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Abstract 
 
Microarray technology allows biologists to test for a large number of DNA sequences 
with a single test.  Each microarray may consist of hundreds or thousands of probes to 
test for specific sequences.  These devices are typically developed to target a specific 
DNA type.  A proposed universal microarray that uses a few hundred randomly selected 
probes is evaluated on a collection of micro-organism DNA; the collection consists of 25 
closely related isolates that are used to test the limits of the device.  A test based on 
statistical confidence intervals is used to explore the hypothesis that the microarray 
contains enough information to discriminate between isolates.  Multiple replicates are 
combined to improve results, which leads to a potential method of raising the accuracy of 
the test to a desired target level.  Work still in progress using machine learning 
algorithms demonstrates that closely related isolates can be identified based on 
information in the microarray data. 
 
 
1 Introduction 
 
 The goal of the universal microarray is to use a standard set of probes to allow for 
fine grained classification of microbial isolates.  Prior work has shown that this device is 
able to distinguish between families of isolates but has limited ability when applied to 
strains that are closely related [1].  Bacillus anthracis strains are of particular interest in 
the context of demonstrating the ability of a universal microarray since it is known as one 
of the most genetically homogenous bacterial species.  Since this microbe causes anthrax, 
the ability to distinguish between strains from different origins is interesting because of 
the potential forensic applications related to the identification of the source of a bio-terror 
threat.  To improve the device’s ability to detect small differences, such as those between 
B. anthracis strains, a different gel based microarray technology was adopted to provide 
more accurate readings. 

The task of processing the microarray data can be broken down into several basic 
steps.  First, the images are processed and summarized as probe level data.  Then, a 
statistical procedure is needed for determining the equivalence of a new sample to a 
fingerprint.  An equivalence test should provide information at a specified level of 
confidence about how many probes may be significantly different.  Ideally this would 
give an exact answer to whether or not the isolates are identical.  Because of the amount 
of variance in the data and the relatively small number of replicates available in relation 
to the number of probes we are not able to answer this question with a high confidence 



level.  Using confidence interval based technique proposed in this paper we are able to 
demonstrate that there is enough information in the images of the microarrays to correctly 
identify isolates more than 70% of the time based on the assumption that the sample data 
is a representative subset of the readings that would be obtained from other isolates from 
additional repetitions and strains. 

The obtained classification results are well below a perfect classification rate.   
However, these results are still of interest because the isolates studied are known to be 
very hard to distinguish, so this test is pushing the limits of what is possible today.  
Additional replicates are shown to improve the classification accuracy so an experimenter 
is able improve results by adding data.  Since this is one of the hardest tests set to work 
with the device will probably provide much better results with other isolates. 
 
2 Data Set Description and Preprocessing 
 
 The microarray consists of 4 blocks each of size 10 by 10 probes providing 400 
readings per test; 390 of the 400 probes contain actual probes, the others are control spots 
used to register the microarray images and provide extra information for intensity 
normalization across slides.  The Automated Microarray Image Analysis Toolbox for 
Matlab [2] is used to determine the average foreground and background intensity for each 
probe.  A single value computed as the log of the ratio of the foreground to background is 
used as the intensity of the probe following a standard practice in the industry [3][4] and 
prior work with this chip [1]. 
 Image normalization is usually required to adjust for systemic differences 
between microarray images [5].  Normalization algorithms that transform the data by 
fitting a curve through the points are not appropriate for small data sets since there are not 
enough data points to minimize the effect of outliers, especially at the high end of the 
intensity spectrum (where the variance in the data increases greatly even after the log 
transform of the ratio between foreground (probes) and background. Therefore, quantile 
normalization [6] has been chosen to transform each microarray’s intensity distribution to 
a template (Figure 1).   
 

 
Figure 1: Quantile normalization for one of the probes 

 
 



If very different isolates are used this may not be the best approach, but it is a reasonable 
assumption when all of the isolates are extremely closely related.  For the nth quantile of 
each set of probes, each intensity value is set to the median value of all the intensities and 
thus, this approach does not require the selection of a base image to normalize all other 
data to.. As an example of the effect experimental factors may have on the data, at a 95% 
confidence level using the Bonferonni correction for multiple hypotheses testing, the 
number of significant probes between isolates 2 and 3 decreased from 52 to 5 after 
normalization.  While it is not known how many probes should actually hybridize at 
significantly different levels for these isolates, the anticipated numbers is relatively small.  
Prior work suggests that there may be approximately 3 significantly different probes [1].  
The new chips use improved materials, which may provide the ability to detect more 
differences. 
 
3 Statistical Test of Profile Equivalence 
 
 The task of comparing a test isolate to a library fingerprint can be approached 
statistically as a series of parallel hypotheses tests.  This procedure follows the approach 
from Allan Willse [1].  The statistical test for each probe is the decision between: 
 

H0: the probe intensities for the test and library fingerprints are the same 
Ha: the probe intensities are different 
 

A significance level � is selected that specifies the confidence level of the test result.  
Selection of an appropriate � depends on knowledge of the target application.  For a 
single test a probe where p < � would be selected as significantly different.  For � = 0.05 
and a test that includes 390 probes, the expected number of probes where p < � when the 
intensities are the same is around 19.5 (390 * 0.05).  This is problematic when working 
with a data set where the goal is to distinguish between isolates with fewer than 10 
significant differences.  A procedure for working with multiple hypothesis testing is 
needed to correct for Type I errors (the likelihood of rejecting H0 when H0 is in fact true 
[7]; type II errors (the possibility of not rejecting H0 when Ha is true) also clearly hurt the 
effectiveness of the test.  Benjamini and Hochberg’s False Discovery Rate (FDR) method 
provides a technique that allows for the regulation of the proportion of Type I errors 
among the rejected hypothesis [8].  The FDR method is a good choice for the microarray 
application because it is more likely to avoid Type II errors while still providing control 
of Type I errors compared to approaches like the Bonferonni method.  The complete 
resulting profile equivalence between a sample and a library finger print will consist of 
the confidence level �, the multiple hypothesis control method, the number of 
significantly different probes and a list of probes with an associated p values. 
 
4 Confidence Interval Based Classification 
 

A simple classification algorithm was developed to categorize test cases and provide 
a base line for evaluating several machine learning algorithms used for microarray data 
classification.   



Our classification procedure defines an isolate fingerprint as a set of confidence 
intervals (C.I.) for ratio intensity values for each spot in the micro-array.  

 Let {Y1jk,…,YNjk} be the average spot intensities for N spots on a micro-array where 
DNA fragments from a microorganism j, for j =1,…,J, are hybridized. We assume that 
the hybridization experiment is replicated K times for each bug, and the index k=1,…,K 
identifies the k-th replicate..   

 Let �ij   be the average spot intensity level for isolate j=1,…J at spot i=1,…N. For any 
given microorganism j, we define its fingerprint for the probe hybridization levels as the 
set of N confidence intervals for the average spot intensity levels �ij, i=1,…, N.  

The (1-�)% confidence interval for �ij is defined as  
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where K is the number of replicates, ijy is the sample average intensity and sij is the 

sample standard deviation of the intensity at spot i for isolate j computed from the K 
intensity levels. Thus for each isolate, the (1-�)% confidence intervals for the N probes 
are used to define the isolate fingerprint.  

Whenever DNA fragments from a certain isolate are hybridized on an array, the 
observed spot intensity levels are expected to lie within the confidence interval based 
fingerprint of that specific isolate.  The C.I. fingerprint classifier is implemented by 
comparing the observed spot intensity levels of a tested microorganism with the 
fingerprint confidence intervals for a certain isolate. We will say that there is a positive 
sub-match between the tested microorganism and an isolate j, if the observed spot 
intensity level of a certain probe lies within the fingerprint C.I. corresponding to that 
probe for isolate j. The classifier counts the number of positive sub-matches between a 
tested microorganism and the isolate j.  

We can therefore define a similarity metric between the tested microorganism and an 
isolate fingerprint, as the number of positive sub-matches. A very high similarity score 
with bug j fingerprint suggests that the tested microorganism belongs to the bug j strain. 
Thus, for two isolates A and B, the classification producing the highest number of sub-
matches will identify whether a bug is of type A or B.  

Using a data set with a diverse set of isolates (26 isolates, each replicated 9 times), 
this technique was able to correctly classify 73% of the samples.  Closely related samples 
where classified poorly, on average 55% of the time, but the incorrectly classified 
samples where almost always confused with the related sample.   

Averaging test samples together was shown to have a large positive impact on the 
classification rate.  Intuitively this makes sense because averaging generates a test case 
with very few outliers so most probe intensities should fall in the expected range.  This is 
important because it means that results can almost always be improved by adding 
additional replicates.   

 
5 Conclusions 
 

At this point we are able to demonstrate that there is enough information in the 
data to classify extremely closely related isolates using the universal microarray.  
Additional work is needed to verify that classification results are a side effect of 



information in the data as opposed to side effects of systemic experimental factors.  
Finally, we are working on implementing the classification and profiling algorithms so 
that they are directly accessibly by anyone interested in examining the data.  This 
implementation can also serve as a starting point for analyzing future results from similar 
microarrays. 
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