
Simplicity is Beauty: Improved Upper Bounds for
Vertex Cover

Jianer Chen∗, Iyad A. Kanj†, and Ge Xia∗
∗Department of Computer Science, Texas A&M University, College Station, TX 77843

email: {chen, gexia}@cs.tamu.edu
†The corresponding author. School of CTI, DePaul University, 243 S. Wabash Avenue, Chicago, IL 60604

email: ikanj@cs.depaul.edu

Abstract— This paper presents an O(1.2738k + kn)-time
polynomial-space algorithm for VERTEX COVER improving both
the previous O(1.286k +kn)-time polynomial-space algorithm by
Chen, Kanj, and Jia, and the very recent O(1.2745k

k
4 + kn)-

time exponential-space algorithm, by Chandran and Grandoni.
Most of the previous algorithms rely on exhaustive case-by-
case analysis, and an underlying conservative worst-case-scenario
assumption. The contribution of the paper lies in the extreme sim-
plicity, uniformity, and obliviousness of the algorithm presented.
Several new techniques, as well as generalizations of previous
techniques, are introduced including: general folding, struction,
tuples, and local amortized analysis. The algorithm also induces
improvement on the upper bound for the INDEPENDENT SET
problem on graphs of degree bounded by 6.

I. INTRODUCTION

Deriving upper bounds for NP-hard problems is important
from both the practical and theoretical perspectives. Practi-
cally, an algorithm of running time O(1.01n) (n is the input
size) could render an NP-hard problem computational feasible
for most practical instances (say for n ≤ 1000) as opposed to
an O(2n) algorithm for the problem. Theoretically, deriving
upper bounds for an NP-hard problem helps studying the
inherent structural complexity of the problem which can lead
to a deeper understanding of the problem itself, and in general,
of the structure of NP-hard problems. As a result, the study
of exact algorithms for NP-hard problems has been attracting
a lot of attention recently [1], [17], [24]. In particular, for
many well-known NP-hard problems with important applica-
tions such as SATISFIABILITY, INDEPENDENT SET, VERTEX
COVER, and GRAPH COLORING, exact algorithms have been
extensively studied and developed.

The current paper focuses on the parameterized VERTEX
COVER problem, abbreviated VC henceforth: given a graph
G and a parameter k, decide if G has a vertex cover of
at most k vertices. This problem was amongst the first few
problems that were shown to be NP-hard [15]. In addition,
the problem has been a central problem in the study of
parameterized algorithms [12], and has applications in areas
such as computational biochemistry and biology [6]. Since the
development of the first parameterized algorithm for the prob-
lem by Sam Buss which runs in O(kn + 2kk2k+2) time [3],
there has been an impressive list of improved algorithms for
the problem [2], [7], [9], [11], [19], [21], [23]. The most recent
algorithm for the problem running in polynomial space, was

presented in 1999 and gives the currently best time upper
bound of O(kn + 1.286k) [7]. Algorithms using exponential
space for the problem have also been proposed [5], [7], [21],
amongst which the best runs in time O(1.2745kk4 + kn)
[5]. Most of the previous algorithms rely on exhaustive case-
by-case analysis, and work under a conservative worst-case-
scenario assumption. The analysis of these algorithms would
consider the worst-case branch over numerous combinatorial
cases, and derive an upper bound accordingly. In particular,
the design phase of these algorithms (usually) did not provide
the appropriate ground that the analysis phase could take
advantage of to derive better upper bounds than the ones
claimed. Consequently, to improve the upper bounds, larger
and larger sets of local structures had to be examined and pro-
cessed differently. Examining these numerous structures and
processing them differently on a case-by-case basis became
very meticulous, rendering the verification and implementation
of these algorithms very complicated and unpractical.

On the other hand, progress has been recently made on
deriving computational lower bounds for the problem. It has
been shown that unless all SNP problems are solvable in sub-
exponential time, there is a constant c0 > 1 such that VERTEX
COVER cannot be solved in time ck

0n
O(1) [4], [16]. Therefore,

from both the algorithmic and the complexity points of view,
it becomes important to study how far we can push to lower
the constant c > 1, such that the VC problem can be solved
in time cknO(1).

In this paper we adopt a different approach to improve the
time upper bound for the VC problem. Our goal was to design
an algorithm that is simple and uniform, and that provides the
tools and the ground for an insightful analysis of its running
time. We came up with an algorithm that is extremely simple.
The algorithm keeps a list of prioritized “advantageous” struc-
tures at its disposal. At each stage it will pick the structure of
highest priority (most advantageous structure). Picking such
a structure can be easily done following few simple rules.
When this structure is picked, the algorithm processes this
structure very uniformly, and obliviously, in a way that is
almost independent of what the structure is. As a matter of fact,
there are only two different ways for processing any structure–
that is, only two different branches–that the algorithm needs
to distinguish. All the other operations performed by the
algorithm are non-branching operations that process certain

simple structures in the graph such as degree-1 and degree-
2 vertices, and that set the stage for the subsequent branch
performed by the algorithm to be efficient. The interleaving
and ordering of these operations in the algorithm is very
crucial, and is fully exploited by the analysis phase. The
analysis phase however is lengthy, showing that regardless of
the structure picked, the oblivious branching performed by the
algorithm will yield the desired upper bound.

To be able to carry out all the above, a set of new tech-
niques and generalizations of some well-known and classical
techniques have been introduced. A graph operation that is a
generalizations of the folding operation [7], and a graph op-
eration that is a specialization of the struction operation [13],
have been developed. These operations help the algorithm
remove several simple structures from the graph without the
need to perform any branching. This makes analyzing the
two branching operations performed in the resulting graph
more insightful. The notion of a tuple, which was implicitly
used by Robson [22], has been fully developed and exploited
to prune the search space. Finally we perform a “local”
amortized analysis to balance expensive branching operations
by combining them with more efficient operations. Being
able to perform this local amortized analysis is indebted to
the careful interleaving and ordering of the operations in the
algorithm, and not to the different way of processing each
structure.

The presented algorithm runs in polynomial space, and has
its running time bounded by O(1.2738k+kn). This is a signif-
icant improvement over the previous polynomial-space algo-
rithm for the problem which runs in O(1.286k+kn) time. This
also improves the exponential space O(1.2745kk4+ kn)-time
algorithm by Chandran and Grandoni [5]. As a by-product of
this algorithm, we obtain a polynomial-space O(1.224n)-time
algorithm for the INDEPENDENT SET problem on graphs of
degree bounded by 6, improving the previous best polynomial-
space algorithm of running time O(1.227n) by Robson [22]
on such graphs.

II. PRELIMINARIES

For a graph G we denote by |G| the number of vertices in
G. For a vertex v in G we denote by N(v) the set of neighbors
of v, N [v] the set N(v) ∪ {v}, and d(v) the degree of v in
G. For a set of vertices S in G, let N(S) denote the set of
neighbors of the vertices in S, and N [S] the set N(S) ∪ S.
Let τ(G) denote the size of a minimum vertex cover of G.
The following proposition from [7] is based on a theorem by
Nemhauser and Trotter [18].

Proposition 2.1 ([7]): There is an algorithm of running
time O(kn + k3) that, given an instance (G, k) of the VC
problem where |G| = n, constructs another instance (G1, k1)
of VC with k1 ≤ k and |G1| ≤ 2k1, such that τ(G) ≤ k if
and only if τ(G1) ≤ k1.

We say that the instance (G1, k1) is the kernel of the
instance (G, k). Proposition 2.1 allows us to assume, without
loss of generality, that in an instance (G, k) of the VC problem
the graph G contains at most 2k vertices.

For two vertices u and v we say that {u, v} is an anti-edge
in G if (u, v) is not an edge in G. Let v0 be a vertex in G
with a set of neighbors {v1, · · · , vp}. Construct a graph G′ as
follows: (1) remove the vertices {v0, v1, · · · , vp} from G and
introduce a new node vij for every anti-edge {vi, vj} in G
where 0 < i < j ≤ p; (2) add an edge (vir, vjs) if i = j and
(vr, vs) is an edge in G; (3) if i 6= j add an edge (vir, vjs); and
(4) for every u /∈ {v0, · · · , vp}, add the edge (vij , u) if (vi, u)
or (vj , u) is an edge in G. This completes the construction of
G′. We say that the graph G′ is obtained from G by applying
the struction operation to the vertex v0 in G [13] (see Figure 1
for an illustration). We have the following lemma.

v0

v1

�

t

�

w

v2

�

x

v3

�

y

�

z

v0

v1

�

r

v2

�

s

�

t

v3

�

w

v4

	

x

y

�

z
�

�

�

v13 v23 v14 v23 v24

�

t

�

w

�

x

�

y

�

z

�

r

�

s

�

t

�

w

�

x

�

y

�

z

Fig. 1. The struction operation.

Lemma 2.2: Let v0 be a vertex in G with a set of neighbors
{v1, · · · , vp}. Suppose that there are at most p− 1 anti-edges
among the vertices {v1, · · · , vp}, and let G′ be the graph
obtained from G by applying the struction operation to the
vertex v0. Then τ(G′) ≤ τ(G)− 1.

Proof: Let α(G) and α(G′) denote the size of a maxi-
mum independent set in G and G′, respectively. It was shown
in [13] that α(G′) = α(G) − 1. Let n and n′ denote the
number of vertices in G and G′, respectively. Since there are
at most p − 1 anti-edges among the vertices {v1, · · · , vp},
the number of newly introduced vertices in G′ is at most
p − 1. Since p + 1 vertices were removed from G, namely
{v0, v1, · · · , vp}, we have n′ ≤ n − 2. It is well-known [15]
that for any graph H we have α(H)+τ(H) = |H|. Therefore
τ(G′) = n′ − α(G′) ≤ (n − 2) − (α(G) − 1) = τ(G) − 1.
This completes the proof.

Lemma 2.2 gives a generic setting in which the application
of the struction operation reduces the size of the minimum
vertex cover of the graph. This operation turns out to be very
useful in the algorithm presented in this paper. Two possible
scenarios in which the operation will be applied are illustrated
in Figure 1. We will assume that we have a subroutine called
Struction() that applies the struction operation to a vertex v
in G. Note that the time spent by this operation on a vertex v
is proportional to |N(v)|.

Remark 2.3: When the struction operation is applied to a
degree-3 vertex u in G with neighbors v, w, and z, and with
an edge between v and w, the only vertices removed from G
are u, v, w, and z, and the only vertices of G in the resulting
graph whose degree could have increased are the neighbors of
z.

Next we present an operation that generalizes the folding
operation introduced in [7].

Lemma 2.4: Let I be an independent set in G and let N(I)
be the set of neighbors of I . Suppose that |N(I)| = |I| + 1,
and that for every ∅ 6= S ⊂ I we have |N(S)| ≥ |S|+ 1.

1) If the graph induced by N(I) is not an independent
set, then there exists a minimum vertex cover in G that
includes N(I) and excludes I .

2) If the graph induced by N(I) is an independent set, let
G′ be the graph obtained from G by removing I∪N(I)
and adding a vertex uI , then connecting uI to every
vertex v ∈ G′ such that v was a neighbor of a vertex
u ∈ N(I) in G.

Proof: We first prove the following claim: There exists
a minimum vertex cover C for G such that C contains I and
excludes N(I), or such that C contains N(I) and excludes
I . To see why this is true, suppose that C ∩ I = X 6= ∅
and C ∩ N(I) = Y 6= ∅. Since C is a vertex cover for G,
we have N(I − X) ⊆ Y . If (I − X) 6= ∅, |Y | ≥ |N(I −
X)| ≥ |I − X| + 1 = |I| − |X| + 1, from the statement
of the lemma. If I − X = ∅, since Y 6= ∅, we also have
|Y | ≥ |I| − |X|+1. Therefore |Y |+ |X| ≥ |I|+1 = |N(I)|.
Since I is an independent set, if we replace Y ∪X by N(I)
in C we get a vertex cover C ′ for G of size not larger than
that of C. It follows that C ′ is a minimum vertex cover for G
that includes N(I) and excludes I , and the claim follows.

Let C be a minimum vertex cover that satisfies the condi-
tions in the claim. If the graph induced by N(I) is not an
independent set, then any vertex cover of G, and in particular
C, cannot exclude N(I). It follows from the above claim that
C a minimum vertex cover for G that includes N(I) and
excludes I . This proves part (1) in the statement of the lemma.

Suppose now that N(I) is an independent set. If C contains
I , then C excludes N(I) and must include N(N(I)) in G′.
Then C ′ = C − I is a vertex cover for G′ of size |C| − |I| =
τ(G) − |I|, and τ(G′) ≤ τ(G) − |I|. If C contains N(I),
then (C − N(I)) ∪ {uI} is a vertex cover for G′ of size
τ(G)− (|I|+ 1) + 1 = τ(G)− |I|, and τ(G′) ≤ τ(G)− |I|.
This shows that τ(G′) ≤ τ(G)− |I|.

On the other hand, let C ′ be a minimum vertex cover for G′.
Then either C ′ contains uI or contains N(uI) and excludes
uI . If C ′ contains uI , then (C ′ − {uI}) ∪ N(I) is a vertex
cover for G os size |C ′|+ |I|, and τ(G′) ≥ τ(G)− |I|. If C ′

contains N(uI) and excludes uI , then C ′∪I is a vertex cover
for G of size |C ′|+ |I|, and τ(G′) ≥ τ(G)− |I|. This shows
that τ(G′) ≥ τ(G)− |I|.

It follows from the above that τ(G′) = τ(G) − |I|. This
proves part (2) in the statement of the lemma, and the proof
is complete.

The following proposition can be proved using the results
in [10], [14].

Proposition 2.5: Let (G, k) be an instance of VC. If a
structure to which Lemma 2.4 applies exists in G, then such
a structure can be found in O(k2

√
k) time, otherwise, the

number of vertices in G is at most 2k.
We will refer to the operation in Lemma 2.4 by the general

folding operation. The reason behind this nomenclature is that
this operation generalizes the folding operation that appeared
in [7], [8], and which deals with the case when |I| = 1. Two
scenarios in which this operation is applicable are given in
Figure 2. The left figure is the special case in which the general
folding reduces to the folding operation. We will assume that
we have a subroutine called General-Fold() that searches for
a structure in the graph to which the general folding operation
applies, and applies the operation to it in case it exists. Using
Proposition 2.5, this subroutine can be implemented to run in
O(k2

√
k) time.

u u v w

v

�

v1

�

v2

w

�

w1

�

w2

r

r1

!

r2

"

r3

s

#

s1

t

$

t1

%

t2

z

&

z1

'

z2

(

)

*

+

x x

,

v1

-

v2

.

w1

/

w2

0

r1

1

r2

2

r3

3

s1

4

t1

5

t2

6

z1

7

z2

Fig. 2. General folding.

III. THE ALGORITHM

The main algorithm is a branch-and-search process. Each
stage of the algorithm starts with an instance (G, k) of VC,
and tries to reduce the parameter k by identifying a set S
of vertices that are entirely contained in a minimum vertex
cover of G, and including the vertex set S in the objective
minimum vertex cover, which will be called the partial cover
(or simply the cover) for G, then recursively works on the
reduced instances. The subroutine General-Fold(G) applies
the general folding operation to G. Similarly, the subroutines
Struction(G) and Kernelize(G) apply the struction operation
and the kernelization procedure to G.

If a vertex set S is identified such that either there is a
minimum vertex cover containing the entire S or there is a
minimum vertex cover containing no vertex in S, then we can
branch on the set S. This means that the algorithm constructs
two instances of the VC problem, one by including the set S in
the partial cover and the other by excluding the set S from the
partial cover, and in the latter case, every vertex that is adjacent
to a vertex in S should be included in the partial cover. The
algorithm then recursively works on the two reduced instances.
If the set S consists of a single vertex v, then we simply say
we branch on v.

Definitions and observations

Observation 3.1: Let v be a vertex in G. Then there exists
a minimum vertex cover for G containing N(v) or at most
|N(v)| − 2 vertices from N(v).

Proof: If a minimum vertex cover C for G contains
|N(v)| − 1 vertices from N(v), then it has to contain v. We
form another minimum vertex cover for G by replacing v in
C by the single vertex in N(v) − C. We obtain a minimum
vertex cover for G containing N(v).

Observation 3.2: Let u and v be two adjacent vertices in G.
Then there exists a minimum vertex cover for G that includes
v or that excludes v and excludes at least another neighbor of
u.

Proof: Proceed by contradiction. Suppose that every
minimum vertex cover C excludes v and does not exclude
any other neighbor of u. Since C excludes v, C must contain
u. Since C contains all the neighbors of u except v, (C −
{u}) ∪ {v} is a minimum vertex cover for G containing v, a
contradiction.

A vertex v is said to dominate a vertex u if (u, v) is an
edge in G and N(u) ⊆ N [v]. A vertex u is said to be almost-
dominated by a vertex v if u and v are non-adjacent and
|N(u)−N(v)| ≤ 1.

Observation 3.3: Let u and v be two vertices in G such
that v dominates u. Then there exists a minimum vertex cover
of G containing v.

Proof: Let C be a minimum vertex cover. If C does not
contain v then C must contain N(v) which includes u (since
(u, v) is an edge). Since (N(u)−{v}) ⊆ N(v), if we remove
u from C and replace it with v, we get a minimum vertex
cover for G containing v. This completes the proof.

A good pair of vertices is a pair of vertices {u, z} chosen as
follows. For a vertex u in G with neighbors {u1, · · · , ud}, de-
fine its tag, denoted tag(u), to be the vector η = 〈η1, · · · , ηd〉,
where η1 is the degree of the largest-degree neighbor of u, η2

is the degree of the second-largest degree neighbor of u, ...,
and ηd is the degree of the smallest-degree neighbor of u.
First choose a vertex u of minimum degree in G such that the
following conditions are satisfied in their respective order.
(i) The vector tag(u) is maximum in lexicographic order

over tag(w) for every w in G with the same degree as
u.

(ii) If G is regular, then the number of pairs of vertices
{x, y} ⊆ N(u) such that y is almost-dominated by x
is maximized.

(iii) The number of edges in the subgraph induced by N(u)
is maximized.

Now choose a neighbor z of u such that the following
conditions are satisfied.
(a) If there exist two neighbors of u, say v and w, such that

v is almost-dominated by w, then z is almost-dominated
by a neighbor of u.

(b) The degree of z is maximum among all neighbors of u
satisfying part (a) above. (Note that if no vertex in N(u)
is almost-dominated by another vertex in N(u), then (a)

is vacuously satisfied by every vertex in N(u), and z will
be a neighbor of u of maximum degree).

(c) The degree of z in the subgraph induced by N(u) is
minimum among all vertices satisfying (a) and (b) above.
(That is, z is adjacent to the least number of neighbors
of u.)

(d) The number of shared neighbors between z and a neigh-
bor of u is maximized over all neighbors of u satisfying
(a), (b), and (c) above.

Tuples

Tuples will play a very crucial role in the algorithm by
helping to reduce the search space. We define the notion
of tuples next and describe how they will be updated and
processed by the algorithm.

Definition and intuition
A tuple is a pair (S, q) where S is a set of vertices and q is
an integer. The tuple will represent the information that in the
instance of the problem (G, k) we can look for a minimum
vertex cover for G excluding at least q vertices from S. This
information will help the algorithm prune the search tree. The
algorithm will only consider tuples (S, q) with q ≤ 2, so we
will only focus on such tuples here. A tuple (S, q), where
S = {u, v}, is called a 2-tuple if it satisfies the following
conditions: (1) q = 1, (2) d(u) ≥ d(v) ≥ 1, and (3) u and v
are non-adjacent. A 2-tuple ({u, v}, 1) is a strong-2-tuple if it
satisfies the additional condition: d(u) ≥ 4 and d(v) ≥ 4, or
2 ≤ d(u) ≤ 3 and 2 ≤ d(v) ≤ 3.

To see how tuples can be used to prune the search space,
suppose that the algorithm branches on a vertex z with
neighbors N(z). By Observation 3.1, either there exists a
minimum vertex cover in G that either contains N(z), or
excludes at least two vertices from N(z). Therefore, when
the algorithm branches on z, on the side of the branch where
z is included, we can restrict our search to a minimum vertex
cover that excludes at least two neighbors of N(z), and we
know that this is safe because if such a minimum vertex
cover does not exist, then on the other side of the branch
where N(z) has been included the algorithm will still be
able to find a minimum vertex cover. Consequently, on the
side of the branch where z is included, we can work under
the assumption that at least two vertices in N(z) must be
excluded. This working assumption will be stipulated by
creating the tuple (N(z), q = 2). This information will be
used by the algorithm to render the branching more efficient.
Similarly, if the algorithm branches on a vertex z with a
neighbor u, by Observation 3.2, either there exists a minimum
vertex cover in G that includes z, or there exists a minimum
vertex cover in G that excludes z and excludes at least
another neighbor of u. Therefore, on the side of the branch
where z is excluded, we can restrict our search to a minimum
vertex cover that excludes at least two vertices in N(u) (z
and another vertex in N(u)). This working assumption can
be stipulated by creating the tuple (N(u), q = 2).

Updating tuples
Let (S, q) be a tuple. If q = 0 then the tuple S will be removed
because the information represented by (S, q) is satisfied by
any minimum vertex cover. If one of the vertices in S is
removed by excluding it from the cover, then the tuple is
modified by removing the vertex from S and decrementing
q by 1. The correctness of this step can be seen as follows.
Suppose a vertex u ∈ S has been excluded from the cover. If
there exists a minimum vertex cover C that excludes at least
q vertices from S, then C excludes at least q−1 vertices from
S − {u}. Now if a vertex u ∈ S is removed from the graph
by including it in the cover, the vertex is removed from S
and q is kept unchanged. The justification of this step follows
from the argument that if there exists a minimum vertex cover
C that includes u and excludes at least q vertices from S,
then C must exclude q vertices from S − {u} (note that the
validity of the inclusion of u in the cover is taken care of by
the correctness of the steps performed by the algorithm when
it includes u in the cover). If a vertex in u ∈ S is removed
from the graph as a result of applying the struction operation
or the general folding operation, then u is removed from S
and q is decremented by 1. The reason is that if there exists
a minimum vertex cover that excludes at least q vertices from
S, then this vertex cover will exclude at least q − 1 vertices
from S − {u}.

The tuples need to be updated as described above after
each operation of the algorithm. We will assume that this step
is performed implicitly by the algorithm after each operation.

Branching on 2-tuples
When the algorithm creates tuples it will use them to generate
2-tuples using very simple rules described in the algorithm
(steps a.2 and a.3 of the subroutine Reducing in Figure 3).
The algorithm only processes 2-tuples of the form (S, 1). A 2-
tuple of the form ({u, z}, 1) stipulates that at least one vertex
in {u, z} must be excluded from the cover. This means that
if u is included in the cover then z should be excluded, and
hence N(z) must be included; similarly, if z is included in the
cover then u should be excluded, and N(u) must be included.
Let (S = {u, z}, 1) be a 2-tuple. The algorithm will branch on
a vertex in this two tuple. This vertex is picked as follows. If
there is a vertex w ∈ {u, z} such that w has a neighbor u′ and
|N(u′)−N(S−{w})| ≤ 1, then the algorithm will branch on
the vertex in S − {w} (that is, if there is a vertex in S with
a neighbor that is almost-dominated by the other vertex in S,
then the algorithm will pick the other vertex in S). Otherwise,
it will pick a vertex in S arbitrarily and branch on it. Without
loss of generality, we will always assume that the vertex in the
2-tuple that the algorithm branches on is z. The algorithm can
be made anonymous to this choice by ordering the vertices in
a 2-tuple as described above whenever the 2-tuple is created.

The algorithm VC
A tuple, a good pair, or a vertex of degree at least seven,

will be referred to by the word structure. The algorithm will
maintain a set of structures T , and then it will pick a structure

and processes it. The structures in T will be considered in a
certain (sorted) order according to their priorities. The higher
the priority of a structure is, the higher the expected benefit
out of this structure will be. The priority is assigned to a
structure whenever this structure is created. If an operation in
the algorithm affects a certain structure in T , then the priority
of this structure needs to be modified accordingly, and the
structure may need to be removed from T . If a structure Γ
is a vertex, and if this vertex is removed by the algorithm,
then Γ is also removed from T . If Γ is a good pair, and if
one of the vertices in Γ is removed by the algorithm, then
Γ is removed from T . If Γ is a tuple (S, q) then Γ will be
updated as described before. We will assume that the algorithm
implicitly updates the structures in T and their priorities after
each operation. We give below a list of the structures Γ that
can exist at a certain point in T listed in a non-increasing
order of their priorities. Besides the structures listed below, T
will contain tuples that are not 2-tuples, and those tuples will
not be given any priorities. The algorithm will never process
these tuples, and they are only used as intermediate structures
which can result in the creation of 2-tuples by the algorithm.

1 Γ is a strong 2-tuple.
2 Γ is a 2-tuple.
3 Γ is a good pair (u, z) where d(u) = 3 and the neighbors

of u are degree-5 vertices such that no two of them share
any common neighbors besides u.

4 Γ is a good pair (u, z) where d(u) = 3 and d(z) ≥ 5.
5 Γ is a good pair (u, z) where d(u) = 3 and d(z) ≥ 4.
6 Γ is a good pair (u, z) where d(u) = 4, u has at

least three degree-5 neighbors, and the graph induced
by N(u) contains at least one edge, i.e., there is at least
one edge among the neighbors of u).

7 Γ is a good pair (u, z) where d(u) = 4 and all the
neighbors of u are degree-5 vertices such that no two of
them share a neighbor other than u.

8 Γ is a vertex z with d(z) ≥ 8.
9 Γ is a good pair (u, z) where d(u) = 4 and d(z) ≥ 5.

10 Γ is a good pair (u, z) where d(u) = 5 and d(z) ≥ 6.
11 Γ is a vertex z such that d(z) ≥ 7.
12 Γ is any good pair other than the ones appearing in 1–11

above.
We note that the above list gives the structures that could

exist in T and their priorities. Moreover, the above list is
exhaustive in the sense that for any non-empty graph G,
G must contain one of the structures listed above, and the
algorithm will have a structure to process. This can be seen
as follows. First if the degree of G is bounded by 2 then
Reducing must apply. So suppose that this is not the case.
Suppose also that G is connected1. If G contains a vertex
of degree at least 7, then the algorithm will have at least one
structure to consider by items 8 and 11 on the list. If this is not
the case, then G has degree bounded by 6. If G is regular, then
any good pair (u, z) must satisfy d(u) = d(z), and hence none

1If G is disconnected, the algorithm will be called recursively on each
connected component of G (see Theorem 4.2).

of the items 3-7, 9-10, dealing with good pairs applies, and
item 12 applies. Basically, item 12 deals with regular graphs.
Suppose now that G is not regular. Let u be a vertex with
minimum degree in G. If d(u) = 3 then one of the items 3,
4, 5 must apply (since G is not regular). If d(u) = 4 then
one of the items 6, 7, 9 must apply. If d(u) = 5 then item 10
must apply. Note that since G is not regular and has degree
bounded by 6, G must contain a vertex of degree bounded by
5. This shows that the above list is comprehensive.

The algorithm will return the size of a minimum vertex
cover in case this size is bounded by k, or otherwise it will
reject. The algorithm can be easily modified to return the
desired minimum vertex cover itself in case it has size bounded
by k. We present the algorithm and prove its correctness
next, and we analyze its running time in the next section.
The algorithm is given in Figure 3. Note that the algorithm
performs only two branches regardless of the structure picked,
which are the ones given in step 3 of the algorithm.

Proposition 3.4: The operations in step a of Reducing are
valid tuple operations.

Proof: If |S| < q then the information represented by
the tuple (S, q) has been violated because there does not exist
a minimum vertex cover that excludes q vertices from S,
and hence the algorithm can reject the instance. This shows
that step a.1 is valid. (Again we note here that it is the
“responsibility” of the algorithm to guarantee that whenever it
branches by creating a tuple on one side of the branch, then
either there exists a minimum vertex cover that does not violate
the tuples along this side of the branch, or there is a minimum
vertex cover along the other side of the branch.) If (S, q) is
a tuple and u ∈ S, and if there exists a minimum vertex
cover excluding q vertices from S, then there exists a minimum
vertex cover excluding q−1 vertices from S−{u}. Therefore
step a.2. is correct. Now let us look at step a.3 in Reducing.
Suppose (S, q) is tuple such that there are two vertices u and
v in S that are adjacent. If there exists a minimum vertex
cover C for G that excludes at least q vertices from S, then C
must exclude at least q − 1 vertices from S − {u, v} since C
must contain at least one of the vertices in {u, v}. Therefore
(S − {u, v}, q − 1) is a tuple, and the statement is correct.
Now let us look at step a.4. Again since (S, q) is a tuple, if
there exists a minimum vertex cover C that excludes at least q
vertices from S, then since |N(v)∩S| ≥ |S|−q+1, C excludes
at least one vertex in N(v) and must include v. Therefore there
exists a minimum vertex cover of G that includes v and the
statement is correct.

Theorem 3.5: The algorithm VC is correct.
Proof: We look at the operations performed by the

algorithm. Step a of Reducing is valid by Proposition 3.4.
Step-b in Reducing is correct because if d(v) = 1 then there
exists a minimum vertex cover excluding v and including the
neighbor of v. Therefore G has a vertex cover of size k if
and only if G − N [v] has a vertex cover of size k − 1. By
Lemma 2.2, the struction operation is correct and hence the
operation Conditional Struction is correct as well, since it
only applies the struction operation to certain vertices that

meet some specified conditions. The same is also true for
the operation General-Fold by Lemma 2.4. Therefore step
c in Reducing is correct. Step d of Reducing is correct by
Observation 3.3.

Consider the operations in the algorithm VC. Step 0 is
correct since if |G| > 0 and k = 0, G does not have a vertex
cover of size bounded by k (assuming G does not consist of
isolated vertices). Step 1 is correct by the above discussion of
the subroutine Reducing. Step 2 simply picks a structure Γ
of highest priority in T . By the definition of a good pair, a
good pair always exists in the graph as long as the graph is
not empty. Hence the algorithm in step 2 will pick a structure
Γ. Let us look at step 3 of the algorithm. First observe that
each structure in T is either a 2-tuple, a good pair, or a vertex
of degree at least 7. Therefore, one of the condition in step
3 will apply to Γ and the algorithm branches accordingly. In
all the cases in step 3 the algorithm branches on z, and hence
the branch is valid by the definition of branching on a vertex.
What is left is showing that the tuples added in each branch
are valid tuples. The tuple created in the first branch is valid by
Observation 3.1, and the tuple created by the second branch in
step 3 is valid by Observation 3.2. This completes the proof.

IV. ANALYSIS OF THE ALGORITHM

In this section we analyze the running time of the algorithm.
The algorithm is a branch-and-bound process and its execution
can be depicted by a search tree. The running time of the
algorithm is proportional to the number of root-leaf paths, or
equivalently the number of leaves in the search tree, multiplied
by the time spent along each such path. Therefore, the main
step in the analysis of the algorithm is deriving an upper bound
on the number of leaves in the search tree. Let F (k) be the
number of leaves in the search tree of the algorithm when
called on the instance (G, k).

First, we derive an upper bound on the number of leaves
F (k) of the search tree. This is the main theorem of this paper
whose proof appears in Section V.

Theorem 4.1 (The Main Theorem): For any constant c ≥
1.2738, the search tree of the VC on an instance (G, k) where
G is a connected graph, has at most F (k) leaves where F (k) ≤
ck.

Proof: See Theorem 5.2, Section V.
Theorem 4.2: The algorithm VC solves the VC problem in

O(1.2738k + kn) time.
Proof: Let (G, k) be an instance of VC. By Theorem 3.5

the algorithm VC solves the VC problem correctly. Let T be
the search tree of the algorithm on the instance (G, k), and
let F (k) be the number of leaves in T . If G is connected,
then by Theorem 4.1, the number of leaves in T is bounded
by 1.2738k. If G is not connected, suppose that G has two
connected components G1 and G2. (If G has more than two
connected components, the statement follows by an inductive
argument.) The algorithm can be called recursively on G1 and
G2. If any of the components G1 and G2 has fewer than
c′ vertices for a pre-specified constant c′ (picking c′ = 16

VC(G, T , k)
Input: a graph G, a set T of tuples, and a positive integer k.
Output: the size of a minimum vertex cover of G if the size is bounded by k; report failure otherwise.

0. if |G| > 0 and k = 0 then reject;
1. apply Reducing;
2. pick a structure Γ of highest priority;
3. if (Γ is a 2-tuple ({u, z}, q)) or (Γ is a good pair (u, z) such that z is almost-dominated

by a vertex v ∈ N(u)) or (Γ is a vertex z with d(z) ≥ 7) then
return min{1+VC(G− z, T ∪ (N(z), 2), k − 1), d(z)+ VC(G−N [z], T , k − d(z))};

else if Γ is a good pair (u, z) then
return min{1+VC(G− z, T , k − 1), d(z)+ VC(G−N [z], T ∪ (N(u), 2), k − d(z))};

Reducing
a. for each tuple (S, q) ∈ T with q = 2 do

a.1. if |S| < q then reject;
a.2. for every vertex u ∈ S do T = T ∪ {(S − {u}, q − 1)};
a.3. if S is not an independent set then T = T ∪ (

⋃
(u,v)∈E,u,v∈S{(S − {u, v}, q − 1)});

a.4. if there exists v ∈ G such that |N(v) ∩ S| ≥ |S| − q + 1 then return (1+VC(G− v, T , k − 1)); exit;
b. if there exists v ∈ G such that d(v) = 1 then return (1+ VC(G−N [v], T , k − 1)); exit;
c. if General-Fold(G) or Conditional Struction(G) in the given order is applicable then apply it; exit;
d. if there are u and v in G such that v dominates u then return (1+ VC(G− v, T , k − 1)); exit;

Conditional Struction
if there exists a strong 2-tuple {u, v} in T then

if there exists w ∈ {u, v} such that d(w) = 3 and the Struction is applicable to w then apply it;
else if there exists a vertex u ∈ G where d(u) = 3 or d(u) = 4 and such that the Struction is applicable to u then apply it;

Fig. 3. The algorithm VC

will work), we can compute the size of a minimum vertex
cover in that component in constant time by brute-force and
without any branching, and the search tree corresponding to
this recursive call has one leaf. For example, if |G1| < 16 and
is not empty, the size of a minimum vertex cover in G1 is at
least 1. Therefore if G has a minimum vertex cover of size at
most k, then the size of a minimum vertex cover for G2 should
be at most k−1, and the parameter passed in the recursive call
to G2 is k−1. We get F (k) ≤ 1+F (k−1) ≤ 1+1.2738k−1 ≤
1.2738k (note that we can assume that k ≥ 8 otherwise the
algorithm would compute the size of the minimum vertex
cover of G2 as well by brute-force, and F (k) = 1). On
the other hand if |G1| ≥ c′ = 16 and |G2| ≥ c′ = 16,
then since Reducing does not apply to G, and hence does
not apply to G1 and to G2, by Proposition 2.5, the size of a
minimum vertex cover for G1 is at least |G1|/2 ≥ c′/2 ≥ 8,
and the size of a minimum vertex cover for G2 is at least
|G2|/2 ≥ 8. Therefore in the recursive calls of the algorithm
on G1 and G2 we can pass the parameter k − 8. This gives
F (k) ≤ 2F (k−8) ≤ 1.2738k. This shows that the number of
leaves in T is bounded by 1.2738k.

Now let us analyze the time spent along each root-leaf path
in T . By Proposition 2.1, the number of vertices in G is at most
2k. Since in each branch the algorithm creates at most one
tuple, and since along any root-leaf path of T the algorithm
branches at most k times (since each branch decrements k by
at least 1), the number of tuples created by the branches of
the algorithm is O(k). Now step a.2 and a.3 in Reducing can
decompose the tuples created by the algorithm thus creating
new tuples. Observe that if the algorithm creates a tuple (S, q)
in a branch then q = 2, and that any decomposition of a tuple

decrements q by 1 and when q = 0 the tuple is removed. Based
on these observations, it can be easily shown that each tuple
(S, q) may lead to the creation of at most O(|S|) new tuples,
each of them can no longer be decomposed. Since each created
tuple has the form (S, q) where S = N(w) for some vertex
w, and since |G| ≤ 2k, we have |S| ≤ 2k. This means that
each tuple can create at most O(k) new tuples, and the total
number of tuples along any root-leaf path is O(k2). Therefore
step a of Reducing can be implemented to run in O(k3) time.
By Proposition 2.5, General-Fold runs in O(k2

√
k) time.

All the other operations in Reducing and in the algorithm,
including the implicit maintenance of the structures in T and
their priorities, can be implemented to run in O(k3) time using
suitable data structures. Therefore the amount of time spent
along each node of the search tree is O(k3), and hence along
every root-leaf path of T is O(k4).

Before any branching node in the search tree General-
Fold does not apply (because Reducing does not apply). By
Proposition 2.5, the size of the graph before any branching
operation is bounded by twice the size of the parameter.
By the standard analysis that uses the interleaving technique
introduced by Niedermeier and Rossmanith [20], the running
time of the algorithm is bounded by O(1.2738k + kn), where
the term kn is due to the application of Proposition 2.1 to the
original instance of the problem.

Using Theorem 4.2, and the fact that the size of a minimum
vertex cover in a graph of degree bounded by 6 is at most
5n/6 + 1, we get the following theorem.

Theorem 4.3: The INDEPENDENT SET problem on graphs
of degree at most 6 can be solved in O(1.224n) time, where
n is the number of vertices in the graph.

Theorem 4.3 improves the O(1.227n)-time algorithm for
INDEPENDENT SET on graphs of degree bounded by 6 [22].

V. PROOF OF THE MAIN THEOREM

In this section, we give a complete proof of Theorem 4.1.
First, we have the following proposition which will be useful
in the proof.

Proposition 5.1: Let v be a vertex that satisfies the state-
ment in step a.4 in Reducing. If the algorithm does not reject
the instance (along this path of the search tree) then v must be
included in the cover before any branching operation by the
algorithm. Moreover, each recursive call to Reducing before
v is included in the cover, results in the execution of step a.4
of Reducing that includes a vertex in the cover.

Proof: By looking at the algorithm VC the algorithm
only branches when Reducing is not applicable. Moreover,
since step a.4 in Reducing invokes the algorithm recursively,
which in turn invokes Reducing, steps b–d of Reducing will
not apply as long as step a.4 is applicable to a vertex in G.

Now suppose that there exists a vertex v and a tuple (S, q)
such that |N(v) ∩ S| ≥ |S| − q + 1, and that the algorithm
does not reject. When Reducing is applied, step a.4 is checked.
Since v satisfies this step, if v is considered in this step then
v will be included. Now suppose that another vertex x 6= v
to which this step applies is checked, and x is included in the
cover. If x /∈ S, then (S, q) is unaffected by the inclusion of
x, and v still satisfies this step in the (nested) recursive call
to Reducing (note that this is true even when x ∈ N(v)).
If x ∈ S, then each tuple containing x, and in particular S,
will be updated. The tuple (S, q) will be updated to become
(S′ = S − {x}, q). Since |S| = |S′| + 1, |N(v) ∩ S′| ≥
|N(v) ∩ S| − 1 ≥ |S| − q ≥ |S′| − q + 1, and step a.4 is still
applicable to v in the nested recursive call to Reducing. This
shows that v will be included in the cover ultimately, and that
each preceding call to Reducing before v is included, will
include one vertex in the cover by step a.4.

Theorem 5.2: For any constant c ≥ 1.2738, the search tree
of the VC on an instance (G, k) where G is a connected graph,
has at most F (k) leaves where F (k) is upper bounded by the
following.

1. ck−1 if step a.4 or any of steps b–d of Reducing is
applicable.

2. ck−1.536 if there is a strong 2-tuple structure.
3. ck−1 if there is a 2-tuple structure.
4. ck−1 if G is 3-regular.
5. ck−0.897 if there exist three non-adjacent degree-3 ver-

tices in G such that the three of them do not share a
common neighbor.

6. ck−1 if G has a degree-3 vertex u such that all the vertices
in N(u) are of degree 5, and no two vertices in N(u)
share a common neighbor other than u.

7. ck−0.605 if the algorithm picks a good pair (u, z) such
that z is almost-dominated by a vertex in N(u).

8. ck−0.605 if G has a degree-3 vertex u with at least one
vertex in N(u) of degree at least 5.

9. ck−0.536 if G has a degree-3 vertex.

10. ck−0.450 if G has a degree-4 vertex u such that at least
three vertices in N(u) have degree-5, and such that the
graph induced by N(u) contains an edge.

11. ck−0.450 if G has a degree-4 vertex u such that all the
vertices in N(u) are of degree 5 and no two of them
share a common neighbor other than u.

12. ck−0.302 if G has a vertex of degree at least 8.
13. ck−0.255 if G has a degree-4 vertex.
14. ck−0.116 if G has a degree-5 vertex with at least one

degree-6 neighbor.
15. ck in all other cases.

Proof: The proof is by induction on the size of the
instance (G, k). Assume inductively that all the above state-
ments are simultaneously true for any instance (G′, k′) where
|G′| < |G| and k′ < k.

Before we prove the statements of the theorem we give
some general remarks. First, if during the proof we showed
that the graph contains a structure Γ with an inductively proven
upper bound on the number of leaves when the structure
Γ exists in the graph, then even if the algorithm does not
pick Γ to process, this upper bound is still valid since the
algorithm always picks a structure with the highest priority,
and as it will be shown by the statements of the theorem,
a structure of higher priority corresponds to a smaller upper
bound on the number of leaves in its corresponding search
tree. Therefore whenever a certain structure is present in the
graph, we can safely claim the upper bound on the number
of leaves corresponding to this structure that was inductively
proved. Second, if the algorithm branches by reducing the
parameter by a value p along one side, and along the other
side the algorithm rejects without doing any branching, then
the number of leaves in the search tree satisfies F (k) ≤
F (k − p) + 1. Now we are ready to prove the theorem.

Part 1. Since Reducing consists of non-branching opera-
tions, and since step a.4 and each of steps b–d include at least
one vertex in the cover, we have F (k) ≤ F (k − 1) ≤ ck−1,
by the inductive hypothesis.

Part 2. Suppose that there is a strong 2-tuple (S = {u, z},
q=1). Suppose first that Reducing applies to G. Note that steps
a.2 and a.3 of Reducing will not affect this 2-tuple because
q = 1. If step a.4 of Reducing applies, then a vertex v is
included in the cover thus reducing the parameter k by 1.
Observe that in the resulting instance S = {u, z} remains a
2-tuple (not necessarily a strong 2-tuple) since d(u) ≥ 2 and
d(z) ≥ 2, q = 1, and u and z are non-adjacent. If F (k′),
where k′ = k − 1, is the number of leaves in the search
tree of the resulting instance, then inductively by part (3) of
the theorem, F (k′) ≤ ck′

−1 = ck−2. It follows that F (k) ≤
F (k′) ≤ ck−2 ≤ ck−1.536.

Now if step b in Reducing applies, then a vertex v is
included in the cover reducing the parameter k by 1. Since
both u and z have degree at least 2, v is distinct from u and
z. The only way v could affect the strong 2-tuple is when v
is a neighbor of u or z, say u. If this is the case then u is
included in the cover and now S = {z} and q = 1. When the
algorithm is called recursively in this step the neighbors of z

will be included by step a.4 in Reducing (since any neighbor
of z will satisfy the statement in step a.4). Since d(z) ≥ 2,
and u and z did not share any neighbors (because step a did
not apply), at least two vertices will be included in the cover.
This is a total reduction in the parameter of value at least 3
giving F (k) ≤ ck−3 ≤ ck−1.536. If the removal of v does not
affect the strong 2-tuple, the strong 2-tuple will remain in the
resulting graph. Letting F (k′) be the number of leaves in the
resulting search tree, we have F (k′) ≤ ck′

−1.536 by induction.
Hence F (k) ≤ F (k′) ≤ ck′

−1.536 ≤ ck−2.536.
If step d of Reducing is applicable, the analysis is similar

to the case when step b applies. The only way that the removal
of this vertex can affect the strong 2-tuple is when the vertex
is one of the two vertices in the tuple, or a neighbor of a
vertex in the tuple. The same analysis performed above gives
the bound.

Now suppose that step c of Reducing applies. If General-
Fold is applicable, then the subroutine will always reduce
the parameter k. If it reduces the parameter k by at least 2,
then we have F (k) ≤ F (k − 2) ≤ ck−2 ≤ ck−1.536. If the
subroutine reduces the parameter by 1, then the subroutine
simply folds a degree-2 vertex w. If w is one of {u, z}, say
u, then since u and z are non-adjacent, z will remain in the
resulting graph. Since d(u) = 2, by the definition of a strong
2-tuple, d(z) = 2 or d(z) = 3. By induction, the former case
leads to a further reduction in the parameter by value at least
1 by part (1) of the theorem, and the latter case to a reduction
of the parameter of value 0.536 by part (9) of the theorem.
Therefore the total reduction of the parameter is at least 1.536
and F (k) ≤ ck−1.536 as required. Now if w /∈ {u, z}, then w
cannot be adjacent to both u and z by step a.4 of Reducing.
Folding w in this case will leave at least one vertex in {u, z},
and will similarly lead to a total reduction of the parameter of
value at least 1.536. If the Conditional Struction operation
applies and destroys the strong 2-tuples, then from the way the
operation works, the operation must apply to a degree-3 vertex
w such that w is in a strong 2-tuple. Note that this operation
reduces the parameter by 1. Without loss of generality, assume
that the strong 2-tuple containing w is {u, z}, and suppose that
w = u. Since u and z are non-adjacent and do not share any
neighbors, the operation will not affect the degree of z by
Remark 2.3, and a similar analysis to the above cases goes
through.

Suppose now that Reducing is not applicable. In this case
we have d(u) > 2 and d(z) > 2. Since there is a strong 2-
tuple, from the way the list of priorities was defined, a strong
2-tuple must be picked by the algorithm as the structure Γ.
The algorithm branches in this case on the vertex z. Note that
since Reducing is not applicable, u and z do not share any
neighbors. Suppose first that d(u) ≥ 4 and d(z) ≥ 4. Now on
the side of the branch where z is included, z is removed from
the tuple S and q is kept unchanged. The recursive call to the
algorithm will invoke Reducing and the neighbors of u will
be included in the cover by step a.4 of Reducing. Therefore
this side of the branch reduces the parameter by at least 5
(N(u) ∪ {z} are included in the cover). On the other side of

the branch N(z) is included reducing the parameter by at least
4. It follows that F (k) ≤ F (k−4)+F (k−5) ≤ ck−4+ck−5 ≤
ck−1.536.

If d(u) = d(z) = 3, then since the Conditional Struction
is not applicable, there are no edges between vertices in
N(u) and similarly for N(z). Let N(u) = {u1, u2, u3} and
N(z) = {z1, z2, z3}. Suppose that there exists a vertex in
N(u), say u1, such that |N(u1) − N(z)| ≤ 2. In the side
of the branch where the algorithm excludes z and includes
N(z), u1 becomes of degree 1 or 2, and when the subroutine
Reducing is called the parameter will be further reduced by
at least 1. Therefore in this side of the branch the parameter
has been reduced by at least |N(z)|+1 = 4. On the other side
of the branch where the algorithm includes z, all the vertices
in N(u) will be included when Reducing is called by step
a.4. Moreover, the algorithm creates the tuple (N(z), 2). We
first claim that at least two vertices in N(z) do not become
isolated in the resulting graph along this side of the branch.
Suppose not, then two of the vertices in N(z), say z1 and
z2 become isolated in G − ({z} ∪ N(u)). Since u and z
do not share any neighbors, z1 and z2 are only connected
to N(u) ∪ {z}. But then I = {u, z1, z2} is an independent
set whose set of neighbors N(I) = {z} ∪ N(u) satisfies
|N(I)| = |I|+1, and General-Fold (and hence Reducing) is
applicable, a contradiction. Therefore two non-isolated vertices
in N(z), that are also non-adjacent, will remain in the resulting
graph. These two vertices will create a 2-tuple by step a.2 of
Reducing when applied to the tuple (N(z), 2) created by this
side of the branch. This leads to a further reduction of the
parameter by at least 1 by part (2) of the theorem. Therefore,
along this side of the branch the parameter is reduced by
at least 5. It follows that F (k) ≤ F (k − 4) + F (k − 5) ≤
ck−4 + ck−5 ≤ ck−1.536 as required.

Suppose now that d(u) = d(z) = 3 and that the above case
does not apply. On the side of the branch where z is excluded,
N(z) is included and a degree-3 vertex u remains in the graph.
By induction, and by part (9) in the theorem, the number
of leaves in the search tree along this side of the branch is
bounded by F (k − 3.536). On the other side of the branch,
{z} ∪N(u) are included in the cover and the tuple (N(z), 2)
is created. When Reducing is called, it will end up creating
a 2-tuple for every two vertices in N(z) (note that no two
vertices in N(z) are adjacent because Conditional Struction
is not applicable). We claim that at least one of these 2-tuples
is a strong 2-tuple. To see this, observe that all the vertices in
N(z) have degree at least 2 in the resulting graph. This is true
because otherwise a neighbor of z would be almost-dominated
by u, and by the way the algorithm branches on 2-tuples, u
will be picked by the algorithm instead of z and the previous
discussion applies. If {z1, z2} is not a strong 2-tuple, then one
vertex in {z1, z2}, say z1, has degree at least 4 and the other
vertex z2 has degree at most 3. Now if z3 has degree at least 4
then {z1, z3} is a strong 2-tuple, otherwise, {z2, z3} is a strong
2-tuple. By induction, the number of leaves in the search tree
resulting from this side of the branch is at most F (k− 5.536)
(since {z} ∪ N(u) were included and there is a strong 2-

tuple). It follows that the number of leaves in the search tree
is F (k) ≤ F (k − 3.536) + F (k − 5.536) ≤ F (k − 1.536).

Part 3. Let (S = {u, z}, q = 1) be a 2-tuple. Since q = 1
and u and v are non-adjacent, the only way Reducing can
destroy this 2-tuple is if step a.4, or if one of steps b–d applies.
Each of these steps reduces the parameter by at least 1 and
F (k) ≤ F (k − 1) ≤ ck−1 as desired.

Now we can assume that Reducing is not applicable. This
implies that d(u) ≥ 3 and d(z) ≥ 3.

If there is a neighbor u′ of u such that |N(u′)−N(z)| ≤
2, then by a similar token to the above, on the side of the
branch where N(z) is included u′ becomes of degree at most
2, and Reducing will further decrease the parameter by at
least 1. Therefore along this side of the branch the parameter
is decreased by at least d(z) + 1 ≥ 4. On the other side of
the branch we include {z}∪N(u) and the parameter is again
decreased by at least 4 (note that d(u) ≥ 3). Therefore F (k) ≤
2F (k − 4) ≤ 2ck−4 ≤ ck−1.

Suppose now that the above case does not apply and d(u) =
d(z) = 3. On the side of the branch where the algorithm
includes z, N(u) is included and the tuple (N(z), 2) is created.
By a similar argument to the above, when Reducing is called
this tuple will create a 2-tuple (note that every vertex in N(z)
has degree at least 2). Inductively, the number of leaves along
this side of the branch is bounded by F (k − 5) (note that
|{z} ∪ N(u)| ≥ 4). On the side of the branch where z is
excluded we include N(z). It follows that F (k) ≤ F (k −
3) + F (k − 5) ≤ ck−3 + ck−5 ≤ ck−1.

In the remaining cases we must have d(u) > 3 or d(z) > 3.
On one side of the branch z and N(u) are included, and on
the other side of the branch N(z) is included. This gives us
a worst-case bound F (k) ≤ F (k − 3) + F (k − 5) ≤ ck−3 +
ck−5 ≤ ck−1 as required.

Part 4. Suppose that G is 3-regular. If Reducing applies
then the parameter is reduced by at least 1 and F (k) ≤ ck−1 as
required. Now suppose that Reducing is not applicable. In this
case for every degree-3 vertex u no edges exist in the subgraph
induced by N(u) (this follows from the inapplicability of
Conditional Struction). If there is a 2-tuple (or a strong 2-
tuple) then the statement follows from above. The algorithm
branches on a good pair (u, z). On the side where z is included
the three neighbors of z become of degree 2, and no two of
them are adjacent. Then on this side of the branch Reducing
will apply at least twice reducing the parameter by at least
2. On the side of the branch where N(z) is included, we
claim that there must exist at least four non-isolated vertices
of degree at most 2. To see why this is the case let N(z) =
{u, z1, z2} and note that N(z) is an independent set. Let B be
the set of vertices of degree at most 2 in the graph G−N(z). If
|B| < 4, then the set N(z) has at most 4 neighbors namely the
vertices in {z} ∪ B, and General-Fold would be applicable,
a contradiction. Therefore, |B| ≥ 4. Now if a vertex w ∈ B
is isolated in G − N(z) then the set of vertices I = {z, w}
has the neighboring set N(I) = N(z) with |N(I)| = |I|+ 1,
and again General-Fold would be applicable. Therefore the
graph G − N(z) contains at least four non-isolated vertices

of degree at most two. Again, in this side of the branch
Reducing will be applied twice totally reducing the parameter
along this side of the branch by at least 5. It follows that
F (k) ≤ F (k − 3) + F (k − 5) ≤ ck−3 + ck−5 ≤ ck−1 as
required.

Part 5. Let x1, x2, x3 be three degree-3 vertices in G such
that no two of them are adjacent and such that the three
vertices do not share a common neighbor. If the graph is
3-regular then the statement follows from part (4) above. If
Reducing is applicable, or if there exists a 2-tuple, then the
statement follows either from the fact that Reducing reduces
the parameter by at least 1, or from the parts (2) and (3) of
the theorem. If this is not the case, then from the priority list
of the structures, the structure Γ picked by the algorithm must
be a good pair (u, z) where d(u) = 3 and d(z) ≥ 3 (note that
the minimum degree of a vertex in the graph is 3). Suppose
first that z is almost-dominated by a vertex v ∈ N(u).

If d(z) = 3 let N(z) = {u, z1, z2} be the neighbors
of z and observe that since Conditional Struction does not
apply, no two vertices in N(z) are adjacent. The algorithm
will branch on z. If in the side of the branch where z is
included the algorithm rejects before doing any branching,
then we have F (k) ≤ F (k − 3) + 1 ≤ ck−0.897 as desired.
Suppose now that this is not the case. On the side of the
branch where z is included the algorithm will create the tuple
({u, z1, z2}, 2) which will immediately be decomposed by
step a.2 of Reducing into the tuples ({u, z1}, 1), ({u, z2}, 1),
({z1, z2}, 1). Since z is almost-dominated by v, v is adjacent
to all vertices in N(z) except at most 1. Therefore there exists
a tuple (S, 1) among ({u, z1}, 1), ({u, z1}, 1), ({u, z1}, 1)
such that step a.4 of Reducing applies to v and (S, 1), and v
will be included in the cover. By Proposition 5.1, all preceding
recursive calls to Reducing end up executing step a.4 of
Reducing and include vertices in the cover. If these recursive
calls include two vertices in the cover before v is included,
then this side of the branch ends up including at least four
vertices in the cover (including z and v) and hence reducing
the parameter by at least 4. Suppose that exactly one vertex
y is included in these recursive calls before v is included. If
y = u, then the tuple ({u, z1}, 1) will be updated to ({z1}, 1)
and step a.4 of Reducing will be applicable to all vertices in
N(z1). Since u /∈ N(z1), this means that at least four vertices
will be included in the cover, namely N(z1)∪{u}, in this side
of the branch. Now if y 6= w, where w is the third neighbor
of u, then after v is included, u will be a degree-1 vertex and
Reducing will end up further reducing the parameter by at
least one, again yielding a total reduction of the parameter by
4. Suppose now that w is the vertex that is included before
v is included. Now in the resulting graph after v is included,
({z1, z2}, 1) is a 2-tuple. To see why this is the case, note
that z1 and z2 are non-adjacent and none of them can become
isolated in G − {u, v, w, z}, otherwise, General-Fold would
be applicable to the set consisting of u and that vertex. By part
(3) of the theorem, this reduces the parameter by 1 yielding
a total reduction of the parameter by 4 along this side of the
branch. On the other side of the branch N(z) is included.

Notice that along this side of the branch a non-isolated vertex
of degree at most three must remain in the graph because
there were three non-adjacent degree-3 vertices in the graph
that do not share a common neighbor. One of these vertices
must remain and cannot be isolated (otherwise General-Fold
will apply to this vertex and z). If this vertex has degree one
or two, then Reducing will end up reducing the parameter by
at least one. If this vertex has degree three, then by part (9)
of the theorem, a further reduction of the parameter by value
0.536 can be claimed. Therefore along this side of the branch
we can claim a reduction of the parameter of value at least
3.536. It follows that F (k) ≤ F (k − 3.536) + F (k − 4) ≤
ck−3.536 + ck−4 ≤ ck−0.897 as claimed.

Suppose now that d(z) ≥ 4. By a similar argument to the
above, we can claim that along the side of the branch where
z is included v satisfies step a.4 of Reducing. A similar (and
easier) argument using Proposition 5.1 will show that either
Reducing ends up including a total of three vertices along this
side and leaving a vertex of degree three in the resulting graph,
allowing us to claim a further reduction of value 0.536 in the
parameter by part (9) of the theorem, or it will include at least
four vertices. Therefore a total reduction in the parameter of
value at least 3.536 can be claimed along this side of the
branch. On the other side of the branch N(z) is included
reducing the parameter by at least 4 and the result follows
using the same argument as above.

Suppose now that z is not almost-dominated by any vertex
in N(u). Then from the choice of a good pair and the fact
that G is not regular, we have d(z) ≥ 4. The algorithm now
branches on z and in the side where N(z) is included the
algorithm will create a tuple (N(u), 2). Suppose first that
d(z) = 4. On the side of the branch where z is included,
u becomes a degree-2 vertex and General-Fold is applicable
to u. Any operation in Reducing, other than General-Fold
will leave u in the resulting graph a non-isolated vertex
of degree at most 2, and Reducing will still be applicable
(note that if General-Fold is applicable but was not applied
then Conditional Struction was not applied as well by the
respective order of these two operations in the algorithm). This
will reduce the parameter by at least 3 along this side of the
branch. If instead General-Fold was applied, then it is easy to
see that since no two of x1, x2, and x3 are adjacent, and since
they do not share a common neighbor, at least one of them
will remain a non-isolated vertex of degree at most 3 in the
graph resulting from including z and applying General-Fold
to a degree-2 vertex (if General-Fold was applied to a set I
with |I| > 1, then we can claim a reduction in the parameter
of at least 2 from this operation). This is true since z cannot
be one of the vertices in {x1, x2, x3} since d(z) = 4. This
will lead to a further reduction in the parameter of value at at
least 0.536 by part (9) of the theorem giving a total reduction
along this side of the branch of value at least 2.536. On the
other side of the branch where N(z) is included the tuple
(N(u), 2) will result by step a.2 of Reducing in the strong 2-
tuple ({v, w} = N(u)−{z}, 1). To see why {v, w} is a strong
2-tuple observe that {v, w} are non-adjacent since d(u) = 3

and Conditional Struction does not apply. Moreover, from
the choice of the good pair (u, z) and since z is not almost-
dominated by any vertex in N(u), none of the vertices v or
w is can be almost-dominated by z (otherwise that vertex
would be chosen in place of z). It follows that the degree
of v and w in the resulting graph is at least two. Moreover,
the degree of these two vertices in G was bounded by 4 since
d(z) = 4 and by the choice of z, z had the maximum degree
among the neighbors of u. It follows that the degrees of v
and w in G−N(z) is bounded by 3 (since u was removed).
This shows that {v, w} is a strong 2-tuple. By part (2) of
the theorem this gives a further reduction of the parameter of
value at least 1.536, giving a total reduction of value at least
5.536 along this side of the branch. It follows that F (k) ≤
F (k−2.536)+F (k−5.536) ≤ ck−2.536+ck−5.536 ≤ ck−0.897

as required.
Suppose now that d(z) ≥ 5. By a similar argument to

the above, on the side of the branch where z is included,
u becomes a degree-2 vertex and General-Fold is applicable.
Moreover, if Reducing does not apply General-Fold then u
will remain and Reducing will be applicable again claiming
a total reduction in the parameter of value at least 3. If
Reducing applies General-Fold then a non-isolated vertex
of degree at most three remains claiming a total reduction
in the parameter of value at least 2.536 along this side of
the branch. On the other side of the branch where N(z) is
included {v, w} become a 2-tuple (not necessarily a strong
2-tuple) yielding a further reduction in the parameter of value
at least 1 by part (3) of the theorem. It follows that F (k) ≤
F (k − 2.536) + F (k − 6) ≤ ck−2.536 + ck−6 ≤ ck−0.897 as
required.

Part 6. Let Γ be a structure of highest priority picked by
the algorithm. If Γ is a 2-tuple (or a strong 2-tuple) the the
statement follows from the previous parts of the theorem. If
this is not the case, then by the priority list of the algorithm,
Γ is a good pair (u, z) such that d(u) = 3, and all the
neighbors of u, say {v, w, z} are degree-5 vertices such that
no two of them share a common neighbor other than u. If two
vertices in {v, w, z} are adjacent, then Conditional Struction
is applicable, and hence Reducing is applicable which reduces
the parameter by at least 1 implying the desired result. Suppose
that this is not the case. Since z is not almost-dominated by
any vertex in N(u) (no two vertices in N(u) share a common
neighbor other than u), the algorithm will branch on z by
including z on one side of the branch, and excluding it and
creating a tuple (N(u), 2) on the other side of the branch.
On the side of the branch where z is included, u becomes
of degree two. If Reducing does not apply General-Fold to
u, then u will remain in the graph (again note that Reducing
did not apply Conditional Struction by the way the algorithm
works) non-isolated and having degree at most two. this means
that Reducing will also be applicable and a total reduction of
at least 3 in the value of the parameter can be claimed along
this side of the branch. If Reducing applies General-Fold to
a vertex other than u, then again a reduction of value 2 can
be claimed if General-Fold applies to a set I of cardinality

at least two, or if General-Fold applies to another degree-2
vertex since u will remain (none of the neighbors of u could
be the vertex folded since each has a degree larger than two).
If General-Fold applies to u, then a vertex of degree eight
results from folding u, and by part (12) of the theorem, an
additional reduction of the parameter of value at least 0.302
can be claimed. Therefore along this side of the branch we
can claim a reduction of the parameter of value at least 2.302.
On the side of the branch where N(z) is included, the tuple
(N(u), 2) will be decomposed into the tuple ({v, w}, 1) in
step a.2 of reducing. Since v and w are non-adjacent and
have degree exactly 4 in the resulting graph (since no two
neighbors of u share a common neighbor besides u), this
tuple is a strong 2-tuple giving a further reduction in the
parameter of value at least 1.536. Therefore the total reduction
along this side of the branch is at least 6.536 and F (k) ≤
F (k − 2.302) + F (k − 6.536) ≤ ck−2.302 + ck−6.536 ≤ ck−1

as required.
Part 7. Suppose the algorithm picks a structure Γ such that

Γ is a good pair (u, z) and z is almost-dominated by a vertex
v ∈ N(u). Note that Reduce is not applicable at this point.

Suppose that d(u) = 3. Then all vertices in N(u) have
degree at least 3, and no two of them are adjacent (since
Conditional Struction is not applicable). If d(z) = 3 let
z1 and z2 be the other neighbors of z. On the side of
the branch where z is included, the algorithm forms the
tuple (N(z), 2) which will be decomposed into the tuples
({u, z1}, 1), ({z1, z2}, 1), ({u, z2}, 1), by step a.2 of the
algorithm. Now since z is almost-dominated by v, v and at
least one tuple S among these three tuples will satisfy step a.4
in Reducing. By Proposition 5.1, v will be included before
any branching by the algorithm. If Reducing includes two
vertices before v, then the total reduction in the parameter
along this side of the branch is at least 4. If Reducing
includes exactly one vertex before v, let this vertex be y. If
y ∈ {u, z1, z2} = N(z), then the neighbors of the vertices in
N(z) − {y} will be included by step a.4 of Reducing when
applied the the vertices in N(z) − {y} and the three tuples
formed above. Note that the set N(z)− {y} has at least two
neighbors in the graph G − {z, y} (otherwise General-Fold
applies). Therefore the parameter is reduced by at least 4 in
this case. If y /∈ {u, z1, z2}, then ({z1, z2}, 1) remains a 2-
tuple in the resulting graph when y and v are included and a
reduction in the parameter of value at least 1 can be claimed by
part (3) of the theorem (note that none of z1, z2 can be isolated
in the resulting graph because General-Fold does not apply).
Suppose now that Reducing includes v in the next execution.
Let w be the other vertex in N(u). When v is included, u
becomes a degree-1 vertex, and Reducing is still applicable.
If Reducing in the following execution does not include u or
w, then u remains a degree-1 vertex in the resulting graph,
and Reducing will still be applicable. On the other hand, if
Reducing includes u or w in the next execution, then {z1, z2}
remains a 2-tuple in the resulting graph, and a further reduction
in the parameter of value 1 can be claimed. It follows that in
all cases this side of the branch will reduce the parameter

by at least 4. On the other side of the branch the algorithm
includes N(z) reducing the parameter by 3. It follows that
F (k) ≤ F (k − 4) + F (k − 3) ≤ ck−3 + ck−4 ≤ ck−0.605 as
required.

Suppose now that d(u) = 3 and d(z) ≥ 4. By a similar
argument to the above we can show that on the side of the
branch where z is included step a.4 applies to v and we can
show that along this side of the branch the total reduction in the
parameter is at least 3. On the other side of the branch N(z)
is included yielding a reduction in the parameter of value at
least 4, and the statement follows as in the above case.

Suppose now that d(u) = 4. In this case d(z) ≥ 4. Similar
to the above analysis, when z is included step a.4 applies to v.
If another vertex is included before v we get a reduction in the
parameter of value 3; otherwise v is included and u become of
degree 2 yielding a further reduction in the parameter of value
at least 1 by Reducing. Therefore we get a total reduction in
the parameter of value at least 3 along this side of the branch.
Along the other side we include N(z) and the parameter is
reduced by at least 4. The statement follows.

If d(u) = 5 we have d(z) ≥ 5. When z is included, if v is
not included immediately by Reducing then the parameter will
be reduced by at least 3 along this side. If v is immediately
included then u becomes a degree-3 vertex and by part (9)
of the theorem, a further reduction of the parameter of value
0.536 can be claimed. Therefore the total reduction in the
parameter along this side is at least 2.536. When N(z) is
included the parameter is reduced by at least 5. We have
F (k) ≤ F (k−2.536)+F (k−5) ≤ ck−2.536+ck−5 ≤ ck−0.605

as required.
If d(u) ≥ 6, and hence d(z) ≥ 6, by a similar token to

the above, when z is included v will be included reducing the
parameter by at least 2. On the other side N(z) is included
reducing the parameter by at least 6. Therefore F (k) ≤ F (k−
2) + F (k − 6) ≤ ck−2 + ck−6 ≤ ck−0.605.

Part 8. Let Γ be the structure with highest priority picked
by the algorithm. If Γ is a 2-tuple or a good pair (u, z)
such that z is almost-dominated by a neighbor of u, then
the statement follows from the above parts of the theorem.
If this is not the case, then from the priority list of the
structures, the algorithm will pick a good pair (u, z) such
that d(u) = 3 and d(z) ≥ 5. Note that since Reduce
is not applicable no two neighbors of u are adjacent. Let
N(u) = {v, w, z}. Note also that by the choice of z in a
nice pair, if z almost-dominates a vertex in {v, w} then z
must also be almost-dominated by a vertex in {v, w}, and
by part (7) of the theorem the statement follows. Therefore,
we can assume that no vertex in {v, w} is almost-dominated
by z. The algorithm branches on z. When z is included u
becomes of degree 2, and Reducing is applicable reducing the
parameter by at least 1. Therefore the total reduction along
this side of the branch is at least 2. On the other side of
the branch when N(z) is included the algorithm creates a
tuple (N(u), 2) which reduces to ({v, w}, 1) by step a.4 of
Reducing. Since no vertex in {v, w} is almost-dominated by
z, v and w have degree at least 2 in the resulting graph and

are non-adjacent, and a further reduction of the parameter by
value 1 can be claimed by part (3) of the theorem. Therefore
F (k) ≤ F (k − 2) + F (k − 6) ≤ ck−2 + ck−6 ≤ ck−0.605.

Part 9. Suppose that G has a vertex of degree 3. Let Γ
be the structure picked by the algorithm. Again, from the
previous parts of the theorem, and from the priority list of
the structures, we can assume that Γ is a good pair (u, z)
where N(u) = {v, w, z} such that d(u) = 3, d(v) ≤ d(w) ≤
d(z) = 4 (note that by part (4) of the theorem the graph is not
3-regular and is connected by the assumption of the theorem),
no vertex among N(u) = {v, w, z} is almost-dominated by
another by part (7), and no two vertices in N(u) are adjacent
since Conditional Struction is not applicable. The algorithm
branches on z. On the side where z is included, u becomes of
degree 2, and Reducing is applicable. Therefore a reduction
in the parameter of value at least 2 can be claimed along
this side of the branch. On the side of the branch where
N(z) is included, the tuple (N(u), 2) is created and will be
decomposed into the tuple ({v, w}, 1) in step a.2 of Reducing.
It is easy to see from the above conditions that this is a strong
2-tuple giving a further reduction in the parameter of value at
least 1.536. Therefore F (k) ≤ F (k − 2) + F (k − 5.536) ≤
ck−2 + ck−5.536 ≤ ck−0.536.

Part 10. Suppose that G has a degree-4 vertex such that
at least three of its neighbors are of degree 5 and such
that the graph induced by this set of neighbors contains
an edge. Note that Reducing does not apply and hence
Conditional Struction does not apply as well. Let Γ be the
structure of highest priority picked by the algorithm. By the
previous parts of the theorem, and from the priority list of the
structures, we can assume that Γ is a good pair (u, z) such that
d(u) = 4 and at least three vertices in N(u) = {v, w, r, z}
are of degree 5 and there is an edge among the vertices
in N(u). We can also assume by part (7) above and the
choice of z in a good pair that no vertex in N(u) is almost-
dominated by another vertex in N(u). By the choice of z
in a good pair, and since at least two vertices in {v, w, r}
are of degree-5, there must exist an edge among the vertices
{v, w, r}. The algorithm branches on z. In the side where
z is included, u becomes a degree-3 vertex with at least
one edge among its neighbors, and Reducing is applicable
(since Conditional Struction is applicable). Therefore we can
claim a reduction in the parameter of value 2 along this side
of the branch. On the side where N(z) is excluded, since
Conditional Struction does not apply to u, and no vertex in
N(u) is almost-dominated by another, a non-isolated vertex of
degree at most 4 remains in the graph. If this vertex has degree
at most 2 then we can claim a reduction of the parameter of
value at least 1 by Reducing. If this vertex has degree 3 then
a reduction in the parameter of value 0.536 can be claimed
by part (9) above. If this vertex has a degree 4 vertex then
we can claim a reduction in the parameter of value at least
0.255 by part (13). Therefore, along this side of the branch
the parameter is reduced by at least 5.255. It follows that
F (k) ≤ F (k−2)+F (k−5.255) ≤ ck−2+ck−5.255 ≤ ck−0.450.

Part 11. Suppose that G has a vertex of degree 4 such that

all its neighbors are of degree 5 and no two of them share a
common neighbor other than the vertex itself. Let Γ be the
structure of highest priority picked by the algorithm. By the
above parts of the theorem and by the list of priorities, we
can assume that Γ is a good pair (u, z) where d(u) = 4, all
vertices in N(u) have degree 5, no two vertices in N(u) share
a neighbor other than u, no edge exists among the vertices in
N(u), and no vertex in N(u) is almost-dominated by another
vertex in N(u). The algorithm branches on z. In the side of
the branch where z is included u becomes a degree-3 vertex
with three degree-5 neighbors such that no two of them share
a common neighbor other than u. Therefore, by part (6) of the
theorem, we can claim a further reduction in the parameter of
value at least 1 on this side of the branch. On the side of the
branch where N(z) is included a degree-4 vertex remain and
we can claim a further reduction in the parameter of value
0.255 by part (13). It follows that F (k) ≤ F (k− 2) +F (k−
5.255) ≤ ck−2 + ck−5.255 ≤ ck−0.450.

Part 12. Suppose that G has a vertex of degree at least 8. Let
Γ be the structure of highest priority picked by the algorithm.
If Γ is not a vertex of degree at least 8, then it must have a
higher ranking in the list and the above parts of the theorem
show that processing such a structure will give a search tree
of size F (k) ≤ F (k−0.302). If Γ is a vertex z with d(z) ≥ 8,
then the algorithm branches on z. We get F (k) ≤ F (k−1)+
F (k − 8) ≤ ck−1 + ck−8 ≤ ck−0.302.

Part 13. Suppose that G has a degree-4 vertex. Again we
can assume that none of the above cases applies. We can
assume that the algorithm will pick a good pair (u, z) with
d(u) = 4 and d(z) ≥ 4. Let N(u) = {v, w, t, z}. We can
assume that no three edges exist among the vertices in N(u)
(otherwise Conditional Struction applies) and no vertex in
N(u) is almost-dominated by another. The algorithm branches
on z.

Suppose first that G is 4-regular, and note that by the choice
of a good pair, we can assume that no vertex is almost-
dominated by another, since otherwise a vertex good pair
(u, z) will be picked where z is almost-dominated by a vertex
in N(u) (because all tag vectors have the same value) and to
which part (8) of the theorem applies. Let N(u) = {v, w, t, z}
and N(z) = {z1, z2, z3, u}.

Suppose that there is at least one edge among the vertices
{v, w, t}. On the side of the branch where the algorithm
includes z, Reducing becomes applicable (because Condi-
tional Struction is applicable to u). If Reducing does not
apply Conditional Struction, then Reducing reduces the
parameter by at least 1, and a non-isolated vertex of de-
gree at most 3 remains in the graph (namely, a vertex in
{u, z1, z2, z3}), and we can claim a further reduction in the
parameter of value at least 0.536 by part (9) of the theorem (or
better). Therefore, on the side of the branch a total reduction
in the parameter of value at least 2.536 can be claimed. If
Reducing applies Conditional Struction we will show that
a vertex of degree at most 3 remains in the graph and hence
a total reduction of value 2.536 can be claimed. Note first
that when z is included the only vertices of degree 3 in

the graph are u, z1, z2, and z3. Suppose that the struction
applies to a vertex y, then y must be a vertex in N(z). Let
y1, y2, and y3, be the neighbors of y and assume, without
loss of generality, that there is an edge between y1 and y2.
If two vertices among {y1, y2, y3} are of degree 3, then these
vertices have to be adjacent to z in G, and there are at least
three edges between the vertices in N(y) (note that z is in
N(y)), which would make Conditional Struction applicable
to y in G, and this is not case by our assumption. Therefore,
at most one vertex in {y1, y2, y3} is a degree-3 vertex. When
Conditional Struction is applied to y, at most two degree-3
vertices will be removed. Now if no vertex of degree at most
3 remains in the graph, then by Remark 2.3, the operation will
only increase the degree of the neighbors of y3. Therefore at
least two neighbors of y3 other than y (which was removed)
must be also neighbors of z, and y3 and z share at least
there neighbors. This means that y3 is almost-dominated by
z, contradicting our assumption. It follows that on this side
of the branch a degree-3 vertex remains, and we can claim
a reduction in the parameter of value at least 2.536. On the
other side of the branch where N(z) is included a non-isolated
vertex of degree at most 3 remains in the graph, and a further
reduction in the parameter of value at least 0.536 can be
claimed by part (9). We get F (k) ≤ F (k − 2.536) + F (k −
4.536) ≤ ck−2.536 + ck−4.536 ≤ ck−0.255.

By the selection of of the vertices u and z in a good
pair, we can now assume that for any vertex y, no edge
exists between the neighbors of y. Moreover, note that since
no vertex is almost-dominated by another vertex, no three
vertices can share more than one common neighbor. On the
side of the branch where z is included, the vertices z1, z2

and z3 become degree-3 vertices such that no two of them
are adjacent, and such that they do not share any common
neighbor in G − z (since z is a common neighbor of these
vertices). Therefore, by part (9) of the theorem we can claim
a further reduction in the parameter of value at least 0.897
totally reducing the parameter by at least 1.897. On the side
of the branch where N(z) is included, if one of the vertices
in {v, w, t} become of degree at most 2 (note that this vertex
cannot become isolated since this vertex would be almost-
dominated by z) Reducing will apply. If all these vertices
become of degree 3 in G − N(z), then by a similar token
to the above, no two of these vertices are adjacent and they
do not share a common neighbor in G−N(z), therefore part
(5) applies further reducing the parameter by a value of at
least 0.897. We get F (k) ≤ F (k − 1.897) + F (k − 4.897) ≤
ck−1.897 + ck−4.897 ≤ ck−0.255.

Now we can assume that G is not 4-regular. Since G is not
connected, we can assume that d(z) ≥ 5 and d(v) ≤ d(w) ≤
d(t) ≤ d(z) by the choice of z

Suppose that d(z) ≥ 6. On the side of the branch where
z is included u becomes a degree-3 vertex and we can claim
a further reduction in the parameter of value at least 0.536.
When N(z) is included the parameter is reduced by at least 6.
We get F (k) ≤ F (k−1.536)+F (k−6) ≤ ck−1.536+ck−6 ≤
ck−0.255.

Suppose now that d(z) = 5. If there is an edge among the
vertices in {v, w, t}, then on the side of the branch where
z is included Reducing is applicable, and we can claim a
further reduction in the parameter of value at least 1. On the
other side of the branch N(z) is included. We get F (k) ≤
F (k − 2) + F (k − 5) ≤ ck−2 + ck−5 ≤ ck−0.255.

If there are exactly two edges between z and two vertices
in {v, w, t}, say w and t, then on the side of the branch where
N(z) is included the algorithm creates a tuple (N(u), 2). This
tuple will be reduced subsequently to the tuple ({v}, 1) since
z is excluded from N(u) and t and r are included. By step
a.4 of Reducing and Proposition 5.1, all neighbors of v will
be included in the cover. Since v is not almost-dominated by
z, the parameter will be decreased further by at least 1. When
z is included u becomes of degree 3, and we can claim a
further reduction in the parameter of value at least 0.536. We
get F (k) ≤ F (k − 1.536) + F (k − 6) ≤ ck−1.536 + ck−6 ≤
ck−0.255. The analysis is very similar if there is exactly one
edge between z and a vertex in {v, w, t}, say t, because on
the side of the branch where z is excluded a 2-tuple will be
created namely {v, w}.

If there exists a vertex in {v, w, t} of degree 5, say t, and
another vertex of degree 4, say v, then on the side of the
branch where z is included, u becomes a degree-3 vertex with
a at least one neighbor of degree 5, and we can claim a further
reduction in the parameter of value at least 0.605 by part (8).
When N(z) is included v becomes a non-isolated vertex of
degree at most 3 and we can claim a further reduction in the
parameter of value at least 0.536 by part (9). We get F (k) ≤
F (k−1.605)+F (k−5.536) ≤ ck−1.605+ck−5.536 ≤ ck−0.255.

If all vertices in {v, w, t} have degree 4, and if v shares
a neighbor other than u with at least one vertex in {v, w, t},
say t, then on the side of the branch where N(z) is included,
t becomes a non-isolated vertex of degree at most 2, and we
can claim a further reduction in the parameter of value 1 since
Reducing will be applicable. On the side where z is included,
u becomes of degree 3 and we can claim a further reduction in
the parameter of value at least 0.536. We get F (k) ≤ F (k −
1.536) + F (k − 6) ≤ ck−1.536 + ck−6 ≤ ck−0.255. Suppose
now that z does not share any neighbors with {v, w, t}. If
{v, w, t} share a common neighbor y 6= u, then on the side of
the branch where N(z) is included the algorithm will create
the tuple (N(u), 2), which will be reduced to ({v, w, t}, 1).
Now y satisfies step a.4 in Reducing with respect to this
tuple and hence will be included by Proposition 5.1 further
reducing the parameter by 1. When z is included u becomes
of degree 3. We get F (k) ≤ F (k − 1.536) + F (k − 6) ≤
ck−1.536 + ck−6 ≤ ck−0.255. Now if v, w, and t do not
share any common neighbor, then on the side of the branch
where N(z) is included these vertices become three vertices
of degree 3 such that no two of them are adjacent and such
that the three of them do not share a common neighbor. By
part (5), we can claim a further reduction in the parameter
of value at least 0.897. When z is included u becomes of
degree 3. We get F (k) ≤ F (k − 1.536) + F (k − 5.897) ≤
ck−1.536 + ck−5.897 ≤ ck−0.255.

Now suppose that all the vertices in {v, w, t} are of degree
5. If z shares a neighbor other than u with any vertex in
{v, w, t}, say t, then on the side of the branch where N(z) is
included t becomes a non-isolated vertex of degree at most 3
and we can claim a further reduction of the parameter of value
at least 0.536 by part (9). When z is included u becomes a
degree-3 vertex with at least one degree-5 neighbor and we
can claim a reduction in the parameter of value at least 0.605.
We get F (k) ≤ F (k − 1.605) + F (k − 5.536) ≤ ck−1.605 +
ck−5.536 ≤ ck−0.255. If z does not share any neighbors with
{v, w, t} other than u, then by the choice of z in a good pair
(since all vertices in N(u) have the same degree), no two
vertices in N(u) share a neighbor other than u. This case
is actually part (11) in the theorem and we have F (k) ≤
ck−0.450 ≤ ck−0.255 as required.

Part 14. Suppose that G has a degree-5 vertex with a
neighbor of degree 6. Again if the structure Γ picked by the
algorithm is not a good pair (u, z) with d(u) = 5 and d(z) = 6
then the statement follows from the above parts of the theorem.
Suppose now that this is the case. The algorithm branches on
z. When z is included u becomes of degree 4 and we can claim
a further reduction in the parameter of value at least 0.255 by
part (13). When N(z) is included the parameter is reduced
by at least 6. We get F (k) ≤ F (k − 1.255) + F (k − 6) ≤
ck−1.255 + ck−6 ≤ ck−0.116.

Part 15. We can assume in this case that none of the
previous parts applies. In particular, part (11) does not apply
and the graph has degree bounded by 7. If there exists a vertex
z of degree 7, then by looking at the list of priorities, the
algorithm will branch on z (or any other vertex of degree 7).
This gives F (k) ≤ F (k− 1)+F (k− 7) ≤ ck−1+ ck−7 ≤ ck.
Suppose now that the graph has degree bounded by 6. By part
(1), there are no vertices in the graph of degree 1 and 2. By
parts (9) and (13), there are no vertices in the graph of degree
less than 5. By part (14), and the fact that G is connected, G
is either 5-regular or 6-regular.

Suppose first that G is 6-regular. Since none of the above
parts of the theorem applies, the algorithm in this case will
pick a good pair (u, z) and branch on z. When z is included
u becomes a degree-5 vertex with a neighbor of degree 6, and
we can claim a further reduction in the parameter of value
at least 0.116 by part (14) of the theorem. When N(z) is
included the parameter is reduced by at least 6. We get F (k) ≤
F (k − 1.116) + F (k − 6) ≤ ck−1.116 + ck−6 ≤ ck.

Suppose now that G is 5-regular. Again, since none of the
above parts applies, the algorithm will pick a good pair (u, z)
and branch on z. Let N(u) = {v, w, r, t, z}. Note that in
particular, no vertex in N(u) is almost-dominated by another
by part (7).

If z is adjacent to at least two vertices in {v, w, r, t}, then
by the choice of z in a good pair, the graph induced by
{v, w, r, t} must contain at least three edges. Therefore on
the side of the branch where z is included Reducing applies
(because Conditional Struction applies). On the side of the
branch where N(z) is included a vertex of degree at most 4
remains, and a further reduction in the parameter of value at

least 0.255 can be claimed by part (13) (or better if the degree
is less than 4). We get F (k) ≤ F (k − 2) + F (k − 5.255) ≤
ck−2 + ck−5.255 ≤ ck.

If z is adjacent to one vertex in {v, w, r, t}, then there is
at least one edge in the subgraph induced by {v, w, r, t}. On
the side of the branch where z is included, u becomes of
degree 4 and at least three of its neighbors are of degree 5
with at least one edge among them. Therefore we can claim
a further reduction in the parameter of value at least 0.450 by
part (10). On the side of the branch where N(z) is included
a vertex of degree at most 4 remains, and a further reduction
in the parameter of value at least 0.255 can be claimed by
part (13). We get F (k) ≤ F (k − 1.450) + F (k − 5.255) ≤
ck−1.450 + ck−5.255 ≤ ck.

If z shares one or more neighbors with a vertex in
{v, w, r, t}, say with t, then when z is excluded t becomes a
non-isolated vertex of degree at most 3, and a further reduction
in the parameter of value 0.536 can be claimed by part (9).
When z is included u becomes of degree 4, and we can
claim a further reduction in the parameter of value 0.255 by
part (13). We get F (k) ≤ F (k − 1.255) + F (k − 5.536) ≤
ck−1.255 + ck−5.536 ≤ ck.

Now from the choice of z in a good pair, we can assume that
no two vertices in {v, w, r, t, z} share a neighbor other than
u. When z is included part (11) applies to u and we can claim
a further reduction in the parameter of value at least 0.450.
When N(z) is included we can claim a further reduction in
the parameter of value 0.255 by part (13). We get F (k) ≤
F (k − 1.450) + F (k − 5.255) ≤ ck−1.450 + ck−5.255 ≤ ck.

This completes the proof.

REFERENCES

[1] DIMACS Workshop on Faster Exact Algorithms for NP-hard problems.
Princeton, NJ, 2000.

[2] R. Balasubramanian, M. Fellows, and V. Raman. An improved fixed
parameter algorithm for Vertex Cover. Information Processing Letters,
65:163–168, 1998.

[3] J. Buss and J. Goldsmith. Nondeterminism within P. SIAM Journal on
Computing, 22:560–572, 1993.

[4] L. Cai and D. Juedes. On the existence of subexponential parameterized
algorithms. Journal of Computer and System Sciences, 67(4):789–807,
2003.

[5] L. Chandran and F. Grandoni. Refined memorisation for vertex cover.
In Proceedings of the 1st International Workshop on Parameterized and
Exact Computation, volume 3162 of Lecture Notes in Computer Science,
pages 61–70, 2004.

[6] J. Cheetham, F. Dehne, A. Rau-Chaplin, U. Stege, and P. Taillon. Solving
large FPT problems on coarse grained parallel machines. Journal of
Computer and System Sciences, 67(4):691–706, 2003.

[7] J. Chen, I. Kanj, and W. Jia. Vertex cover: further observations and
further improvements. Journal of Algorithms, 41:280–301, 2001.

[8] J. Chen, I. Kanj, and G. Xia. Labeled search trees and amortized
analysis: improved upper bounds for NP-hard problems. In 14th
International Symposium on Algorithms and Computation, volume 2906
of Lecture Notes in Computer Science, pages 148–157. Springer, 2003.

[9] J. Chen, L. Liu, and W. Jia. Improvement on Vertex Cover for low
degree graphs. Networks, 35:253–259, 2000.

[10] M. Chlebik and J. Chlebikova. Crown reductions for the minimum
weighted vertex cover problem. In Electronic Colloquium on Computa-
tional Complexity, Report No. 101, 2004.

[11] R. Downey and M. Fellows. Fixed-parameter tractability and complete-
ness. Congressus Numerantium, 87:161–187, 1992.

[12] R. Downey and M. Fellows. Parameterized Complexity. Springer, New
York, 1999.

[13] Ch. Ebengger, P. Hammer, and D. de Werra. Pseudo-boolean functions
and stability of graphs. Annals of Discrete Mathematics, 19:83–98, 1984.

[14] M. Fellows. Blow-ups, win/win’s and crown rules: some new directions
in FPT. volume 2880 of Lecture Notes in Computer Science, pages
1–12, 2003.

[15] M. Garey and D. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, New York, 1979.

[16] R. Impagliazzo and R. Paturi. Which problems have strongly exponential
complexity? Journal of Computer and System Sciences, 63:512–530,
2001.

[17] D. S. Johnson and M. A. Tricks Eds. Cliques, Coloring and Satisfiability,
Second DIMACS Implementation Challenges, volume 26. American
Mathematical Society Providence, RI, 1996.

[18] G. Nemhauser and L. Trotter. Vertex packing: structural properties and
algorithms. Mathematical Programming, 8:232–248, 1975.

[19] R. Niedermeier and P. Rossmanith. Upper bounds for Vertex Cover
further improved. In Proceedings of the 16th Symposium on Theoret-
ical Aspects of Computer Science, volume 1563 of Lecture Notes in
Computer Science, pages 561–570, 1999.

[20] R. Niedermeier and P. Rossmanith. A general method to speed up fixed-
parameter-tractable algorithms. Information Processing Letters, 73:3-
4:125–129, 2000.

[21] R. Niedermeier and P. Rossmanith. On efficient fixed-parameter al-
gorithms for weighted vertex cover. Journal of Algorithms, 47:63–77,
2003.

[22] J. M. Robson. Algorithms for maximum independent set. Journal of
Algorithms, 6:425–440, 1977.

[23] U. Stege and M. Fellows. An improved fixed-parameter-tractable
algorithm for Vertex Cover. Technical Report 318, Department of
Computer Science, ETH Zürich, April 1999.

[24] G. Woeginger. Exact algorithms for NP-hard problems: a survey. In
Combinatorial Optimization - Eureka! You shrink!, volume 2570 of
Lecture Notes in Computer Science, pages 185–207, 2003.

