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Abstract 
 
 Previous research has been done to classify different tissues/organs of interest present in 
medical images, in particular in Computed Tomography (CT) images.   Most of the research 
used the anatomical structure present in the images in order to classify the tissues.  In this 
paper, instead of using the anatomical structure, we propose a pixel-based texture approach for 
the representation and classification of the regions of interest. The approach incorporates 
various texture features and decision trees to accomplish tissue classification in normal 
Computed Tomography (CT) images of the chest and abdomen. First, we introduce a new 
“direction vs. displacement pairs” (DDP) approach to calculate a co-occurrence matrix for 
capturing all possible combination between directions and displacements necessary in 
calculating the texture features at the pixel-level. Second, we evaluate various different 
neighborhood sizes for the pixel-based texture representation in order to find the optimal 
window size for differentiating among 8 organs/tissues of interest: aorta, fat, kidney, liver, lung, 
muscle, spleen, and trabecular bone. For all organs/tissues (except for aorta), the optimal 
window was 13-by-13 allowing the classification sensitivity metric to be at least 96% for all 
organs/tissues. For aorta, the optimal window size was 9-by-9 with the classification sensitivity 
being 81%. 
 
 
1 Introduction 
 
 Automatic analysis of images from various medical imaging modalities is in high demand in 
order to increase the productivity of radiologists when interpreting and diagnosing hundreds of 
images every day. In medical imaging research, texture information plays an important role for 
several reasons. First, the organ shapes are different across different slides due to the generated 
sequences of two-dimension (2D) images from three-dimension (3D) structure. Since sequences 
of 2D images represent a cross section of human body, the shape of an organ throughout the 
entire slide of 3D is not consistent. Moreover, some organs can have different sizes from one 
patient to another. Therefore, the shape-based discrimination techniques [7, 8] may not be 
appropriate to identify the organs. To avoid these limitations, low-level features based on the 
gray-level information present in the image are used to capture the content of the medical 
images.  However, the gray -levels alone are not sufficient as many soft tissues have overlapping 
gray level ranges [10]. Therefore, low-level features based on texture information, that is 



expected to be homogenous and consistent across multiple slides for the same organ, are mostly 
used to perform automatic image analysis in the medical imaging field. 

The goal of the approach presented in this paper is to achieve automatic classification of 
tissues of interest in normal CT images of the chest and of the abdomen.  Our approach, 
“direction vs. displacement pairs” (DDP), is based on texture features calculated at the pixel-
level instead of a global-level as it has been done before in the texture analysis literature:  for 
each pixel, we calculate a co-occurrence matrix for capturing all possible combinations between 
directions and displacements within a small neighborhood centered on that pixel.  The optimal 
neighborhood size is determined by the window size producing the best pixel-classification 
accuracy of the regions of interest.  To classify the regions, 1) a Classification and Regression (C 
&RT) decision tree is used to produce the pixel-level classification and then 2) a majority vote 
scheme is applied to label each of the regions of interest based on the majority of pixel labels 
within the corresponding region.     

The beauty of the proposed approach consists in its applicability to 1) perform automatic 
segmentation of regions of interest by using the classification rules derived at the pixel-level; 2) 
build context-sensitive reporting tools (for instance, apply a computer-aided diagnosis tool for 
liver only if the region of interest is a liver); and 3) develop educational software for medicine. 
 
2 Background 
 
 Research in the field of image classification using texture information is mostly limited to 
specific pathologies and a single organ tissue. In [11], Karkanis et al. applied a multilayer feed-
forward neural network based on texture features to classify cancer regions in colonoscopic 
images. Baeg and Kehtarnavaz [13] proposed a three-layer back-propagation neural network 
based on two image texture features to classify abnormalities in digitized mammograms. 
Wroblewska et al. [15] proposed an automatic feature selection algorithm and multilayer feed-
forward back-propagation neural network to detect and classify of micro-calcifications in digital 
mammograms. Zaiane et al. [14] proposed an automatic classification of benign and malign 
tumors in mammography images based on an association rule mining approach.  
 There is also some work done with respect to the identification of several organs at the 
abdomen level.  In [9], a Hopfield neural network was applied to perform organ identification 
based on Haralick texture features applied at the pixel level.  The advantage of this technique is 
that it does not require a priori knowledge. However, the technique gives poor results in 
identifying liver, spleen and muscle because of a block-wise contour effect from calculating the 
texture features at the block-level. Lee at al. [12] proposed a multi-module contextual neural 
network and fuzzy rules to overcome the difficulties in Koss’s technique. The multi-module 
contextual neural network segments images by classifying the pixels into disjoint region based 
on the gray-level and contextual information of neighboring pixels. Then, the fuzzy rule is 
applied to the region features, including relative location, relative distance, tissue-intensity, area, 
compactness, and elongatedness, in order to give the final segmented organs. 
Furthermore, the texture feature analysis has been performed either at the global-level 
(organ/tissue) or local-level (small region within the tissue/organ of interest) rather than at the 
pixel-level.  The DDP approach proposed in the paper will extract all possible texture 
characteristics with respect to direction and displacement instead of considering all pixel pair 
within a small neighborhood centered on the corresponding pixel; furthermore, a decision tree is 
employed to do a pixel-based classification. Since this process is done at the pixel-level, the 



limitations of the previous approaches in dealing with inconsistent organ shapes and positions, 
and overlapping gray-levels will be overcome by the proposed approach.   
 The rest of this paper is organized as follows. The methodology of the approach for organ 
classification is discussed in Section 3 and the evaluation of the approach is described in Section 
4.  The preliminary experimental results are presented in Section 5; finally, conclusions and 
future work are discussed in Section 6. 
 
3 Methodology 
 
 Our approach to pure patch tissue classification consists of three stages: 1) pre-processing; 2) 
pixel-level texture extraction; and 3) classification. Figure 1 illustrates the overview of our 
proposed system. First, the pre-processing stage strengthens the contrast in the image and 
reduces the noise in the data. Second, the pixel-level texture stage extracts the characteristics of 
the texture at the local level. Finally, a supervised learning technique is utilized in order to 
classify each pixel, and further each tissue of interest. 
 

 
3.1 Pre-processing: Gray-level reduction using clipped 
 
 Since most of the soft tissues have overlapping gray-levels and the contrast among the tissues 
is very low within the CT images, especially given the large range of gray-levels in DICOM 
(Digital Imaging and Communications in Medicine) format of 4096 gray-levels for a 12 bit 
resolution, an image enhancement pre-processing technique is needed to increase the gray-level 
contrast among the tissues.  
 We apply a clipped binning technique [1] to enhance the contrast within the soft tissues 
necessary for good texture feature extraction. The clipped binning technique incorporates 1) a K-
means algorithm that automatically determines the range of the gray levels for the soft tissues in 
the given CT images; 2) the gray-levels that are lower than the soft tissue range and the gray-
levels that are higher than the soft tissue range will be assigned to the minimum bin and 
maximum bin, respectively; the gray values within the soft tissue range will be linearly divided 
into equal bins.  
 
3.2 Pixel-level texture extraction 
 
 Pixel-level texture extraction will be used to discover the texture of each pixel within a small 
neighborhood. These overlapping regions allow a certain ambiguity to be incorporated in the 
texture property for improving organ/tissue classification. In order to capture the spatial 
distribution of the gray-levels within the neighborhood, a two-dimensional co-occurrence matrix 

Figure 1: Diagram of the proposed system. 
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[3] is applied to calculate the local texture information around that pixel. While Kalinin et al. [4] 
and Koss et al. [9] calculated the local texture based on an “all-pairs” (AP) approach, which 
considers all the pixel pairs within the neighborhood, we propose a new “direction vs. 
displacement pairs” (DDP) approach, which considers every direction and displacement 
separately around the pixel of interest.  In this way, the checker board problem introduced by the 
AP approach (two textures having different patterns will have the same co-occurrence matrix if 
they have same values for the gray-levels) will be overcome by the proposed DDP approach.  

The DDP is based on the estimation of joint conditional probability of pixel pair 
occurrences ( , )ijP d θ . The denotes the normalized co-occurrence matrix by total number of the 
occurrence of two neighboring pixels between i gray-intensity at vertical direction (row) and 
another j gray-level at horizontal direction (column) of specify by displacement vector and 
angle

ijP

d
θ . There are four different directions including 0°, 45°, 90°, and 135° are generally used in 

image processing as in Figure 2 and (n-1) is a number of displacement vector in n-by-n window 
size, where n denotes resolution vector in row and column.  
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In terms of computational time, the DDP approach is  since the number of pixel 

comparisons of DDP is given by formula (1), where n denotes the size of the window: 
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Furthermore, for computational efficiency purposes, the co-occurrence matrix implementation 
represents only the gray-levels that appear within the pixel neighborhood under consideration.  

Once the co-occurrence matrix is calculated around each pixel, ten Haralick texture 
descriptors [2] measuring different properties of the texture are obtained; 1) Entropy to measure 
the randomness of gray-level distribution; 2) Energy to measure the occurrence of repeated pairs 
within an image; 3) Contrast to capture the local contrast in an image; 4) Homogeneity to 
measure the homogeneity of the image; 5) Sum Average to provide the mean of the gray 
intensity within an image; 6) Variance to estimate the variation of gray level distribution; 7) 
Correlation to measure a correlation of pixel pairs on gray-levels; 8) Maximum probability to 
represent the most predominant pixel pair in an image, 9) Inverse Difference Moment (IDM) to 
measure the smoothness of an image and 10) Cluster Tendency  to measure the grouping of 
pixels that have similar gray-level values.  The calculation of Haralick features are shown in 
Appendix. At the end of this stage, each pixel will be characterized along each distance and 
displacement by a 10-dimensional vector:   1 1[ , , ]d d…
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Figure 2:  From the centered pixel; 
pixel 1 represents 0° at d=1; pixel 2 
represents 45°; pixel 3 represents 
90°and pixel 4 represents 135°at d=1 
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Figure 3:  Co-occurrence matrix for 

distance 1, direction 0° 



 
3.3 Classification 
 
 The classification stage consists of 2 stages: pixel-based texture classification and pure patch 
classification.   
 
3.3.1 Pixel-based texture classification. There are many types of classifiers that could be used 
to differentiate among the organs/tissues in pixel-based space. Decision trees have a relatively 
fast learning speed compared with other classification techniques and also have the ability to 
eliminate the irrelevant attributes from the set of features. Furthermore, the decision trees do not 
make any assumptions about the distribution of the data and this property makes them 
appropriate to be used when the distribution of the data is unknown. 
 In our approach, a Classification and Regression Tree (C&RT) classifier is applied to 
discriminate the pixel-based pattern among different tissues [16].  C&RT implements the 
classification process based on splitting the current node into two child nodes based on the 
predictors’ values which are the texture descriptors in our case. The best predictor is chosen 
using the Gini impurity index such that each child node is more pure than its parent node [16]. 
The goal is to produce subsets, leaf nodes, which are as homogeneous as possible with respect to 
the class label.  
In order to not overfit the data, there are several stopping criteria used for the tree growth [5]: 

• Maximum tree depth: d 
• Minimum number of cases for the parent node (internal node): np  
• Minimum number of cases for child nodes (left/ terminal node): nc 
• Minimum change in impurity: imp  

 Depending on these parameter values (d, np, nc, imp), a different tree will be produced. The 
optimal tree will be the tree whose parameters produce the highest classification accuracy at the 
pixel level on the testing data. Once the optimal decision tree is developed, its decision rules will 
be used to classify each pixel within the tissue region of interest.   
 
3.3.1 Tissue classification. The classification of a tissue region involves a majority scheme in 
which each pixel from the region is classified using the rules derived from the C&RT. The most 
frequent label within the corresponding region will become the classification label of that patch. 
Therefore, the tissue classification is the representation of the majority of predicted tissues at the 
pixel level. Since a set of rules is applied to each pixel within the region, the tissue classification 
is independent of the tissue regions’ sizes, so regions of different sizes can be automatically 
classified by our proposed approach.  This advantage will allow us to use the technique for 
image segmentation in regions having not necessary equal sizes as it is the case for multiple 
organs/tissues segmentation in CT images. 
 
4 Evaluation model 
 
 The evaluation of our approach is performed with respect to eight different pure tissue 
patches including aorta, fat, kidneys, liver, lung, muscle, spleen, and trabecular bone. The 
segmented pure tissues have been manually generated by a clinical expert. The proposed results 
will be compared against the clinical expert’s manual patch labels; in order to assess the 
accuracy of the approach, each tissue will be evaluated separately. 



 Two classification metrics are used to measure the classification performance:  
TPsensitivity

TP FN
=

+
  (2) 

TNspecificity
TN FP

=
+

  (3) 

in which TP denote true positives, FP denote false positives, TN denotes true negatives, and FN 
denote false negatives.  True positive is a number of the patches that belong to that organ that are 
correctly classified as that organ. False positive is a number of patches that belong to that organ 
that are incorrectly classified as that organ. True negative is a number of patches that belong to 
other organs that are correctly classified as other organs. False negative is a number of the 
patches that belong to that organ that are incorrectly classified as other organs.  
 
5 Experimental results 
 
5.1 Data  
 
 In this study, 440 pure patches (55 patches per organ/tissue) from multiple, serial, axial 
normal CT images derived from helical, multi-detector CT acquisitions of 5 patients were 
manually segmented and annotated by an expert radiologist.  The images were in DICOM 
format, size of 512 by 512 with 12 bit resolution. The segmented tissues have been manually 
annotated in one of the following categories: aorta, fat, kidneys, liver, lung, muscle, spleen, and 
trabecular bone; some examples of pure patches are shown in Figure 4.   

Kidney Liver 

Original Clipped Origina Clipped

Spleen Trabecular bone 

Original Clipped Origina Clipped

Figure 4: Result of pure patches contrast enhancement using clipped binning 
with 256 bins. 

 
5.2 Pre-processing 
 
 We found that the soft tissues in DICOM format (with 4096 gray levels) are nearly always 
placed into an approximately gray-level range between 856 and 1368. Therefore, the clipped 
binning approach allocates all gray intensity within a lower bound (0-855) to a single lowest bin 
and allocates a single maximum bin to an upper bound (1367-4095).  The rest of the gray levels 
are equally divided into equal sized bins; by varying the number of gray levels, we found that 
256 equal-sized bins is an optimum number for contrast enhancement of soft tissues in CT 
images [1]. 



 
5.3 Texture features  
 
 We assess the co-occurrence matrix calculation for both the AP and DDP approaches: AP 
calculates the co-occurrence by considering all the pixel pairs within the neighborhood; DDP is 
an integration of every possible co-occurrence which considers direction and displacement 
separately. For the DDP approach, we consider four different directions of 0°, 45°, 90°, and 
135°; in terms of displacement, since DDP approach considers every direction and displacement 
separately, the values of the displacement will vary accordingly to the pixel window size.   For 
example, in a 5-by-5 window, we will have 4 different displacements and thus, 16 (4 directions 
by 4 displacements) co-occurrence matrices in total.  The ten Haralick texture features are 
calculated for each co-occurrence matrix. 
 
5.4 Classification  
 
 To obtain the C&RT decision tree, we divided the 440 pure patches into a training set 
containing a random sampling of 66% of the pixels and a testing set containing the other 34%. 
Since the texture feature have different value as a pre-processing step, we scaled all the features 
to the range 0 to 1; the scaling was done using the max-min normalization approach [5].  
 The optimal tree was found for number of parents equal to 100 and number of children equal 
to 5.  For this tree, 155 rules and 188 rules were found for the AP and DDP approaches, 
respectively, for a window size equal to 13 by 13.   In both approaches, the lowest number of 
rules was obtained for fat, lung, and muscle, and the highest number of rules was obtained for 
liver and spleen; this indicates that there is not much difference among the texture pixels for 
fat/lung/muscle pixels, while there is significant difference among the tissue pixels of a single 
organ/tissue such as liver or spleen.   Once all the pixels in the pure-patch are classified using the 
derived decision rules, the highest frequency of the organ/tissue label in the patch will be used as 
the label representation of this patch in order to get the final classification. 
 In addition to the classification task, the decision tree approach helps us identify the most 
importance features for discriminating among the organs/tissues. We found that the IDM 
descriptor is the most important feature for the classification task.  
 
5.5 Patch Classification Results 
 
 With respect to the way of calculating the texture features, in all cases, the DDP approach 
produced at least the same or better results than the AP approach (Tables 1 & 2) regardless of the 
organ consideration. Varying the window size from 5 by 5 to 13 by 13, had a slight effect on the 
result of AP approach, but had a significant effect on the DDP approach.   An explanation of this 
result may rely on the fact that, as the window becomes larger, more local texture properties are 
captured for the calculation of the co-occurrence matrix, and thus of the texture features used for 
classification.  The window size was varied from 5-by-5 to 13-by-13 because 1) sensitivity of 
aorta starts to decrease from 9-by-9 window; 2) at 13-by-13 most of tissue classifications get 
almost 100% classification sensitivity; and 3) the computation time involved in DDP co-
occurrence calculation increases cubically with the size of the window.  
 Table 1 presents the significant improvement of the DDP approach’s sensitivity with the 
window size.  For example, the sensitivity of kidneys rises from 64% to 97% and there is a 



significant improvement from 61% to 100% for spleen, when the window size grows up from 5-
by-5 to 13-by-13. The sensitivity of aorta went up from 45% to 81% when window size 
increased from 5-by-5 to 9-by-9; however, the sensitivity started dropping at that point. Thus, 
from these preliminary results, it seems like there are different patterns within the aorta tissue 
patches and a 9-by-9 window size will be more appropriate for aorta.  On the other hand, the 
sensitivity for fat, liver, lung and backbone did not increase significantly because the sensitivity 
was already almost 100% at a window size of 5-by-5.  
 Table 2 presents the specificity results for the eight organs of interest. Regardless of the 
window size, the specificity value for each organ was above 90% for both AP and DDP 
approaches.   

Table 1: Sensitivity for the pure patch classification for DDP and AP 
  Aorta Fat Kidney Liver Lung Muscle Spleen Trabecular Bone

Window DDP AP DDP AP DDP AP DDP AP DDP AP DDP AP DDP AP DDP AP 

5x5 45.28% 20.00% 98.18% 98.18% 63.64% 36.36% 100% 100% 100% 100% 100% 100% 60.47% 44.44% 100% 92.86% 
7x7 67.92% 21.82% 100% 98.15% 81.48% 44.44% 100% 100% 100% 100% 100% 100% 83.33% 67.44% 100% 93.75% 
9x9 81.13% 27.27% 100% 100% 78.85% 51.92% 100% 98.18% 100% 100% 100% 100% 94.44% 83.33% 100% 95.24% 
11x11 63.83% 30.61% 100% 100% 86.67% 55.56% 100% 98.18% 100% 100% 100% 100% 94.34% 86.79% 100% 100% 
13x13 66.67% 30.43% 100% 100% 96.55% 72.41% 100% 100% 100% 100% 100% 100% 100% 96.67% 100% 100% 

Table 2: Specificity for the pure patch classification for DDP and AP 
  Aorta Fat Kidney Liver Lung Muscle Spleen Trabecular Bone

Window DDP AP DDP AP DDP AP DDP AP DDP AP DDP AP DDP AP DDP AP 

5x5 99.07% 99.44% 100% 100% 96.24% 96.08% 94.04% 91.60% 100% 100% 99.70% 99.72% 94.56% 90.78% 95.92% 91.08% 
7x7 99.60% 98.80% 100% 100% 96.39% 96.11% 96.37% 95.50% 100% 100% 100% 99.70% 96.79% 91.30% 96.55% 92.42% 
9x9 99.51% 99.32% 100% 100% 98.04% 95.96% 99.00% 96.60% 100% 100% 100% 100% 95.54% 90.17% 96.26% 92.18% 
11x11 99.49% 99.30% 100% 100% 95.43% 97.22% 98.93% 97.48% 100% 100% 100% 100% 96.30% 91.43% 96.50% 92.78% 
13x13 100% 100% 100% 100% 92.97% 95.43% 98.43% 97.13% 100% 100% 100% 100% 97.64% 96.55% 99.24% 96.59% 

 
 
6 Conclusion and future work 
 
 Our preliminary results show that that the co-occurrence calculation scheme at the pixel level 
and the window size have a significant influence upon the classification results, especially for 
the soft tissues. With respect to the DDP approach, the optimal window size was 13-by-13 
allowing the sensitivity metric to be at least 96% for all organs except for aorta. For aorta, the 
optimal window size was 9-by-9 with the classification sensitivity being 81%. Therefore, 
different window sizes are appropriate for different organs and the larger the window size, the 
more local information will be captured to calculate the texture.  In terms of the overall 
classification result and operational efficiency, we suggest that the best window size for identify 
regions of interest is 9-by-9.  
 As future work, the proposed approach can be extended to 1) include other texture features; 
and 2) assign probabilistic labels to the regions of interest instead of just the label which most 
predominant within the corresponding region.  This will allow applying the proposed approach 
for 1) probabilistic annotation of “unknown” pure patches; 2) automatic probabilistic 
segmentation of pure patches in CT images using split and merge segmentation algorithms; and 
3) creation of context-sensitive tools for CAD systems.   We also plan to investigate the effect of 



using three dimensional texture models and incorporating more sophisticated decision algorithms 
to move from a pixel classification to a patch classification.  Finally, we will begin testing the 
applicability of texture-based classification to certain pathologies.  
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Appendix 
 
Suppose M and N represent resolution vector at row and column respectively. The ten Haralick 
features are calculated as the following: 
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