On GeometricSpannerof EuclideanGraphs
andtheir Applicationsin WirelessNetworks

lyad A. Kanj

Ljubomir Perlovic

Schoolof CTI
DePRaul University
Chicago,lllinois 60604-2301
Email: {ikanj, Iperkovic} @cs.depaul.edu

Abstract— We consider the problem of constructing
a bounded-degee planar geometric spanner for a unit
disk graph modeling a wireless network. The related
problem of constructing a planar geometric spanner of
a Euclidean graph has been extensiely studied in the
literatur e. It is well known that the Delaunaysubgraphis a
planar geometric spannerwith stretchfactor Cye; ~ 2.42;
however, its degreemay not be bounded. Significant work
has been done on developing algorithms for constructing
bounded-degee planar geometric spanners of Euclidean
graphs. Our first result presentsa very simple linear time
algorithm for constructing a subgraph of the Delaunay
graph with stretch factor p =1+ 2r(kcos F)~" and de-
greeboundedby k, for any integer parameter & > 14. This
result immediately implies an algorithm for constructing
a planar geometric spanner of a Euclidean graph with
stretch factor p - C4e; and degree bounded by k&, for any
integer parameter £ > 14. Our secondcontribution lies
in developing the structural results necessaryto transfer
our analysisand algorithm from Euclidean graphs to unit
disk graphs. We obtain a very simple strictly-localized
algorithm that, given a unit disk graph embeddedin the
plane, constructs a planar geometric spanner with the
above stretch factor and degree bound. The two results
dramatically improve the previous resultsin all aspects,
as shown in the paper.

I. INTRODUCTION

Topology control of wireless ad-hoc networks de-
ployed in the planeis a fundamentalproblemin the
areaof wirelesscomputing[23], [25], [26]. Topology
control is used,for example,to constructa topology
of the original network that is amenableto routing or
other networking applications.Some desirable prop-
erties of the resulting topology include (1) planarity:
the underlying graph should be planar to allow, for
example, guaranteedand efficient routing such as ge-
ometricrouting ([5], [16]); (2) boundedstretchfactor:
for ary two devicesin the network there should be a
path connectingthemin the topology whoselengthis
closeto the length of the shortestpath connectingthe
pair in the original network; (3) boundeddegree:each
device maintainslinks to only a constantnumber of
devices in its communicationrange, thus minimizing
interferenceand saving enegy; and (4) constructible
locally: the constructiorof the network topologyshould
be distributed, simple, and strictly-localized in the

sensehat eachpoint constructsand maintainsits links
in the topology basedonly on the information from
neighboringdeviceswithout exchangingor propagating
globalinformation(seg[7] for a formal definition). The
problem of computing efficient topologiesfor ad-hoc
wireless networks has beenextensively consideredin
theliterature[14], [18], [21], [23], [24], [25], [26], [28],
[29], [32], [33], [34].

Sincewirelessnetworks are usually modeledas unit
disk graphsin the Euclideanplane,the corresponding
problem becomesto constructgeometricspannerdor
unit disk graphs.The relatedproblem of constructing
geometricspannerf Euclideangraphs(i.e., the com-
plete graphson a given set of pointsin the plane)is
a very important problem that has receved a lot of
attentionin the literaturedue to its numerousapplica-
tions in the fields of computationalgeometry wireless
computing,andcomputergraphicgfor example,seethe
recentbook [22] for a surey on geometricspanners
andtheir applicationsin networks). Dobkin et al. [11]
shaved that the Delaunaygraphis a planargeometric
spannerof the Euclidean graph with stretch factor
(1+ v/5)7/2 ~ 5.08. This ratio was further improved
by Keil et al [15] to Cge; = 27/(3 cos (7w/6)) ~ 2.42,
which currently standsas the bestupperboundon the
stretchfactor of the Delaunaygraph. However, mary
researcherbelieve that the lower boundof 7/2 shavn
in [9] is also an upperbound on the stretchfactor of
the Delaunaygraph.EventhoughDelaunaygraphsare
good planar geometricspannersof Euclideangraphs,
however, Delaunaygraphsmay have unboundediegree.
Other geometric(sparse)spannersvere also proposed
in the literature including the Yao graphs[35], the
O-graphs[15], and mary others(see[22]). However,
mostof theseproposedspannergitherdo notguarantee
planarity or do not guaranteéboundeddegree.

Bose et al. [3], [4] were the first to shav how to
extract a subgraphof the Delaunaygraph(and henceit
is planar)thatis a geometricspannerof the Euclidean
graphwith stretchfactor~ 10.02 and degreebounded
by 27. In the context of unit disk graphs.Li etal. [19],
[20] gave adistributedalgorithmthatconstructsa planar
geometricspannerof a unit disk graph with stretch



factor Cye;; however, the spannerconstructeccan have

unboundediegree.WangandLi [30], [31] thenshoved
how to constructa bounded-dgree planar spannerof

a unit disk graph with stretch factor maz{n/2,1 +

msin (a/2)} - Cyer anddegreeboundedby 19 + 27/,

where0 < « < 27/3 is a parameterVery recently
Boseet. al [5] improvedtheearlierresultin [3], [4] and
shaved how to constructa subgraphof the Delaunay
graphthatis ageometricspannenf the Euclideangraph
with stretchfactor:maz{m/2,1+wsin (a/2)} - Cge if

a < m/2and (1 + 2v3 + 37/2 + wsin (1/12)) - Cyer

whenz/2 < o < 27/3, andwhosedegreeis bounded
by 14+27/«. Boseetal. thenappliedtheir construction
to obtaina planargeometricspannenf aunit disk graph
with stretchfactormaaz{m/2, 1+ 7 sin (a/2)}-Cqe; and
degreeboundedby 14 + 27/« for ary 0 < o < 7/3.

This was the bestboundon the stretchfactor and the
degree.

In this paper we develop structural results about
Delaunaygraphsthatallow usto presenta very simple
lineartime algorithm that, given a Delaunay graph,
constructsa subgraphof the Delaunay graph with
stretchfactor 1 + 2 (k cos (m/k))~! (with respectto
the Delaunaygraph) and degree at most &, for ary
integer parameterk > 14. This result immediately
impliesanO(nlg n) (n is thenumberof verticesin the
graph) algorithm for constructinga planar geometric
spannerof a Euclideangraph with stretch factor of
(1 + 2m(kcos (m/k)) 1) - Cqe and degree at most £,
for ary integer parameterk > 14. This significantly
improvesthe previousresultsof Boseetal. [3], [4], [5],
bothin termsof the stretchfactorandthe degreebound.
We then show the applicationsof the resultsto unit
disk graphsby presentinga very simple and strictly-
localized distributed algorithm that, given a unit-disk
graphembeddedn the plane,constructsa planargeo-
metric spanneof the unit disk graphwith stretchfactor
(1427 (k cos (m/k))~1)-Cqe, anddegreeboundedby k,
for ary integerparametef > 14. Theseresults,in turn,
significantly improve all the previous results of [5],
[30], [31] on this problemin termsof: the upperbound
onthestretchfactor, theupperboundon thedegree,and
the simplicity andlocality of the algorithm.In termsof
efficiengy, the presentedalgorithm exchangesio more
than O(n) messagesn total, and runsin O(AlgA)
local time at a nodeof degree A.

To compareour boundsto the previous bestbounds
in theliterature,consideffirst the problemof computing
planarbounded-dgreegeometricspannersf Euclidean
graphs.For a degreebound & = 14, our resultsimply
a boundof at most 3.54 on the stretchfactor As the
degreeboundk approacheso, ourboundonthestretch
factorapproache€’,.; ~ 2.42. The very recentresults
of Boseet al. [5] achieve a lowestdegreeboundof 17,
andthatcorrespondso a boundon the stretchfactorof
at least23. If Boseetal .[5] allow the degreeboundto

be arbitrarily large (i.e., to approachoo), their bound
on the stretchfactor approachegn/2) - Cyer > 3.75.

In termsof the problemof computingplanarbounded-
degreegeometricspanner®f unit disk graphsthe same
boundshold for our construction,i.e., for a degree
bound k£ = 14, our resultsimply a bound of at most
3.54 on the stretch factor and as k£ approachesx,

our boundon the stretchfactor approaches’;.;. The
smallestdegree bound derived by Bose et al. [5] is

20, and that correspondgo a stretchfactor of at least
6.19. If Boseet al. [5] allow the degree boundto be
arbitrarily large, thentheir boundon the stretchfactor
approacheqn/2) - C4e; > 3.75. On the other hand,
the smallestdegreeboundderived in Wanget al. [30],

[31] is 25, andthat correspondgo a boundof 6.19 on
the stretchfactor If Wang et al. [30], [31] allow the
degreeboundto be arbitrarily large, then their bound
on the stretchfactor approachegn/2) - Cyer > 3.75.

Therefore,even the worst bound of at most 3.54 on

the stretchfactorcorrespondingo our lowestboundon

the degreek = 14, beatsthe bestboundon the stretch
factorof atleast3.75 correspondingdo arbitrarily large
degreein both Bose et al. [5] and Wang et al. [30],

[31]!

Finally, we showv the applicationsof our resultsto
otherfamiliesof graphsusedfor modelingwirelessad-
hoc networks. We considerthe recently-studiednodel
of quasiunit disk graphs[1], [8], [17] that generalizes
unit disk graphs.Given a connectedquasi unit disk
graph with parameter0 < d < 1, we presenta
strictly-localizeddistributed algorithmthat constructsa
geometricspannerof the quasi unit disk graph with
maximum degree O(1/d), stretchfactor 1 + 2(1 +
2m(k cos £)71) - Caer, anda boundof O(1/d) on the
averagenumberof edgescrossingary given edgein
the graph.

Il. DEFINITIONS AND BACKGROUND

All graphsconsideredn this paperare graphsem-
beddedin the plane,and all the distancesconsidered
are Euclideandistances.

A spanningsubgraphX of agraphG is saidto have
stretch factor p if for every two points X andY in G:
the ratio of the (Euclidean)length of a shortestpath
betweenX andY in H to the length of a shortest
pathbetweenX andY in G is at mostp. We have the
following resultfrom [28].

Lemma2.1 ([28]): A subgraphH of graphG has
stretchfactorp if andonly if for every edgeXY € G:
the length of a shortestpathin H from X to Y is at
mostp - | XY].

For threenon-collinearpoints X, Y, Z in the plane
we denote by OXYZ the circumscribedcircle of
triangle AXY Z.

A Delaunaytriangulation of a setof points P in the
planeis atriangulationof P in whichthe circumscribed



circle of every triangle containsno point of P in its

interior. It is well known thatif the pointsin P arein

geneal position(i.e.,nofour pointsin P arecocircular)
then the Delaunaytriangulationof P is unique [10].

In this paper—as in most papersin the literature—
we shall assumethat the pointsin P are in general
position; otherwise the input can be slightly perturbed
so that this conditionis satisfied.The Delaunaygraph
of P is definedas the plane graph whose point-set
is P and whoseedgesare the edgesof the Delaunay
triangulationof P. It is well known that the Delaunay
graphof a setof points P is a spanningsubgraphof

the Euclideangraph definedon P (i.e., the complete
graphon point-setP) whosestretchfactoris bounded
by Cyer = 4v/371/9 ~ 2.42 [15].

Given integer parameterk > 6, the Yao sub-
graph [35] of a directedgraph G (embeddedin the
plane)is constructedas follows. At every point M in
G, placek equally-separatethysout of M (arbitrarily
defined), thus creating & closed conesof size 2z /k
each.Then,the shortestedgein G out of M (if arny)
in eachconeis addedto the Yao subgraphof G. We
will refer to the placementof & conesarounda point
M andthe selectionthe shortestedgein eachconeby:
a Yao step Note that the out-degreeof a point in the
Yao subgraphof G is boundedby £, but its in-degree
may be unbounded.

Two edgesM X, MY incident on a point M in
a graph G are said to be consecutiveif one of the
angularsectorsdeterminedby M X and MY contains
no neighborsof M € G.

For simplicity, we will indistinguishablyrefer to an
angularsectorformedby two edgesiM X and MY and
its measureby /X MY'. It should be clear from the
context whetherit is the angularsectoror its measure
thatis beingreferredto.

I1l. BOUNDED DEGREE SPANNERS OF DELAUNAY
GRAPHS

Let P be asetof pointin the planeandlet E bethe
Euclideangraphdefinedon point-setP. Let G be the
Delaunaygraphof P, and note that G is a subgraph
of E. This sectionis devotedto proving the following
theorem:

Theoem3.1: For every integer k > 14, thereexists
a subgraph’ of GG suchthat G’ hasmaximumdegree
k andstretchfactor 1 4 27 (k cos F) 1.

A linear time algorithm that computesG’ from G
is the key componentof our proof. This very simple
algorithmessentiallyperformsa modifiedYao step(see
Sectionll) andselectsup to k£ edgesout of every point
of G. G’ is the spanningsubgraphof G consistingof
edgeschosenby both endpoints.

In orderto describethe modified Yao step,we must
first develop a betterunderstandingf the structureof
the Delaunaygraph G. Let CA and CB be edges

incident on point C' in G suchthat /ZBCA < 2r/k
and C A is the shortestedgewithin the angularsector
ZBCA. We will shov how the above theoremeasily
follows if, for every suchpair of edgesC A and C'B:

1. we shaw thatthereexists a path’? from A to B
in G of length|P|, suchthat:
|CA| + |P| < (1 + 2n(kcos £)~1)|CB], and
2. we modify the standardYao stepto include the
edgesof this pathin G, in additionto including
the edgespicked by the standardyao step.

This will ensurethat: for ary edgeCB € G thatis
notincludedin G’ by the modified Yao step,thereis a
pathfrom C to B in G, whoseedgesareall includedin
G’ by themodified Yao step,andwhosecostis at most
(14 2m(kcos £)~1)|CB|. We will define below this
path and study its structuralproperties.Then we will
modify the standardYao step accordinglyto include
edgessatisfyingtheseproperties.

Lemma3.2: Let k > 14 be aninteger, andlet CA
and C'B be edgesin G suchthat ZBCA < 2w /k and
C A is the shortestedgein the angularsector/BC A.
Thereexistsapath? : A = My, My, ...,M,, = BinG
suchthat:

() |CAl + Yy MM < (1

2m(kcos £)~1)|CB].

(ii) Thereis no edgein G betweenary pair M; and
M; lying in the closedregion delimited by C'A,
C B andthe edgesof P, for ary ¢ andj satisfying
0<i<j—1<n,

(i) ZM; 1 M;M;pq > (B2)r fori=1,--- ,r—1.

(iv) ZCAM, > 5 - T.

We breakdown the proof of the abose lemmainto
two separateases(1l) when A ABC' containsno point
of G in its interior, and (2) when there are points of
G inside AABC. Definethe circle (O) = OABC of
centerO, andlet © = ZBCA. Note that ZAOB =
20 < 4r/k. Denoteby AB thearcof (O) determined
by points A and B andfacing ZAOB. The following
property aboutDelaunaygraphscan be easily verified
by the reader:

Proposition3.3: If C A andC B areedgesf G, then
ary pointof G interiorto (O) mustbeinsidetheregion

of (O) delimited by edgesBC, C A, andarc AB.

A. The Outwad Path

We considerfirst the casewhen no points of G are
inside AABC'. SincebothC A andC B areedgesn G,
by Proposition3.3, ary point of G interior to (O) must
be inside the region of (O) delimited by edgesBC,
CA, and AB. By our assumptiorin this subsectionno
pointof G liesinside AABC. It followsthatthe region
of (O) subtendedy chord AB that containsC hasno
pointsof G in its interior. Keil andGutwin [15] shaved
thatin this casethere exists a path betweenA and B
in G insidethe region of (O) subtendedy chord AB

+



thatdoesnotcontainC', whoselengthis boundedoy the

lengthof AB (seeLemmal in [15]). We sketchtheir
definitionin orderto illustratethe propertieof this path
neededfor our results.We refer the readerto [15] for
the proofsof thesepropertiesFor corveniencewe give
a recursve definition of this path.

1. Basecase:If AB € G the pathconsistsof edge
AB.

2. Recursive step: Otherwise,by the characteriza-
tion of Delaunayedges[10], at leastone point
in G is interior to (O), and hencemust reside
in the region of (O) subtendedby chord AB
that doesnot containC'. Let T be sucha point
with the property that the region of QAT B
subtendedy chord AB thatcontainsI” is empty
We call 7" an intermediate point with respect
to the pair of points (A, B). Let (O;) be the
circle passinghrough A andT" whosecenterO;
lies on sggment AO and let (O2) be the circle
passingthrough B and 1" whosecenterO, lies
on sgment BO. Then both (O;) and (O2) lie
inside (O), and ZAO,T and ZT O, B are both
lessthan ZAOB < 4x/k. Moreover, the region
of (O;) subtendedy chord AT thatcontainsO;
is empty and the region of (O3) subtendedby
chord BT andcontainingO- is empty Therefore,
we canrecursvely constructa pathfrom A to T’
and a path from T' to B, and then concatenate
themto obtaina pathfrom A to B.

Definition 3.4: We call the path constructedabove
the outwad path betweenA and B.

Keil andGutwin[15], from this pointon, useapurely
geometricargument (with no use of Delaunaygraph
properties)to showv that the length of the obtainedpath
A = My, My, .-, M, = B (eachpoint M,, for p =
1,---,r—1, is anintermediatepoint with respecto a
pair (M;, M;), where0 < i < p < j < r) is smaller
thanthe lengthof AB. Figure 1 illustratesan outward
path betweenA and B.

A= My
M
<2r/k
Mo

A\ B=M;

cf

Fig. 1. lllustration of an outward path.

Proposition3.5: In every recursve stepof the out-
ward path constructiondescribedabove, if M, is an
intermediate point with respectto a pair of points
(M;, M;), then:

(a) thereis a circle passingthrough C' and M, that
containsno point of G, and

(b) circles OCM;M, and OCM;M, contain no
points of G except, possibly in the region sub-
tendedby chordsM; M, and M,M;, respectiely,
and not containingC.

Proof: We assumepy induction, that there are
circles (Ony;) and (Oypy;) passingthroughC' and M;,
andC and M, respectrely, containingno pointsof G,
andthatthe circle (O) = OCM;M; containsno point
of G in theinterior of theregion R’ subtendedby chord
M;M; andcontainingC'. (This is certainly true in the
basecasebecauseC'A,CB € G, by proposition3.3,
and by our initial assumptions).

Since M;M; is not an edgein G, the point M,
chosenn the constructions the pointwith the property
that the region R of OQM;M,M; subtendedy chord
M;M; that doesnot contain C, containsno point of
G. Then the circle passingthrough C' and M, and
tangentto OM;M,M; at M, is completely inside
(Onm;)U(On, )URUR', andthereforedevoid of points
of G. This provespart (a).

Finally, theregion of OCM,; M, subtendedy chord
M, M, andcontainingC'is inside (O, ) URUR’, and
therefore containsno point of G in its interior. The
sameis true for the region of OCM; M,, subtendedy
chord M; M, and containingC, and part (b) holds as
well. ]

We are now readyto prove Lemma3.2 in the case
whenno point of G liesinside AABC. In this casewe
definethe pathin Lemma 3.2 to be the outward path
betweenA and B.

Proof: [Proof of Lemma 3.2 for the caseof out-
ward path.]

(i) Let© = ZBCA andnotethat]| AB | =20-|0A4],
andsin© = 2|ATE,34||- Also |CA|+ | AB | is largest
when |CA| = |CB|, and henceCA and CB
are symmetricalwith respectto the diameterof

(OCAB passingthroughC. This latter statement
followsfrom thefactthatthe perimeterof a corvex

body is not smallerthanthe perimeterof a corvex
body containingit (see page42 in [2]). In this
casewe have sin % = 2||ACE]’3|. Using elementary
trigonometry it follows from the above factsand
from the fact|C'A| < |C'B] that:

ICA|+| AB| < |CB|+20-|04]
o
= |CB\+(m)'\AB\
0
= [CB|+(—5) |CB|
CSg
<

1 +27r(kcos%)_1)|C’B\.

The last inequality follows from © < 27/k and



k> 2.
This part follows directly from part (a) of Propo-
sition 3.5 which implies that C'M,, is an edgein
G for p=0,---,r, andthe factthat G is planar
andtriangulated.
If the outward path containsa single intermedi-
ate point M;, then since M; lies inside (O) =
OCAB, LAM1B > n—ZAOB/2 > 7 —2n/k =
(k —2)7/k (notethat LZAOB = 2. LZACB), as
desired.Now the statemenftfollows by induction
on the numberof stepstakento constructthe out-
ward pathbetweend and B, usingthefact(proved
in [15]) that eachangle ZM; 10;M,;,; at the
centerof the circle (O;) definingthe intermediate
point M;, is boundedby ZAOB.
This follows from the fact that ZCAM, >
ZCAB > /2 —w/k. Thelatterinequalityis true
because/CA| < |CB| and ZBCA < 2x/k in
ACAB.

[ |

B. Thelnward Path

We consider now the case when the interior of
N ABC containspointsof G. Let S bethe setof points
consistingof points A and B plusall the pointsinterior
to AABC (notethatC' ¢ S). Let CH(S) bethepoints
onthecorvex hull of S. ThenC H(S) consistf points
Ng = A and N, = B, and points Ny,..., N,_; of G
interior to AABC. We have the following proposition:

Proposition3.6: Foreveryi=1,--- ,s—1:

@) |ON;| < [CNigal,

(b) CN; € G, and

(C) lNi_1N¢N¢+1 >, WherelNi_1N¢N¢+1 is the
anglefacingpoint C'.

Proof:

This follows from the factthat C' A is the shortest
edgein its cone,andhence|CA| < |CN,|, for i =

0,---,s, andthe fact that the points Ny, - - - , N

areon CH(S) in the listed order

Thisfollows from thefacts:C' A andC B areedges
in G, Ng,---,Ns; areon CH(S), and G is a
triangulation.

This follows from the factthat Vg, - - - , N, areon

CH(S).

(a)

(0)

(©)

]

Since|C'N;| < |C'N;41| andno pointof G liesinside
AN;,CN;y1 (N; and N4, areon CH(S)), CN; is the
shortestedgein the angularsector/N;CN, ;. Since
4ZN;CN,;11 < ZBCA < 2n/k, by Lemma3.2 there
exists an outward path P; betweenN; and N,,;, for
everyi = 0,1,--- ,s — 1, satisfyingall the properties
of Lemma3.2. Let A = My, M,,---, M, = B bethe
concatenatiorof the pathsP;, for i =0,--- ,r — 1.

Definition3.7: We call the path A =
My, M, --- , M, = B constructedabove the inward
path betweenA and B.

Figure 2 illustratesan inward path betweenA and
B.

A= Ny
<2n/k
\ s
N>
'\
C B = N3
Fig. 2. lllustration of an inward path.

We now prove Lemma3.2in the casewhenthereare
pointsof G interior to AABC. In this casewe define
the pathin Lemma3.2 to be the inward path between
A and B.

Proof: [Proof of Lemma3.2 for the caseof inward
path.]

(i) Someof the argumentsusedin the proof of this

part are similar in flavor to thoseusedto prove
Theorem? in [31]. However, the analysishereis
tighter and leadsto betterbounds.
Define A” to be a point on the half-line [C'A such
that |CA”| = |CB]|, andlet (0") = OCA"B.
Denoteby «” the length of the arc of OCA”B
subtendedby chord A”B and facing ZA”CB.
For every i = 0,1,---,s — 1, we define arc
«; to be the arc of OCN;N,;41 subtendedby
chord N; N4, andfacing ZN;CN,;1. For every
i =0,1,..,s — 1, we define N/ to be the point
onthehalf-line [CN; suchthat|CN/| = |CN;41|,
(O;) to bethecircle OCN]N,;+1, anda to bethe
arcof (O;) subtendedby chord N/ N; ., andfacing
ZN/CN,1. Finally, for every i = 0,---,s — 1,
we define N/’ to be the point of intersectionof
the half-line [CN; andcircle (O"), and ' to be
the arc of (O”) subtendedy chord N;'N/", ; and
facing ZN;/'CN{,,. By the resultsin [15], the
length of the outward path P; betweenN; and
N,;41 is boundedby the length of «;. Sincethe
corvex body C; delimitedby CN;, CN;41 anda;
is containedinside the corvex body C; delimited
by CN/, CN,+1 and o, by [2], the perimeterof
(1 is not larger thanthat of Cy. Denotingby | P;|
the length of path P;, we get:

|P| < INiNJ| + ¢, i=1,---,s—1 (1)

Since (0;) and (O") are concentriccircles (of
center C), and the radius of (O;) is not larger
than that of (O”), we have o) < of, for i =
0,---,s— 1. It follows from Inequality (1) that:

|P,L|S|N1NZ/‘+O[,/L/, izl,---,s—l.



Using Inequalities(1) and (2) we get:

s—1 s—1 s—1
CAl+ Y|P < [CAl+ DT INNY + Yol (3)
1=0 i=0 i=0

Noting that>>°~) | N;N/| = |CB| - |C'A| andthat
Z::_g of = o, it follows from Inequality(3) that:

s—1 r—1

ICAI+ Y|P = |CA[+ ) |MiMis]
=0 =0
CB|+ "

<
< +2w(kcos%)*1)|03\.

The last inequality is true by the sameargument
usedin the proof of part (i) in Lemma3.2 for the
caseof outward path.
SinceCN, € G forp = 1,---,s5 — 1 by part
(b) of Proposition3.6, by planarity of G, if such
an edge betweentwo points M; and M; exists,
then M, and M; mustbelongto an outward path
betweentwo points NV, and N, of CH(S). But
this contradictgart (ii) of Lemma3.2for thecase
of the outward path appliedto N, and Np41.
Foreachi =0,--- ,r, eitherM; = N; € CH(S),
or M; is anintermediatepoint on the outward path
betweentwo points N, and N, in CH(S). In the
latter caseZM; 1 M;M;1 > ZN;_1M;Njy1 >
7> (k—2)n/k for k > 14 (N;—1 and N; are
points before and after M; = N; on CH(S)),
by part (c) of Proposition3.6. In the former case
LM; 1 M;M;11 > (k — 2)m/k by the proof of
part (ii7) of Lemma 3.2 appliedto the outward
path between, and N,,.
(iv) This follows from |CA| = |CMy| < |CM;| and
LACM, < LZACB < 27 /k,in triangle AC AM;.
[ |

(i)

C. The Modified Yao Step

In this sectionwe prove Theorem3.1 by presentinga
very simplelineartime algorithmthat,givena Delaunay
graphG, constructsa subgraphG’ of G whosedegree
is boundedby &, and whosestretchfactor is bounded
by 1 + 27 (k cos %)*1, for ary integer parameterk >
14. The idea behind the algorithm is very simple:
the algorithm ensuresthat edgesin G forming the
paths describedin Lemma 3.2 are included in G'.
Observingthat the consecutie edgeson such paths
form moderatelylarge anglesby parts(iii) and (iv) of
Lemma 3.2, the algorithm performs a modified Yao
step to ensurethat consecutie edgesforming large
anglesareincludedin G’. The algorithmis described
in Figure 3.

Sincethe algorithm selectsat most & edgesincident
on ary point M, and since the algorithm placesin

Algorithm Modified Yao step

INPUT: A Delaunaygraph G; integer k > 14
OuTPUT: A bounded-dgree subgaph G’ of G

1. definek disjoint conesof size 27 /k aroundevery point
M in G;
2. in every non-emptycone,selectthe shortestedgeincident
on M in this cone;
3. for every maximalsequencef £ > 1 consecutie empty
cones:
3.1.if ¢ > 1 then selectthefirst |£/2] unselected
incidentedgeson M clockwisefrom the sequence
of empty conesandthefirst [¢/2] unselected
edgesincidenton M counterclockwisdrom the
sequencef empty cones;
3.2.else(i.e.,£ = 1) let M X and MY betheincident
edgeson M clockwiseand counterclockwise,
respectiely, from the empty cone;if either M X
or MY is selectedthen selectthe otheredge
(in caseit hasnot beenselected)ptherwise select
the shorteredgebetweenM X and MY breaking
ties arbitrarily;

4. G’ is the spanningsubgraphof G whoseedgesarethose
of GG selectedby both endpoints.

Fig. 3. The modified Yao Step.

G’ only thoseedgesselectedby both endpoints,it is
clear that each point has degree at most k& in G'. It
is also clear that since k£ is a constant,and the total
numberof edgesin the Delaunaygraph@ is linearin
termsof the numberof points[10], the algorithm can
be implementedto run in linear time. Therefore,what
remainsto be donein orderto prove Theorem3.1,is to
shaw thatfor every edgeC'B € G suchthatCB ¢ &,
thereis a pathfrom C to B in G’ whoselengthis at
mostp = 1+ 27w (kcos £)~*|CB|. Let CB € G and
supposethat CB ¢ G’. Then the algorithm did not
selectC' B eitherout of B or out of C. Without loss of
generality assumeahatthe algorithmdid not selectC' B
outof C. Thenby step2 of thealgorithm,thealgorithm
musthave selectecanedgeC A out of C, suchthatC A
and CB arein the samecone,and suchthat CA is
the shortestedgein this cone.Consequentlywe have
/ZBCA < 27/k. By Lemmag3.2, thereexistsa pathP :
A = My, My,--- , M, = B betweend and B of length
|P| suchthat |CA| + |P| < 14 27 (kcos ) |CB|.
It sufficesto shav thenthatall edgeson this pathare
in G'. Equivalently, we will shav that all theseedges
are selectedby the algorithm Modified Yao Step out
of both their endpoints.

Lemma3.8: The edges CA, M;M,.; for i =
1,---,r—1,areall in G'.

Proof: For brevity, instead of saying that the
algorithmModified Yao StepselectsanedgeM X out
of a point M, we will saythat M selectsedgeM X.

By part (iv) of Lemma3.2, the angle ZCAM; >
w/2 — w/k > 6m/k for k > 14. Therefore,at least
two empty conesmustfall within the sectorZC AM;
determinedy thetwo consecutieedgesC A and AM;,
and edgesAC and AM; will both be selectedby A.



SinceedgeC A is alsoselecteddy point C, edgeAC €
G'.

By part (ii) of Lemma 3.2, for every i
1,2,--- ) r — 1, the angle ZA[1_1A[1A[1+1 > (k —
2)w/k > 107 /k for k > 12, and henceat leastfour
conesfall within the angularsector ZM; 1 M;M; 1.
Sinceby part (i) of Lemma3.2 M;C is the only pos-
sible edgeinsidethe angularsector/M; 1 M; M 41, it
is easyto seethat regardlessof the position of these
four coneswith respectto edge M;C, M; endsup
selectingall edgesM;M; 1, M;M;y; and M,;C in
steps2 and/or 3 of the algorithm. Since we shaved
above that A selectsedge AM;, this shows that all
edges M;M;,, for i = 0,---,r — 2, are selected
by both their endpoints,and hence must be in G'.
Moreover, edge M, 1M, = M, 1B is selectedby
point M, 1.

We now arguethatedgeBM,._; will be selectecbut
of B by the algorithm. ~

First, obsene thatif |BM,_;| < | AB | < |CB].

Let C'D be the other consecutie edgeto CB in G
(other than CM, ;). BecauseC doesnot select B,
it follows that ZM,_1CD < 6x/k. Otherwise,since
CM,_, andC B arein thesamecone,two emptycones
would fall within the sector/ BC D andC would select
B. SinceCB is an edgein G, by the characterization
of Delaunayedges[10], ZCM, 1B + ZCDB < .
By consideringthe quadrilateralC DBM,. 1, we have
/4M, 1CD+ £ZDBM, 1 > «. This, togetherwith the
factthatZM,_1CD < 67 /k, imply that/DBM,_; >
(k—6)m/k > 8w /k,for k > 14. Therefore /DBM,_
containsat least three conesof size 2x/k out of B.
If one of theseconesfalls within the angularsector
ZCBM,_; then, since |M,_1B| < |CB|, BM,_1
must have beenselectedout of B.

Supposenow that ZCBM,_; contains no cone
inside and hence ZCBM,_1 < 4n/k. If one of
thesethree coneswithin sector /DBM,_; contains
edge C'B, then the remaining two cones must fall
within Z/DBC and BM,._; will getselectedout of B
when consideringthe sequenceof at leasttwo empty
conescontainedwithin ZC BD. Supposenow that all
three empty conesfall within ZCBD. Thenwe have
/CBD > 67 /k.

If ZM,_1CD > 4x/k, then since M,_;C and
CB belong to the same cone, the sector ZBCD
must containan empty cone.BecauseD is exterior to
OCBM,_1, ZCBM,_1 < 47 /k, and ZM,_1CB <
2x/k, it follows that /CDB < /M, 1CB +
ZCBM,_1 < 6n/k < £ZDBC. Therefore,by consid-
ering thetriangle ACDB, we notethat |CB| < |CD|.
But then edgeC B would have beenselectedby C' in
step3 sincethe sector/BC' D containsan emptycone,
a contradiction.

It follows that ZM,_1CD < 4x/k, and therefore
/M, 1BD > (k — 4)w/k > 107/k for k > 14.

This meansthat at least four cones are contained
inside sector/DBM, 1. It is easyto checknow that
regardlesf the placemenbf theedgeBC with respect
to thesecones,edge BM,._; is always selectedout of
B by the algorithm. This completesthe proof. ]

Since a Delaunaygraph of a Euclideangraphof n
pointscanbe computedn time O(n lgn) [10] andhas
stretchfactor Cye;, we have the following theorem.

Corollary 3.9: Thereexists an algorithmthat, given
a Euclidean graph on n points, computesa planar
geometricspanneiof the Euclideangraphof maximum
degreek andstretchfactor (1 + 2m(k cos £) ™) - Caer,
where k > 14 is an integer Moreover, the algorithm
runsin time O(nlgn).

Corollary 3.9 significantlyimprovesall the previous
resultsin the literature,in particularthosein [3], [4],

(5]
IV. GEOMETRIC SPANNERS OF UNIT DIsKk GRAPHS

A unit disk graph U on a setof n points P in the
planeis a graphwhose point-setis P, and such that
thereis an edgebetweentwo points X andY in U if
andonly if | XY| < 1. An edgeof U is embedded
in the plane as the straight-line segment joining its
two endpoints.Unit disk graphsare very important
becauseghey modelwirelessnetworks. We assumehat
U is connectedand that each point in U knows its
coordinateghrougha Global Position System(GPS).

In this sectionwe shav how to constructa planar
geometricspanneiof a unit disk graphhaving bounded
degree and a smaller stretch factor The results in
the previous sectiondo not carry to unit disk graphs
becausaot all the Delaunaygraphedgesof the point-
setP areunit disk edgesHowever, if welet Del(U) be
the Delaunaygraphof P, andU Del(U) the subgraph
of Del(U) obtainedfrom Del(U) by deleting those
edgesf lengthgreaterthanoneunit, thenit wasshovn
in [19] thatU Del(U) is aconnectedpanning-subgraph
of U thatis planarandthat hasstretchfactorbounded
by Cer-

Therefore,if we apply the resultsin the previous
sectionto G = UDel(U), by observingthat all the
edgeson the path definedin Lemma3.2 must be unit
disk edges(given that edgesC A and C'B are), it is
easyto seethat Theorem3.1 and Corollary 3.9 carry
over to unit disk graphs.The only problem, however,
is that the constructionof UDel(U) cannotbe done
locally, which is a crucial constrainton ary algorithm
for wirelessnetworks whosedevices could be ad-hoc,
and have limited computationaresources.

To solve this problem, Wang et al. [19], [20] in-
troduceda subgraphof U which is a supegraph of
UDel(U), andthat hasmary desirableproperties.We
review thesedefinitions next, then we develop some
structuralresultsto shov how this supegraphdefined
in [19], [20] cansene astheunderlyingsubgraphG of



U sothatthe resultsdevelopedin the previous section
carry over to unit disk graphs.

Given a unit disk graphU, the Gabriel graph of U,
denotedGG(U), is the subgraphof U having the same
point-setas U andsuchthatanedgeXY < U is also
an edgein GG(U) if andonly if the disk of diameter
XY containsno pointsof U otherthan X andY [12].

A triangle AXY Z is saidto be a 1-localizedDelau-
naytriangle[19], [20] if OXY Z containsno neighbors
of X, Y, or Z in its interior. In generalfor ary integer
i > 1, atriangle AXYZ is saidto be an i-localized
Delaunaytriangle [19], [20] if OXY Z containsno
pointsof U in its interior that are within ¢ hopsfrom
ary of thepoints X, Y, or Z. Thei-localizedDelaunay
graph of U, denotedL Del®) (U), wherei > 1, is the
subgraphof U inducedby: the setof all Gabrieledges
of U plustheedge=f all i-localizedtrianglesof U [19],
[20].

It wasshavn in [19], [20] thatfor ary integeri > 2,
LDel®™(U) is a planarsupegraphof UDel(U), and
hencehas stretchfactor boundedby Cy.;. Moreover,
the resultsin [6], [31] shav how givenU, LDel? (U)
can be computedby a strictly-localized distributed
algorithm exchangingno more than O(n) message#
total (n is thenumberof pointsin U), andhaving alocal
processingtime of O(Alg A) = O(nlgn) at a point
of degree A. Therefore,we will use LDel®®(U) as
the underlyingsubgraphof U to replacethe Delaunay
graphG usedin the previous section,andwe notethat:
LDel®(U) is planar is asupegraphof U Del(U), and
hencehasstretchfactor Cy,;.

The following lemmaappearsn [30], [31] andgives
a characterizatiorof LDel?) (U).

Lemma4.1 ( [30], [31]): An edge XY € U is in
LDel®(U) if and only if thereis a circle passing
through points X and Y whose interior containsno
point of U within two hopsfrom X or Y.

Let X andY betwo pointsin the planeandlet (O)
be ary circle passinghroughX andY. Thechord XY
subtendswo regionsof (O). If Z is apointin theplane
differentfrom X andY’, thenoneof the two regionsof
(O) subtendedy the chord XY is on the sameside of
XY asZ, whereaghe otheris on the oppositeside of
XY asZ. For corveniencewe will referto the former
asthe region of (O) subtendedby XY and closerto
Z, andto the latter asthe region of (O) subtendedy
XY andfarther from Z. The following two lemmas
canbe proved using elementarygeometry

Lemma4.2: Let X andY betwo pointsin the plane
andlet (O) beacircle passinghroughX andY. Let Z
be ary point exterior to (O) andlet (0’) be OXY Z.
Then the region of (O’) subtendeddy chord XY and
fartherfrom Z is inside the region of (O) subtended
by XY andfartherfrom Z.

Lemma4.3: Let AXYZ be a triangle in U and
supposedhat the region of Q)XY Z subtendedy XY

and fartherfrom Z containsno points of U that are
within two hopsfrom either X or Y. Thenthe interior
of theregion of O XY Z subtendedy XY andfarther
from Z containsno points of U that are within two
hopsfrom Z.

We are now readyto shov that Lemma 3.2 holds
for LDel® (U). For corvenience,we will let G =
LDel®(U) in the remainderof this section.

Let CA andC B beedgesin G suchthat /BCA <
2w /k, where k > 14 is an integer, and CA is the
shortestedgein the angularsector Z/BC A. We again
separatethe proof into two parts basedon whether
ABCA containspointsof U or not.

A. The Outwad Path

We assumethat no points of U are inside ABCA.
To shaw that the outward path definedin the previous
sectioncarriesto GG, we have the following structural
results.

Lemma4.4: Let XY and XZ be edgesin G and
supposethat ZY € U. Then the region of OXY Z
subtendedy XY andfartherfrom Z andtheregion of
OXY Z subtendedy X Z andfartherfrom Y contain
no pointsof U thatarewithin two hopsfrom X, Y, or
Z.

Proof: We will shav the statemenfor the region
of OXYZ subtendedy XY andfartherfrom Z. The
statemengboutthe otherregion follows by symmetry

The edgesin G = LDel®(U) are of two types:
Gabriel edges and edges in 2-localized Delaunay
triangles. We distinguish the following two cases
accordingto the type of edge XY'.

Case 1: XY is a Gabriel edge. In this casethe
circle (O) of diameterXY containsno points of U.
In particular Z is exterior to (O). By Lemma 4.2,
the region of OXY Z subtendedby XY and farther
from Z is interior to (O). This shaws that the region
of OXYZ subtendedby XY and farther from Z
containsno pointsof U.

Case2: XY is an edgein a 2-localized Delaunay
triangle. By Lemma4.1, thereis a circle (O) passing
throughX andY whoseinterior is emptyof ary point
of U within two hopsof X or Y, andby Lemma4.3 of
Z aswell. SinceZ mustbe exterior to (O), theregion
of OXYZ subtendedby XY and fartherfrom Z is
interior to (O), andhencecontainsno pointsof U that
arewithin two hopsfrom X, Y, or Z. This completes
the proof. ]
Corollary 4.5: Let XY and X Z beedgesn G such
that ZY € U. If ZY ¢ G thenthe region of OXY Z
engulfedby the angularsector/Y X Z containsa point
of U.
Proof: SinceZY ¢ G, by Lemma4.1 OXYZ
mustcontaina point M thatis within 2-hopsof eitherZ



orY. Sinceboth XY and X Z arein G, by Lemma4.4,
the region of OXY Z subtendedby XY and farther
from Z andthe region of OXY Z subtendedy X Z
and farther from Y contain no points of U that are
within two hopsfrom Y or Z. It follows thatthe region
of O XY Z engulfedby theangularsector/Y X Z must
containa point of U thatis within 2-hopsof Y or Z.
This completesthe proof. [ ]

Lemma4.6: Let CA and CB be edgesin G such
that AB € U, andlet (O) = (OABC. Supposethat
CA and CB areon one side of the diameterpassing
throughC' in (O). Supposéurther that no point of G
is interior to ACAB. Let R be the region of of (O)
subtendedy AB andcontainingC'. Thenfor ary point
M in theregion of (O) subtendedy AB thatdoesnot
containC, R is devoid of ary point within two hops
from M.

Proof: SincebothC A andCB arein G, AB € U,
andno pointof G is interiorto AC AB, it follows from
Lemma 4.4 that the region R is devoid of ary point
within two hopsof A, B, or C. SinceC A andCB are
on oneside of the diameterpassingthroughC' in (O),
ary point M in the region subtendedy AB thatdoes
not containC' mustbe a neighborof C, A, andB in U.
Now using Lemma4.3 and elementarygeometry it is
easyto verify that R doesnot containarny point within
two hopsfrom M. ]

Lemma4.7: Let CA and CB be edgesin G such
that AB € U, andlet (O) = (QOABC. Supposethat
CA and CB are on on oppositesidesof the diameter
passinghroughC in (O). Supposdurtherthatno point
of G is interior to ACAB, andlet R be the region of
of (O) subtendedby AB and containingC'. Then no
point of G is interior to R.

Proof: Since both CA and CB arein G and
no point of G is interior to ACAB, it follows from
Lemma 4.4 that the region R is devoid of ary point
within two hopsof A, B, or C. SinceC A andCB are
on oppositesidesof the diameterpassingthroughC' in
(0), ary pointin R mustbe adjacento C, in U (since
either CA or CB is alongestchordin R). It follows
that no point of G is interior to R. ]

Lemma4.8: Let CA, CB be edgesin G suchthat
/ZBCA < 27/k, wherek > 14 is aninteger Thenthe
outward pathdescribedy the recursve constructionin
the previous sectionis well defined.

Proof: It suficesto show thatin eachrecursve
step, if thereis no edge betweenpoints M;M; then
the intermediatepoint M, for pair (M;, M;) is well
defined.Let (O) = OBCA, andlet R betheregion of
(O) subtendedby AB andcontainingC. We distinguish
two cases(NotethatsinceCA andCB arein G C U,
andZBCA <2z /k <x/7, it follows that AB € U.)

If CA and CB are on one side of the diameterof
(O) throughC, thenby Lemma4.6, the interior of R
is empty of ary point of G within two hopsfrom ary

point M in theregion of (O) subtendedy AB andnot
containingC. It follows from Corollary4.5that,for ary

pair of points (M;, M;) in the recursie construction
(initially (M;,M;) = (A,B)), either M;M; € G

or the region of the circle definedin the recursve
constructionfor pair (M;, M;) (initially this circle is

(O) for pair (A4, B)) containsanintermediatepoint M,

in its region subtendedy M, M; andnot containingits

center Therefore eachintermediatepoint describedby

the recursve constructionsectionis well defined.

If CA andC B areon oppositesidesof the diameter
of (O) throughC, thenby Lemma4.7,theinterior of R
is emptyof ary pointsin G. By a similar argumentto
the onemadein the above paragrapheachintermediate
point describecby the recursve constructionsectionis
well defined.

[ |

By Lemma 4.8, for ary edgeCA and CB in G
suchthat ZBCA < 27 /k (k > 14), the outward path
betweenA and B as definedin the previous section
is alsoin G, and its length satisfiesthe samebound
as before. This establishespart (i) in Lemma 3.2.
Moreover, since the proofs of parts (ii¢) and (iv) in
the lemmarely solely on geometricarguments,parts
(73¢) and (iv) hold aswell. To shav part (ii), we first
needthe following lemmas.

Lemma4.9: Let CA and C'B be edgesin G such
that AB € U, andlet (O) = OQABC. Supposethat
CA and CB are on one side of the diameterpassing
throughC' in (O). Supposéurther that no point of G
is interior to ACAB. In every recursie step of the
outward path constructiondescribedabove, if M, is
an intermediatepoint with respectto the pair of points
(M;, M), thenthereis a circle passingthroughC' and
M, that containsno point of G within two hopsfrom
C or M,

Proof: Noting thatthe pointsin the region of (O)

delimitedby C A, CB, and AB form acliquein U, the
proof is exactly the sameas that of Lemma3.5 using
Lemmad.4. ]
Lemma4.10: Let CA and C'B be edgesin G such
that /BCA < 27 /k, wherek > 14 is an integer, and
let (O) = OABC. Supposehat CA and C'B areon
oppositesides of the diameterpassingthrough C' in
(O). Supposdurther that no point of G is interior to
ACAB. If M, is an intermediatepoint with respect
to the pair of points (M;, M;), thenthereis a circle
passingthroughC' and M, that containsno point of G
within two hopsfrom C' or M,,.
Proof: Note thatin this casetherecan be points
M, suchthat CM, is not an edgein U. The proof
is similar to that of Lemma 3.5, and usesthe fact
that ZBCA < 2w /k. The proof is a bit technicalbut
rely purely on elementarygeometricand trigonometric
arguments. [ |



Now we arereadyto prove part (ii) of Lemma3.2.
Supposethat there is an edge M;M; with 0 < i <
j—1 < r. Thentheremustbe anintermediatepoint },
with respecto a pair (Mg, M) (with0 < ¢ <i<p<
j <t <r)thatwasfoundin therecursve construction
earlier This meansthat edge M;M; will intersect(or
share endpoints)with segments M, M, and M, M,,.
From the statementof Lemma4.9 and Lemma4.10
appliedto the pair (M, M;) andtheintermediatepoint
M, and noting that C' and M,, are both within two
hops from M; and M; (note that CA € U and all
the pointsin the region of ()CBA subtendedy BA
that doesnot contain C' are neighborsof A because
ZBCA < 27/k < /7 whenk > 14), we conclude
that ary circle passingthrough A4; and M; will either
contain C' or M,, contradictingthe assumptionthat
M;M; is an edgeof G.

B. Thelnward Path

We assumethat there are points of U interior to
ACBA.

Now thatthe outward path definition from the previ-
ous sectioncarriesover, the inward path is definedin
the sameway asin the previous section.Again, parts
(1), (ii1), and (iv) of Lemma3.2 follow immediately
To shaw part(ii), wefirst presenthefollowing lemma.

Lemmad.11: Let (A = Ny,---, N, = B) be the
pointson C H(S) asdefinedin Subsectiorll-B. Then
CN; is anedgein G = LDel®(U) fori =0,--- ,s.

Proof: We know that CNy = CA andCN, =
CB areedgesin G.

By property(a) in Proposition3.6, we have |CA| =
|(CNg| < |CNq| <--- <|CN,| = |CB|. SinceCNy =
CA € @G, it sufiicesto shav that CN; € G andthe
argumentcanberepeatedvith CN; fori =2,--- ,s—1
(usingCN;_; € G).

To shav that CN; € G LDel®(U), by
Lemma 4.1, it sufiices to shav that there exists a
circle (O) passingthrough C and N; whoseinterior
containsno point of U within two hopsof C or Nj.
Let (O) be the circle passingthroughC and N; and
tangentto the straightline NoN;. If (O) intersects
CNy, let C’ be the point of intersectionother than
C, and obsere that since (O) is tangentto NoN1, C’
mustbe interior to the sggmentC Ny. If (O) intersects
CB, let C" be the point of intersectionother than
C, and obsenre that C”” must be interior to seggment
CB. The latter statemenfollows from the factthatthe
points (A = Ny,---,N; = B) lie on CH(S) and
|CA| = |CNy| < |CNp| < --- < |CNg| = |CB|. The
circle (O) can be partitionedinto at most four parts
dependingon whetherthis circle intersectsC Ny, and
CB or not: (1) the part subtendedy CC’ andfarther
from N, (2) the part engulfedby the angularsector
ZC"C Ny, (3) the part engulfedby the angularsector

/N;,CB, and(4) thepartsubtendedby C'C" andfarther
from N;.

Since(Ny, - - - , N,) lie on CH(S), andfrom thefact
that |CA| = |CNg| < |CN1| <--- < |CN| = |CB|,
the regions definedin (2) and (3) above lie inside the
region enclosedby AC AB andthepath(Ny, - - - , Ns),
andhencecontainno pointof U. In particulat thesetwo
regions containno point within 2-hopsof C' or V;.

To show thattheregion in (1) containsno point with
2-hopsof C or N;, we shav two claims. First, we
shaw that this region is containedinside the region of
(OC N1 Ny subtendedby C Ny andfartherfrom Ny, and
secondhatthe latter region containsno point within 2-
hopsof C or N;. We proceedo shav thesetwo claims
next.

To show the first claim, note that since Ny is ex-
terior to (O), by Lemmad4.2 the region of OCN; Ny
subtendedoy CNV; and fartherfrom NNy is contained
within theregion of (O) subtendedy C'N; andfarther
from Ny. Equivalently, the region of (O) subtendedy
CN; andcloserto Ny is containedwithin the region
of OCN1 Ny subtendedby CN; andcloserto Ng. It
follows from this that the region of (O) subtendedy
CC' andfartherfrom N;, which is the region in part
(1) above, is containedwithin the region of OC N1 Ny
subtendedy C' Ny andfartherfrom V;.

To show the secondclaim, notethatsinceC Ny € G,
by Lemma4.1thereexistsacircle (O’) passinghrough
C and N, that containsno point of U within 2-hopsof
C or Ny. In particular NV, is exterior to thecircle (O'),
and by Lemma4.2 the region of ()C N1 Ny subtended
by CNy and farther from N; is containedwith the
region of (O’) subtendedy C Ny andfartherfrom Ny.
Therefore the region of OCN; Ny subtendedy C Ny
andfartherof N; containsno point within 2-hopsof C'
or Ny, andby Lemma4.3, no neighborwithin two hops
from N; (notethat C' Ny, C N1 and Ny N; areall edges
in U). Thereforetheregion of OC N; Ny subtendedby
C Ny and fartherof N; containsno point within two
hopsfrom C or NV;.

It follows that the region definedin part (1) above
containsno point within two hopsof C or Nj.

Similarto theabove,andusingthefactthatC'B € G,
we can showv that the region in (3) containsno point
within two hopsfrom C or V;.

It follows thatthe circle (O) containsno point within
two hopsof eitherC or N;, andCN; € G. [ |

Now part (i7) of Lemma 3.2 follows from
Lemma4.11, part (i7) of Lemma3.2 for the outward
path,andthe planarity of G.

C. TheAlgorithm

The algorithmis basicallythe sameasthe Modified
Yao Stepalgorithmin Sectionlll-C, only presentedn
a distributedstrictly-localizedfashion.Eachpoint M <
U performsthe algorithmgivenin Figure 4.



Algorithm Spanner Constructor

G = LDel®(U); integer k > 14
G’ a boundeddegree planar geometricspanner
of U
1. M placesk identical coneseachof size 27 /k around
itself;
2. for every non-emptycone M selectsthe shortestedgein
the cone;
3. for every maximalsequencef ¢ > 1 consecutie empty
conesM doesthe following:
3.1.if £ > 1 then M selectghefirst | £/2] unselected
incidentedgesclockwisefrom the sequencef
empty conesandthe first [£/2] unselected
incidentedgescounterclockwisdrom the
sequencef empty cones;
3.2.else(i.e.,£ = 1) let M X and MY betheincident
edgesclockwiseand counterclockwise,
respectiely, from the empty cone;if either M X
or MY is selectedhen M selectshe otheredge
(in caseit hasnot beenselected)ptherwise M
selectsthe shorteredgebetweenM X and MY
breakingties arbitrarily;
4. M sendsa messageo every neighborX notifying it of
whetherM selectedhe edgeM X or not.
Upon receving a messagdrom a neighborN, M performsthe
following steps:
1. decidethe statusof theedgeM N asfollows: M N € G’
if andonly if M N hasbeenselectedby both A/ and N.
2. if for every neighbor X the statusof the edgeM X has
beendeterminedthen M finishesprocessing.

INPUT:
OUTPUT:

Fig. 4. The algorithm SpannerConstructar

The spannerG’ of U consistsof thoseedgesin G
selectedby both their endpoints.

The resultsin [6], [31] shov how G = UDel® (U)
can be constructedby a distributed strictly-localized
algorithmthat exchangesio morethanO(n) messages
in total (eachof length O(lgn) bits), wheren is the
number of points in U, and a local processingtime
of O(AlgA) O(nlgn) at a point of degree A.
Notingthatin thealgorithmSpannerConstructor each
point needsonly to notify its neighborsaboutits setof
selectededgesthecommunicatiorcostof thealgorithm
Spanner Constructor is O(n) messagesMoreover,
since the number of conesaround ary point M is
boundeda constantk, it is easyto seethat all steps
in Spanner Constructor can be performedby M of
degree A in O(AlgA) = O(nlgn) local processing
time by first sorting its set of incident edgesin G in
counterclockwisgor clockwise)order It follows that
the local processingtime of ary point of degree A
during the whole constructionof the spannerincluding
the constructionof G, is O(AlgA) = O(nlgn).

The statemenbf Lemma3.8in the previous section
holdstrue aswell (the proofis exactly the same)for the
algorithm Spanner_Constructor. Summarizingall the
resultsin this section,we concludewith the following
theorem.

Theoem4.12: There exists a distributed strictly-
localizedalgorithmthat, givena unit graphon n points,

computesa planargeometricspannerof the unit disk
graph of maximum degree k& and stretchfactor (1 +
2m(k cos %)*1)-0@1, for ary integerk > 14. Moreover,
the algorithm exchangesno morethan O(n) messages
in total, and have a local processingime of Alg A at
a point of degree A.
Theoremd4.12significantlyimprovesall the previous

resultsin the literature[5], [30], [31].

V. GEOMETRIC SPANNERS OF QUASI-UNIT Disk
GRAPHS

Even thoughunit disk graphsare commonlyusedto
model wireless networks, in reality, they might devi-
ate from mary real wirelessnetworks due to reasons
including multi-path fading [13], [27], antennadesign
issuesjnaccuratenodepositionestimationgetc. A more
generalnetwork model, the quasi unit disk graph, has
beenrecentlyproposedo capturethe nonuniformchar
acteristicsof wirelessnetworks. Formally, this modelis
definedasfollows.

Let P be setof pointsin the planeandlet 0 <d <
1 be a constant.A quasi unit disk graph on P with
parameterd, denotedQuasi-P, is definedas follows:
for ary two point X andY in P, XY is anedgein
Quasi-P if | XY| < d, and XY is not an edgein
Quasi-P if | XY| > 1. If d < |XY| < 1 then XY
may or may not be an edgein Quasi-P.

The quasi unit disk graph model was first studied
in [1] and further developedin [17]. However, the
work in [1], [17] focusedmore on routing algorithms
for the casewhend > /2/2. Separabilityand other
topology-controlissuesof quasiunit disk graphswere
also studiedin [8].

In this sectionswe shov how the resultsdeveloped
in the previous sectionsextend to the quasiunit disk
graphmodel. Let Quasi-P be a quasiunit disk graph
with paramete < d < 1 on a setof n points P, and
assumethat Quasi-P is connectedWe usethe same
approachusedin [8] to constructpower spannersof
quasiunit disk graphs.Note that a power spannernf a
graphis not necessarilya geometricspannerandhence
the algorithm in [8] for constructingpower spanners
of unit disk graphscannotbe used for constructing
geometricspanners.

Call an edge XY in Quasi-P a short edgeif and
only if | XY < d; otherwisecall XY along edge.Let
Esnore the setof short edges,and note that the graph
inducedby FEgpor: is @ unit disk graph with unit d.
Denotethis graphby Uy andnotethat Uy, may
not be connected.

Apply the algorithm Spanner.Constructor to each
componentof Ugy,¢ 10 constructa planar geometric
spanneiof this componenbf degreeboundedby & and
stretchfactor (1 + 2w (k cos £)7!) - Cger, Wherek >
14 is an integer parameterAdd all the edgesin the
spannerof the componentdo G'.



Now imposeagrid of cell-size-% x - ontheplane.
Notethatary two pointsin the samecell areconnected
in Quasi-P andthatany long edgemustconnectpoints
in two different cells. For each pair of cells, add to
G’ the shortestedgebetweenthosetwo cells (i.e., the
shortestedge having one endpointin one of the two
cells andthe otherendpointin the othercell). Obsene
thatdeterminingheshortesedgebetweerntwo cellscan
be donein a strictly-localizedfashionsincethe points
in a cell form a clique. This completeghe construction
of G'.

We have the following theoremwhoseproof is very
similar to the proof of Theorem5 in [8] for the caseof
power spanners.

Theoem5.1: Let Quasi-P be a connectedquasi
unit disk graphon n pointswith parametef) < d < 1.
For ary integer k& > 14, thereis a strictly-localized
distributed algorithm that constructsa geometricspan-
ner of Quasi-P with the following properties:(1) its
maximum degreeis O(1/d), (2) its stretch factor is
1+ 2(1 + 2n(kcos £)~1) - Cyer, and (3) the average
numberof edgescrossingary given edgein Quasi-P
is O(1/d) .
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