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ABSTRACT 
 
In this paper, a supervised pixel-based classifier approach 
for segmenting different anatomical regions in abdominal 
Computed Tomography (CT) studies is presented.   The 
approach consists of three steps: texture extraction, 
classifier creation, and anatomical regions identification.  
First, a set of co-occurrence texture descriptors is 
calculated for each pixel from the image data sample; 
second, a decision tree classifier is built using the texture 
descriptors and the names of the tissues as class labels.  At 
the conclusion of the classification process, a set of 
decision rules is generated to be used for classification of 
new pixels and identification of different anatomical 
regions by joining adjacent pixels with similar 
classifications.  It is expected that the proposed approach 
will also help automate different semi-automatic 
segmentation techniques by providing initial boundary 
points for deformable models or seed points for split and 
merge segmentation algorithms.  Preliminary results 
obtained for normal CT studies are presented.   

 

1. INTRODUCTION 
 
Automatic segmentation of tomograms from various 
medical imaging modalities is highly desirable for 
visualization of soft tissues or extraction of individual 
organs for treatment planning in radiation oncology.   

Since the shape of each organ is not consistent 
throughout all slices of a 3D medical image and the gray 
level intensities overlap considerably for soft tissues, 
texture is especially important in medical image 
segmentation because of its homogeneity within the same 
tissue and across different slices.  Once textures have been 
calculated and their scalar values assigned to pixels, the 

pixels can be clustered or classified (when the tissues’ 
labels are available) for the purpose of segmentation.  

There are a large number of texture-based 
segmentation algorithms in the literature.  Texture 
segmentation usually involves the combination of texture 
feature extraction techniques with a suitable segmentation 
algorithm. Among the most popular feature extraction 
techniques used for texture segmentation are Gabor filters 
and wavelets transforms [1-3].  Among the most 
commonly used segmentation algorithms based on these 
features are clustering techniques [4, 5], region growing 
and split-and-merge [6, 7].   

Segmentation using the traditional techniques 
previously mentioned requires considerable amounts of 
expert interactive guidance.  In the medical imaging field, 
deformable models are commonly applied because of their 
capability to capture the irregular shapes and shape 
deformations found in anatomical structures.  The 
deformable model that has attracted the most attention to 
date is popularly known as “snakes” [8] and it has been 
used for different applications such as the segmentation of 
the heart from cardiac imagery, of neural tissue textures, 
and of the bone and cartilage in clinical knee MRI.  

However, the application of snakes and other similar 
deformable contour models to extract regions of interest is 
not without limitations. One of the limitations is that 
snakes were designed as interactive (semi-automatic) 
models.  In order to increase the speed, accuracy, and 
consistency of the segmentation, automatic segmentation 
is a desirable, albeit very difficult, long-term goal.    

The approach proposed in this paper does not require 
any selection of initial points in order to perform the 
organ segmentation; therefore, it can be used as a first-
pass segmentation followed by the snake algorithm.  
Furthermore, the segmentation of the normal 
tissues/organs will have a significant impact on the 
current research efforts for providing automatic context 
(i.e. that the cursor is hovering over “liver” in CT images) 
and thus, allowing automatic selection of context sensitive 



tools for various tissues (i.e. do not provide lung nodule 
analysis tools when the context is “liver”).   

 
2.  PIXEL-LEVEL TEXTURE EXTRACTION  

 
The process of calculating the texture features that capture 
the properties of the texture within a small neighborhood 
of a pixel is called pixel-level texture extraction.  For each 
image pixel, our approach calculates a set of ten Haralick 
co-occurrence texture features [9], but other texture 
features can be incorporated in the presented approach.  
We started with the co-occurrence features for pixel-based 
texture classification because of the good results we 
obtained for the classification of normal tissues in CT 
images of the chest and abdomen using organ-level co-
occurrence texture features [10]. 

A two dimensional co-occurrence matrix, P, is an n x 
n matrix, where n is the number of gray-levels within an 
image. For reasons of computational efficiency, the 
number of gray levels can be reduced if one chooses to 
bin them, thus reducing the size of the co-occurrence 
matrix.   The matrix acts as an accumulator so that P[i , j] 
counts the number of pixel pairs having the intensities i 
and j; co-occurrence matrices are normally defined for a 
fixed distance and direction between the two pixels in a 
pair.  In our approach, since the neighborhood of the pixel 
is small (our current implementation makes use of a 5 x 5 
neighborhood), we do not calculate the co-occurrence 
along fixed directions and displacements, but instead 
consider all the pixel pairs within that neighborhood.  
Thus, our implementation produces a co-occurrence 
matrix for each pixel rather than for each choice of 
distance and direction. Then, for each co-occurrence 
matrix (each pixel), we calculate ten Haralick features 
which can be related to specific characteristics in the 
image: Entropy, Energy, Contrast, Homogeneity, 
SumMean, Variance, Correlation, Maximum Probability, 
Inverse Difference Moment (IDM), and Cluster 
Tendency.  Table 1 (b-c) illustrates the image 
representations of different texture features for the 
original CT image from Table 1.a.  

 
3. PIXEL-BASED TEXTURE CLASSIFICATION 

AND SEGMENTATION 
 

Pixel-based texture classifiers are meant to recognize 
the texture patterns to which the pixels of an input image 
belong.  There are many classifiers that can be used to 
discriminate among the organ tissue classes in the feature 
space.   In our approach, we evaluate a Classification and 
Regression Tree (C&RT) classifier because: 1) it does not 
make any assumptions of the distribution of the data; 2) it 

Table 1: Example of texture feature images 

a. Original CT  b. Energy 

c. Cluster Tendency d. IDM 

 
has a relatively faster learning speed than other 
classification methods, while still producing classification 
accuracy comparable with those methods; and 3) it has a 
good ability to generate rules that can be easily interpreted 
and used to annotate various tissues in future CT scans.   

The CR&T tree is constructed by splitting subsets of 
the data set using all descriptors as predictors to create 
two child nodes repeatedly, beginning with the entire data 
set.  The best predictor is chosen using the Gini impurity 
index which works by choosing a split at each node such 
that each child node is more pure than its parent node.  
The goal is to produce subsets of the data which are as 
homogeneous as possible (producing pure nodes in the 
tree) with respect to the class label.  For each split, each 
predictive descriptor is evaluated to find the best cut point 
(our descriptors being continuous predictors) based on 
improvement score or reduction in impurity.  Then, the 
predictors are compared, and the predictor with the best 
improvement is selected for the split.   The process repeats 
recursively until one of the stopping rules is triggered: 1) 
the maximum tree depth, d, has been reached; 2) there is 
no significant predictive descriptor left to split the node; 
3) the number of cases in the terminal node is less than the 
minimum number, np, of cases for parent nodes; 4) if the 
terminal node were to split, the number of cases in one or 
more child nodes would be less than the minimum 
number, nc, of cases for child nodes; and 5) minimum 
change in impurity, imp, is reached.  Depending on the 
values set for the parameters (d, np, nc, imp), a different 
tree will be obtained.  The ‘best’ tree will be chosen to be 
the one with the highest classification accuracy.  



Once the decision tree is generated, its decision rules 
can be used to classify each pixel within the CT images.   
Pixels with the same classification labels and being 
adjacent will form connected components and thus, the 
regions of interest within the corresponding CT images. 
 

4. PRELIMINARY RESULTS 
4.1. Data Set 
 
Our preliminary results are based on data extracted from 
two normal CT studies from Northwestern Memorial 
Hospital. The data consisted of multiple, serial, axial CT 
images derived from helical, multi-detector CT 
acquisitions. The images were in DICOM (Digital 
Imaging and Communications in Medicine) format of size 
512 by 512 and having 12-bit gray level resolution.   The 
organs of interest with respect to segmentation were liver, 
renal and splenic parenchyma, and bone.   
 
4.2. Texture Features 
 
We computed ten co-occurrence descriptors for each pixel 
from the sample data using a 5 by 5 neighborhood.  
Several issues had to be taken into account when applying 
the co-occurrence to the DICOM images. While it is 
possible to use all intensity levels in computing co-
occurrence features, this increases the computational load 
and reduces the validity of the co-occurrence matrix as a 
probability model. According to [10], a 16 level gray 
scale is enough to compute co-occurrence matrices and 
thus, the gray levels can be grouped into 16 bins. For 
example, for an image of 256 gray levels, bin 1 would 
contain gray levels 0 to 15, and bin 2 would contain gray 
level 16 to 31, and so on. However, DICOM images have 
12 bits of resolution (4096 gray levels) and therefore, in 
our implementation, we use 256 bins (each bin contains 
16 levels) to calculate the matrices within each 
neighborhood.    
 
4.3. Decision Tree Classifier 
 
.In order to generate the decision tree (DT), we manually 
selected patches of pure organ tissues from three 
consecutive slices.  The number of patches and their sizes 
were chosen such that we have an equal number of pixels 
for each organ of interest.  The pixels received the class 
label of the patch to which they belonged to.   Since we 
want to use the decision tree for the segmentation of entire 
CT images, additional patches (not containing the organs 
of interest) were selected and their pixels were labeled as 
‘unknown’.  We ended up selecting around 1500 pixels 
for each of the four organs and the ‘unknown’ class.   

Since the results of a classifier can be influenced by 
scaling of the feature space, we normalized all descriptors 

independently using min-max criteria [10]. The 
normalized data sample was further divided into training 
set (66%) and testing set (34%); the training set was used 
to build the classifier, while the second set was used to 
estimate the accuracy of the classifier when used for 
tissue/organ annotation of previously unseen pixels.   

In order to select the optimal decision tree (DT) for 
our data sample, we varied the number of observations 
(pixels) per node from 25 (number of pixels in a 
neighborhood) to 1000 and each time we estimated the 
overall accuracy (Figure 1) of the classifier (number of 
pixels correctly classified divided by the total number of 
pixels).  Based on the accuracy of the testing set (Figure 
2), the optimal tree was selected. The empirically found 
optimal parameter for the “observations per parent” was 
in the range from 274 to 289; any of those values would 
result in the combined accuracy of the testing set of over 
85.%. We decided to use a tree with the “observations per 
parent” of 289 since it resulted in the smallest and most 
efficient tree. 
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Figure 1: Accuracy of the DT classification versus number of 
observations per parent 
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Figure 2: Accuracy of the DT classification for each class 
 
4.4. Segmentation Results 
 
After we generated and tested the decision tree on the 
sample data, we applied the tree on several consecutive 



entire slices in order to segment the organs of interest.    
We noticed that the unknown class, the kidneys, and the 
bones were accurately classified while spleen and liver 
were very often misclassified (liver pixels were classified 
as spleen and vice-versa).  This was not surprising given 
the fact that liver and spleen have homogeneous similar 
texture, and therefore, the current texture features could 
not highly differentiate them.    In order to improve the 
segmentation, either a median filter or spatial information 
(liver is always in the anatomical left hand side of the 
abdomen and the backbone can be used as a point of 
reference to find the orientation of the CT scan) can be 
used as a post processing step. For visualization purposes, 
Figure 3.c-d. shows the classification image before and 
after post processing with a median filter; different colors 
represent the organs of interest (red – liver, green – kidney, 
white – backbone, blue – spleen), gray represents the 
unknown class (organs which were not of interest for the 
current study) and black is the region outside the body 
which has not been included in the analysis. 
 

 
a. Original CT image 

 
b. Snake comparison 

 
c. Raw segmented image 

 
d. Post processed image 

 

Figure 3: Visual representation of classification image, snake 
comparison, and median filtered image (5 by 5 filter).  

5. CONCLUSIONS AND FUTURE WORK 
 
Our preliminary results show that it is possible to segment 
abdominal organs.  By just using 7500 pixels from pure 
tissues of three consecutive slices (each of size 512 by 
512), we accurately classified four organs with an overall 
accuracy of 85%.   Furthermore, the accuracy for bones 
and kidneys was above 92%.  The results show that the 
approach is valid.  However, there is more work that 

needs to be done before the approach can be used 
clinically. We will pursue further research with respect to:  

1. Variable window size for calculating the pixel-level 
texture. For large organs (such as liver), we will use larger 
window sizes than for smaller organs.  We expect that this 
will improve the features and allow increasing the current 
accuracy (65% for liver, 70% for spleen).  2. Other 
texture features in order to improve the segmentation and 
also further segmenting other organs of interest.  3. 
Feature reduction step to find all uncorrelated features 
and thus, speed up the entire segmentation.  4. Automated 
snake algorithm.  The initial points required by the snake 
algorithm will be given by points automatically selected 
on the boundary of the objects identified by our approach.  
Figure 3.b. shows that the results of our approach and of 
the snake superimposed.  Black pixels represent pixels 
classified by both algorithms the same way; a color pixel 
represents a pixel that was classified by our algorithm as a 
certain organ, but was classified by the snake as a 
different organ; a grey pixel represents a pixel that was 
classified as any organ by the snake but background by 
our algorithm.  We expect that the combination of the two 
approaches will improve the segmentation results by 
removing the clearly extraneous grey areas surrounding 
and within organs (compare Figure 3.b with 3.b) that the 
snake generates and eliminating the noise our algorithm 
generates. 
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