slices per nodule before removing end 
caps, leave-one-out cross validation; the triplets represent the number of nodule images, number of nodules, and 
number of cases, respectively. 

Characteristics Entire dataset 
(1989 images, 149 
nodules, 60 cases) 

At least 2 radiologists 
agreed 

At least 3 radiologists 
agreed 

All 4 radiologists 
agreed 

Lobulation 35.34% 42.42% (943, 73, 42) 62.54% (331, 20, 19) - (20, 2, 2) 
Malignancy 50.73% 67.98% (1090, 73, 42) 88.47% (295, 19, 15) 100.00% (85, 3, 3) 
Margin 43.44% 58.82% (981, 77, 42) 86.50% (452, 17, 12) - (128, 3, 3) 
Sphericity 40.77% 54.77% (1028, 77, 45) 72.00% (400, 27, 20) 64.29% (28, 2, 2) 
Spiculation 42.79% 51.09% (1145, 77, 43) 62.53% (427, 27, 24) 95.00% (40, 3, 3) 
Subtlety 55.81% 72.02% (1308, 70, 41) 94.39% (775, 25, 21) - (452, 10, 9) 
Texture 61.69% 77.34% (1333, 79, 43) 97.13% (801, 34, 24) - (482, 11, 11) 

Average 47.22% (1989) 61.82% (1118) 80.51% (497) 92.16% (51) 
 
Table 8 shows that the classification accuracies of the models improve after removing end caps. 

However, in Table 9 the classification accuracies of the models for single slice per nodule per radiologist 
are not as good as we expected especially when at least 3 radiologists agreed on the same ratings. One 
possible reason is that the number of samples in the data sets is too small compared with the number of 
features; Peduzzi et al. [42] reported a simulation study on how the events per variable (EPV) ratio affects 
the variability of the coefficients in logistic regression and suggested a rule of thumb that logistic models 
should be used with a minimum of 10 EPV. 
 
Table 8: Classification accuracy (hit ratio) from logistic regression, multiple slices per nodule after removing end caps, 
leave-one-out cross validation; the triplets represent the number of nodule images, number of nodules, and number of 
cases, respectively. 

Characteristics Entire dataset 
(1259 images, 112 
nodules, 52 cases) 

At least 2 radiologists 
agreed 

At least 3 radiologists 
agreed 

All 4 radiologists 
agreed 

Lobulation 37.17% 46.17% (600, 55, 36) 74.77% (214, 14, 14) - (4, 1, 1) 
Malignancy 52.10% 71.65% (723, 59, 37) 97.71% (175, 13, 11) 98.36% (61, 3, 3) 
Margin 47.58% 68.25% (630, 54, 36) 92.46% (345, 16, 11) - (104, 3, 3) 
Sphericity 44.16% 60.62% (645, 55, 38) 75.11% (237, 23, 19) 50.00% (12, 2, 2) 
Spiculation 41.06% 50.99% (759, 59, 39) 74.14% (263, 21, 20) 87.50% (16, 3, 3) 
Subtlety 67.59% 80.79% (932, 58, 38) 98.67% (600, 23, 20) - (361, 10, 9) 
Texture 66.00% 77.51% (898, 61, 39) 98.76% (566, 31, 24) - (377, 11, 11) 

Average 50.81% (1259) 66.55% (741) 87.37% (343) 89.89% (30) 
 
Table 9: Classification accuracy (hit ratio) from logistic regression, single slice per nodule, leave-one-out cross 
validation; the triplets represent the number of nodule images, number of nodules, and number of cases, respectively. 

Characteristics Entire dataset 
(379 images, 149 
nodules, 60 cases) 

At least 2 radiologists 
agreed 

At least 3 radiologists 
agreed 

All 4 radiologists 
agreed 

Lobulation 34.04% 47.78% (180, 73, 42) 41.27% (63, 20, 19) - (8, 2, 2) 
Malignancy 47.49% 56.68% (187, 73, 42) 31.15% (61, 19, 15) 100.00% (12, 3, 3) 
Margin 40.11% 52.69% (186, 77, 42) 57.14% (56, 17, 12) - (12, 3, 3) 
Sphericity 40.11% 55.84% (197, 77, 45) 58.82% (85, 27, 20) 87.50% (8, 2, 2) 
Spiculation 40.63% 54.50% (200, 77, 43) 62.07% (87, 27, 24) 83.33% (12, 3, 3) 
Subtlety 44.85% 53.61% (194, 70, 41) 93.18% (88, 25, 21) - (40, 10, 9) 
Texture 53.56% 74.32% (222, 79, 43) 94.17% (120, 34, 24) - (44, 11, 11) 

Average 42.97% (379) 56.95% (195) 62.54% (80) 90.62% (11) 

Decision Trees Results 

A similar evaluation was performed for the decision tree approach.  In Table 10 to Table 12, the 
classification accuracies of the models from decision trees using leave-one-out cross validation are 
presented.  
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Table 10: Classification accuracy (hit ratio) from decision trees, multiple slices per nodule before removing end caps, 
leave-one-out cross validation; the triplets represent the number of nodule images, number of nodules, and number of 
cases, respectively. 

Characteristics Entire dataset 
(1989 images, 149 
nodules, 60 cases) 

At least 2 radiologists 
agreed 

At least 3 radiologists 
agreed 

All 4 radiologists 
agreed 

Lobulation 42.23% 65.75% (943, 73, 42) 90.03% (331, 20, 19) - (20, 2, 2) 
Malignancy 46.41% 74.22% (1090, 73, 42) 89.49% (295, 19, 15) 98.82% (85, 3, 3) 
Margin 43.34% 72.27% (981, 77, 42) 90.04% (452, 17, 12) - (128, 3, 3) 
Sphericity 41.88% 63.72% (1028, 77, 45) 88.75% (400, 27, 20) 96.43% (28, 2, 2) 
Spiculation 44.19% 65.94% (1145, 77, 43) 75.18% (427, 27, 24) 97.50% (40, 3, 3) 
Subtlety 53.49% 77.60% (1308, 70, 41) 93.55% (775, 25, 21) - (452, 10, 9) 
Texture 59.78% 81.25% (1333, 79, 43) 96.63% (801, 34, 24) - (482, 11, 11) 

Average 47.33% (1989) 72.13% (1118) 89.10% (497) 98.04% (51) 

 
Table 11: Classification accuracy (hit ratio) from decision trees, multiple slices per nodule after removing end caps, 
leave-one-out cross validation; the triplets represent the number of nodule images, number of nodules, and number of 
cases, respectively. 

Characteristics Entire dataset 
(1259 images, 112 
nodules, 52 cases) 

At least 2 radiologists 
agreed 

At least 3 radiologists 
agreed 

All 4 radiologists 
agreed 

Lobulation 47.50% 73.83% (600, 55, 36) 93.46% (214, 14, 14) - (4, 1, 1) 
Malignancy 49.32% 76.35% (723, 59, 37) 94.86% (175, 13, 11) 98.36% (61, 3, 3) 
Margin 47.82% 79.05% (630, 54, 36) 93.91% (345, 16, 11) - (104, 3, 3) 
Sphericity 43.69% 71.78% (645, 55, 38) 85.23% (237, 23, 19) 91.67% (12, 2, 2) 
Spiculation 48.21% 67.46% (759, 59, 39) 81.37% (263, 21, 20) 100.00% (16, 3, 3) 
Subtlety 64.89% 84.01% (932, 58, 38) 97.50% (600, 23, 20) - (361, 10, 9) 
Texture 65.45% 81.51% (898, 61, 39) 98.41% (566, 31, 24) - (377, 11, 11) 

Average 52.41% (1259) 76.79% (741) 92.11% (343) 97.75% (30) 
 
Table 12: Classification accuracy (hit ratio) from decision trees, single slice per nodule, leave-one-out cross 
validation; the triplets represent the number of nodule images, number of nodules, and number of cases, respectively. 

Characteristics Entire dataset 
(379 images, 149 
nodules, 60 cases) 

At least 2 radiologists 
agreed 

At least 3 radiologists 
agreed 

All 4 radiologists 
agreed 

Lobulation 27.44% 57.22% (180, 73, 42) 68.25% (63, 20, 19) - (8, 2, 2) 
Malignancy 42.22% 68.98% (187, 73, 42) 90.16% (61, 19, 15) 91.67% (12, 3, 3) 
Margin 35.36% 61.83% (186, 77, 42) 82.14% (56, 17, 12) - (12, 3, 3) 
Sphericity 36.15% 63.45% (197, 77, 45) 71.76% (85, 27, 20) 87.50% (8, 2, 2) 
Spiculation 36.15% 69.50% (200, 77, 43) 78.16% (87, 27, 24) 66.67% (12, 3, 3) 
Subtlety 38.79% 65.46% (194, 70, 41) 94.32% (88, 25, 21) - (40, 10, 9) 
Texture 53.56% 81.08% (222, 79, 43) 98.33% (120, 34, 24) - (44, 11, 11) 

Average 38.52% (379) 67.20% (195) 83.30% (80) 81.25% (11) 

 
Table 11 shows that the classification accuracies of the models improve after removing end caps.  The 

classification accuracies of the models for single slice per nodule per radiologist (Table 12) also dropped 
but not as much as logistic regression. With at least 3 agreements, most characteristics were predicted with 
accuracy higher than 80% except for lobulation, sphericity, and spiculation. These three characteristics are 
related to margin and shape of the margin and we expect that the image features used in this study were not 
able to capture the shape and boundary properties of the nodules.  

Comparing Table 9 and Table 12, we noticed that decision trees provide higher accuracy than logistic 
regression. One possible explanation is the large number of variables compared with the number of cases.  
We performed a step-wise feature selection for the logistic model, but the full-model still produced the best 
results for the logistic model.  Another explanation is given by the non-linearity of the data (given the 
complex structure of the image features encoding the nodules’ visual appearance) that is better handled by 
the decision tree approach versus the logistic regression approach.  

SVM Results 

A similar evaluation was performed for SVM.  Tables 13 to 15 show the classification accuracies of the 
models from SVM using leave-one-out cross validation. For multiple slices per nodule as presented in 
Table 13 and removing end caps as presented in Table 14, SVM performs better than decision trees at 95% 
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significance level (except multiple slices per nodule when at least 2 radiologists agreed which SVM still 
performs better than decision trees at 90% significance level). For single slice per nodule (the bias in the 
data is eliminated), Table 15 shows that there are no significant differences between the SVM and decision 
tree classification results at a .95 confidence level.  The highest accuracies are obtained on the nodules for 
which there is agreement among at least three radiologists.   
 
Table 13: Classification accuracy (hit ratio) from SVM, multiple slices per nodule before removing end caps, leave-
one-out cross validation; the triplets represent the number of nodule images, number of nodules, and number of cases, 
respectively. 

Characteristics Entire dataset 
(1989 images, 149 
nodules, 60 cases) 

At least 2 radiologists 
agreed 

At least 3 radiologists 
agreed 

All 4 radiologists 
agreed 

Lobulation 46.76% 73.91% (943, 73, 42) 96.37% (331, 20, 19) - (20, 2, 2) 
Malignancy 55.51% 77.25% (1090, 73, 42) 96.61% (295, 19, 15) 100.00% (85, 3, 3) 
Margin 47.71% 71.76% (981, 77, 42) 96.02% (452, 17, 12) - (128, 3, 3) 
Sphericity 48.97% 71.40% (1028, 77, 45) 89.50% (400, 27, 20) 100.00% (28, 2, 2) 
Spiculation 50.73% 70.83% (1145, 77, 43) 92.27% (427, 27, 24) 100.00% (40, 3, 3) 
Subtlety 59.02% 77.98% (1308, 70, 41) 94.84% (775, 25, 21) - (452, 10, 9) 
Texture 67.12% 84.02% (1333, 79, 43) 98.63% (801, 34, 24) - (482, 11, 11) 

Average 53.69% 75.73% (1118)  94.89% (497) 100.00% (51) 

 
Table 14: Classification accuracy (hit ratio) from SVM, multiple slices per nodule after removing end caps, leave-one-
out cross validation; the triplets represent the number of nodule images, number of nodules, and number of cases, 
respectively. 

Characteristics Entire dataset 
(1259 images, 112 
nodules, 52 cases) 

At least 2 radiologists 
agreed 

At least 3 radiologists 
agreed 

All 4 radiologists 
agreed 

Lobulation 50.04% 80.67% (600, 55, 36) 96.73% (214, 14, 14) - (4, 1, 1) 
Malignancy 58.06% 88.77% (723, 59, 37)  99.43% (175, 13, 11) 100.00% (61, 3, 3) 
Margin 52.74% 83.65% (630, 54, 36) 96.81% (345, 16, 11) - (104, 3, 3) 
Sphericity 51.79% 78.76% (645, 55, 38) 93.25% (237, 23, 19) 100.00% (12, 2, 2) 
Spiculation 53.14% 71.54% (759, 59, 39) 97.72% (263, 21, 20) 100.00% (16, 3, 3) 
Subtlety 69.18% 85.41% (932, 58, 38) 99.00% (600, 23, 20) - (361, 10, 9) 
Texture 71.09% 85.97% (898, 61, 39) 98.59% (566, 31, 24) - (377, 11, 11) 

Average 58.01% 82.36% (741) 97.36% (343) 100.00% (30) 
 
Table 15: Classification accuracy (hit ratio) from SVM, single slice per nodule, leave-one-out cross validation; the 
triplets represent the number of nodule images, number of nodules, and number of cases, respectively. 

Characteristics Entire dataset 
(379 images, 149 
nodules, 60 cases) 

At least 2 radiologists 
agreed 

At least 3 radiologists 
agreed 

All 4 radiologists 
agreed 

Lobulation 32.98% 67.78% (180, 73, 42) 84.11% (63, 20, 19) - (8, 2, 2) 
Malignancy 46.97% 71.66% (187, 73, 42) 98.36% (61, 19, 15) 100.00% (12, 3, 3) 
Margin 41.16% 81.57% (186, 77, 42) 92.86% (56, 17, 12) - (12, 3, 3) 
Sphericity 43.27% 67.51% (197, 77, 45) 85.88% (85, 27, 20) 87.50% (8, 2, 2) 
Spiculation 43.27% 71.00% (200, 77, 43) 86.21% (87, 27, 24) 91.67% (12, 3, 3) 
Subtlety 44.06% 70.62% (194, 70, 41) 97.73% (88, 25, 21) - (40, 10, 9) 
Texture 54.62% 76.58% (222, 79, 43) 100.00% (120, 34, 24) - (44, 11, 11) 

Average 43.76% 72.45% (195) 92.16% (80) 93.75% (11) 

 
Visual Ontology Results 

Since logistic regression did not provide high classification accuracies and SVM did not provide 
significantly better results than decision trees, we consider only the important image features for each 
characteristic based on the results of the decision trees which are easier to interpret and understand. 
Furthermore, we consider the mappings for single slice per nodule per radiologist with at least 3 
agreements, since 1) there is no bias from the representation of many instances (slices) of each nodule 
marked by each radiologist, and 2) the models with at least 3 agreements provide us the highest 
classification accuracies.  

From the decision rules for the seven radiologists’ characteristics learned by decision trees, we 
constructed a visual ontology for lung nodule interpretation based on the most important low-level image 
features. Since the entire ontology is too large to be presented in one diagram, we present the diagram of 
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each characteristic as one separate figure but they can be linked together at the end to form the entire visual 
ontology as follows: the “lung nodule” concept will be at the top of the ontology, followed by the seven 
semantic concepts on the second level and then, Figures 5 to 11 will generate the rest of the levels of the 
ontology diagram.  Furthermore, each one of these figures is composed of all possible ratings for the 
appropriate characteristic along with rules that correspond to each rating. Given a nodule image, the 
ontology can provide probabilistic ratings for each characteristic.  
 

 
Figure 5: A part of a visual ontology for lung nodule interpretation with regard to lobulation 

 
 

 
Figure 6: A part of a visual ontology for lung nodule interpretation with regard to malignancy 

 
 

 
Figure 7: A part of a visual ontology for lung nodule interpretation with regard to margin 
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Sphericity

Linear
(rating 1)

Quite linear
(rating 2)

Ovoid
(rating 3)

Quite round
(rating 4)

Round
(rating 5)

Sphericity2_Rule1 {Pr(2) = 0.67, Pr(4) = 0.33}
(inverseVariance<=0.043136) and (correlation>0.275357) and 
(maxIntensityBG > 0.485468) 

Sphericity5_Rule1 {Pr(5) = 1.00}
(inverseVariance>0.043136) and (GaborSD_135_04<=0.162459) 
and (markov2<=0.103919) and (Gabormean_90_05<=0.217872)

Sphericity5_Rule2 {Pr(5) = 1.00}
(inverseVariance>0.043136) and (GaborSD_135_04<=0.162459) 
and (markov2>0.103919) and (minIntensityBG<=0.715371) and 
(circularity>0.967957) and (maxIntensity>0.470882)

Sphericity3_Rule1 {Pr(3) = 0.93, Pr(2) = 0.07}
(inverseVariance<=0.043136) and (correlation>0.275357) and 
(maxIntensityBG <= 0.485468) 

Sphericity4_Rule1 {Pr(4) = 1.00}
(inverseVariance<=0.043136) and (correlation<=0.275357)

Sphericity4_Rule2 {Pr(4) = 0.67, Pr(3) =0.33}
(inverseVariance>0.043136) and (GaborSD_135_04<=0.162459) 
and (markov2<=0.103919) and (Gabormean_90_05>0.217872)
Sphericity4_Rule3 {Pr(4) = 0.97, Pr(5) = 0.03}
(inverseVariance>0.043136) and (GaborSD_135_04<=0.162459) 
and (markov2>0.103919) and (minIntensityBG<=0.715371) and 
(circularity<=0.967957)

Sphericity4_Rule4 {Pr(4) = 1.00}
(inverseVariance>0.043136) and (GaborSD_135_04<=0.162459) 
and (markov2>0.103919) and (minIntensityBG<=0.715371) and 
(circularity>0.967957) and (maxIntensity<=0.470882)

Sphericity5_Rule3 {Pr(5) = 1.00}
(inverseVariance>0.043136) and (GaborSD_135_04<=0.162459) 
and (markov2>0.103919) and (minIntensityBG>0.715371)

Sphericity5_Rule4 {Pr(5) = 0.89, Pr(3) = 0.11}
(inverseVariance>0.043136) and (GaborSD_135_04>0.162459) 

 
Figure 8: A part of a visual ontology for lung nodule interpretation with regard to sphericity 

 
 

 
Figure 9: A part of a visual ontology for lung nodule interpretation with regard to spiculation 

 
 

 
Figure 10: A part of a visual ontology for lung nodule interpretation with regard to subtlety 
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Figure 11: A part of a visual ontology for lung nodule interpretation with regard to texture 

 
Analyzing the ontology (in particular the rules under each one of the ratings), we noticed that not all the 

features are selected to encode the semantic characteristic.  In Table 16 we list all the important features for 
each characteristic in descending order based on their information gain values. Table 16 also shows that all 
seven characteristics can be predicted by using at most 10 (less than 16%) from all 64 image features. 
Furthermore, most important features are found to be the ones generated by the gray-level intensity and 
texture features. However, there are some shape features that are important for some characteristics related 
to the shape of the nodule such as elongation for lobulation, circularity for sphericity, and compactness, 
RadialDistanceSD, and roughness for spiculation. There are only 2 important features for subtlety of the 
nodule, MinorAxisLength and MaxIntensity, which means that only size and gray-level intensity are 
enough to identify the subtlety of the nodule or that subtlety is independent of shape and texture of a 
nodule.  The complexity of the ontology is related to the complexity of the decision tree. The optimal 
decision tree for the LIDC data is summarized in Table 17.   

 
Table 16: Important features for each characteristic based on the information gain criterion 
Characteristics Important features Total number of 

important features 
Lobulation SDIntensityBG, elongation, MinIntensityBG, MaxIntensity, GaborSD_0_04, contrast, 

Gabormean_45_04 
7 (10.94%) 

Malignancy maximumProbability, MaxIntensity, Gabormean_45_04 3 (4.69%) 
Margin MaxIntensity, clusterTendency, Gabormean_90_05, MinIntensityBG, correlation 5 (7.81%) 
Sphericity inverseVariance, correlation, GaborSD_135_04, MaxIntensityBG, Markov2, 

Gabormean_90_05, MinIntensityBG, circularity, maxIntensity 
9 (14.06%) 

Spiculation Compactness, GaborSD_0_04, maxIntensity, RadialDistanceSD, Gabormean_45_04, 
homogeneity, perimeter, roughness, MinIntensityBG, clusterTendency 

10 (15.63%) 

Subtlety MinorAxisLength, MaxIntensity 2 (3.13%) 
Texture Area, Markov4, GaborSD_45_03 3 (4.69%) 
 
Table 17: Number of nodes, number of rules, depth of the tree, and complexity of the tree for each characteristic 

Characteristic Number of nodes Numbers of rules Depth of the tree Complexity of the tree 
Lobulation 17 9 5 80.85 
Malignancy 7 4 2 33.22 
Margin 11 6 4 43.93 
Sphericity 19 10 6 109.27 
Spiculation 21 11 7 104.87 
Subtlety 5 3 2 31.88 
Texture 7 4 3 27.29 

 
From Table 18, the classification accuracies from decision trees when using only important features for 

each characteristic are higher than or equal to the classification accuracies from decision trees when using 
all 64 image features. These results show that using only the important features for each characteristic from 
the visual ontology are sufficient to predict the rating for each characteristic.  
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Table 18: Classification accuracy (hit ratio) from decision trees, single slice per nodule when at least 3 radiologists 
agreed, leave-one-out cross validation when using all 64 image features and when using only important features for 
each characteristic from Table 16; the triplets represent the number of nodule images, number of nodules, and number 
of cases, respectively. 

Characteristics Using all 64 image 
features 

Using only important 
features 

Lobulation 68.25% (63, 20, 19) 80.95% (63, 20, 19) 
Malignancy 90.16% (61, 19, 15) 91.80% (61, 19, 15) 
Margin 82.14% (56, 17, 12) 85.71% (56, 17, 12) 
Sphericity 71.76% (85, 27, 20) 72.94% (85, 27, 20) 
Spiculation 78.16% (87, 27, 24) 78.16% (87, 27, 24) 
Subtlety 94.32% (88, 25, 21) 96.59% (88, 25, 21) 
Texture 98.33% (120, 34, 24) 98.33% (120, 34, 24) 

 
As described in Section 4.2, the visual ontology can be used to improve the interpretation process by 

making objective recommendations based on the learned image-semantics mappings.  In Table 19, we 
show an example where the ontology was used to recommend probabilistic ratings for each one of the 
seven semantic concepts characterizing the nodule of interest.  If the recommended ratings do not 
correspond to the ones that the radiologists has in mind, then the radiologists can look at other nodule 
images rated similarly by the system and attempt to understand the computer interpretation/quantification 
of the nodule appearance.  As a consequence, the radiologist could either recognize that his interpretation 
of a certain nodule appearance does not corresponds to the equivalent low-level image features used by the 
medical imaging community or, if he agrees on the recommended ratings, change his apriori ratings 
accordingly. 
  
Table 19: An example of nodule image along with probabilistic ratings and recommended ratings for all characteristics 
and other nodule images that have the same ratings as the example image using the derived mappings 

Nodule image of Interest Other nodule images with the same ratings using the 
derived mappings 

 
Nodule 1  

Nodule 2 
 

Nodule 3 

 
Nodule 4 

Characteristics Predicted Probabilistic 
Ratings for Nodule 1 

Recommended 
Ratings for 
Nodule 1 

Recommended 
Ratings for 
Nodule 2 

Recommended 
Ratings for 
Nodule 3 

Recommended 
Ratings for 
Nodule 4 

Lobulation Pr(4) = 1.00 4 4 3 4 
Malignancy Pr(1) = 1.00 1 1 1 1 
Margin Pr(4) = 1.00 4 4 4 5 
Sphericity Pr(4) = 0.97, Pr(5) = 0.03 4 4 4 4 
Spiculation Pr(3) = 0.75, Pr(1) = 0.25 3 3 3 3 
Subtlety Pr(5) = 0.99, Pr(4) = 0.01 5 5 5 5 
Texture Pr(4) = 1.00 4 4 4 5 

 
6. Conclusions and Future Work  

Based on our preliminary results, we learned that it is possible to probabilistically model lung nodule 
image semantics (lobulation, malignancy, margin, sphericity, spiculation, subtlety, and texture) using image 
content (shape, size, gray-level intensity, and texture).  We also learned that certain classifiers perform 
better for certain characteristics than others; for example, SVM performed significantly better on lobulation 
and sphericity than decision trees and logistic regression.  Therefore, as future work, we plan to investigate 
ensemble of classifiers to improve the accuracy of our probabilistic mappings.  Furthermore, in addition to 
modeling the uncertainty in the radiologists’ annotations, we plan to investigate various approaches on 
combining the radiologists’ delineated boundaries and study the effect of these combinations on the image 
features and further, on the accuracy of the probabilistic mappings.  

We showed that the mappings can be used to automatically build visual-ontologies for lung nodule 
interpretation. In the long term, the visual ontology can be integrated in the radiology lexicon, RadLex, to 



Page 20 of 22 

provide radiologists with both a set of uniform and objective image features and their relationship to 
nodules’ semantics with the final goal of better interpretation and less variance across multiple readers.   
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