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ABSTRACT 
We describe a computational model of Web navigation. 
This model simulates a user searching a Web site for a 
specified target item located under one of the site’s 
terminal links. The model’s simple, yet plausible, 
implementation produces results that are consistent with 
published empirical studies. In particular, under certain 
conditions, it produces longer search times and a higher 
failure rate for a three-level site than for comparable two-
level sites. Despite its simplicity, it demonstrates complex 
interactions between site depth and the quality of Web link 
labels and predicts that, as the quality of link labels 
diminish, the advantage for flatter Web structures 
increases. 
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INTRODUCTION 
The World Wide Web is an integral part of our culture. As 
a result, Web page usability has become an issue affecting 
a large number of people, often with significant money at 
stake. There seems to be no shortage of advice on how to 
design effective, usable Web pages [2, 6].  Perhaps much of 
this advice is sound and useful, particularly if it is the result 
of extensive experience and observation.  Yet, it can be 
difficult to independently evaluate the validity of such 
advice when its reasons are often not articulated and the 
supporting evidence is hidden from scientific scrutiny. For 
example, Spool et al. [6] base their advice on test problems 
given to a sample of users. However, they do not report 
important methodological details and it is not certain how 
their results would generalize to different problems. 
Lately, there has been an effort to establish design 
guidelines based on systematic studies. For example, 
Byrne, et al. [1] developed a taxonomy of Web actions 
based on observed user behavior from which they were 
able to compute the frequency of different classes of 
behavior. Larson & Czerwinski [4] examined user search 

times in Web pages of differing hierarchical depth. They 
found that flat structures produced faster search time than 
deep hierarchical structures. This is consistent with results 
from studies of menu depth [3].  
While such empirical studies are essential, it can be 
difficult to generalize from these studies to situations other 
than those tested. In addition, empirical testing is too 
expensive and time consuming to address the wide range of 
content, configurations, and user strategies that characterize 
the Web.  For example, the content of some sites may be 
extremely difficult to break into clear unambiguous 
categories, whereas the content of other sites may suggest 
obvious easy-to-understand categories, perhaps even at 
multiple levels of abstraction.  The same design advice on 
link structure may not be equally applicable to these 
diverse sites.  Perhaps a flat broad structure is appropriate 
for the first, a deep narrow structure for the second. Such 
problems of generalization make it imperative to augment 
empirical testing with other approaches. 
The ability to generalize empirical results comes from an 
understanding of the underlying process that produced the 
results. One approach is to develop a cognitive model that 
simulates the user interacting with the computer interface.  
By constructing the model so that it is functionally 
sufficient and uses plausible cognitive mechanisms, we 
obtain a working, explicit hypothesis of user interaction 
which can be further tested by comparing its behavior to 
known empirical results. For example, Peck & John [5] 
used a computational model to highlight patterns of 
interactions with a browser. 
In this paper, we describe a computational model of a task 
similar to Peck & John. We simulate a user searching a 
Web site for a specified target item located under one of the 
terminal links. Our goal was to test the effectiveness of flat 
versus hierarchical arrangement of information under 
conditions in which the link labels differ in their semantic 
relatedness to the target information. Depth of hierarchy 
has been shown to affect search times in menus [3] and 
Web pages [4]. Our factor of relatedness is similar to Scent 
for Information [4], which is widely held to influence 
search times. The interaction of these two factors has not 
before been investigated. Our user model implements a 
simple, yet plausible, strategy using a set of cognitive 
resources that approximate those of a human user. We 

 

 



show how a simple model combined with simulation 
allows us to investigate the effects of factors that pertain to 
a wide range of Web site organizations. 

REPRESENTING A WEB SITE 
Our model interacts with a simplified, abstract 
representation of a Web browser and a Web site. This 
abstraction gives us control over the domain's variables and 
allows us to qualify how our simulation results generalize 
to a larger class of Web sites. Following the empirical 
study of Larson and Czerwinski, we restrict our Web sites 
to structures that are balanced trees.  Each site has one root 
node (i.e. the top page), consisting of a list of labeled links.  
Each of these links leads to a separate child page.  For a 
shallow, one-level site, these child pages are terminal 
nodes, one of which contains the target information that the 
user is seeking.  For deeper, multi-level sites, a child page 
may consist of a list of links, each leading to child pages at 
the next level.  The bottom level of all our sites consists 
exclusively of terminal pages, one of which is the target 
page. 
When navigating through a site, a user must perceive link 
labels and gauge their relevance to the sought-after 
information.  While the evaluation is a complex and 
interesting process in itself, we choose not to model the 
process per se.  Rather, our interest involves the 
consequences of different levels of perceived relevancy.  
As a proxy for each link label, we fix a number, which 
represents the user's immediately perceived likelihood that 
the target will be found by pursuing this link.  
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Figure 1 shows an example of a simple two-level Web site. 
The rectangles represent Web pages. the underlined 
numbers represent links to child and parent pages. The 
numerical values associated with a link represent its 
perceived relevance. The top page in Figure 1 contains four 
links labeled with numerical likelihood factors of .0, .3, .7 
and .0.  Like the concept of Scent, these numbers represent 
the user's belief that the path associated with a given link 
contains the target information. Each link leads to a child 
page containing two links.  For example, the child page 
behind the third top-level link (labeled with .7) has two 
labeled links where the user believes that the first one has 
the greater likelihood (.6) than the second one (.4).  There 

are eight terminal pages, one of which (filled rectangle) 
contains the target information.  In our terminology, this 
example site has a 4x2 architecture, where 4 is the number 
of links at the top-level and 2 is the number of links on 
each child page. 
For the above example, a user strategy that merely follows 
the most likely links would directly lead to the target.  Our 
method also provides the flexibility for representing sites 
and user knowledge where the user is partially mistaken (or 
misled) as to where the target is.  For example, Figure 2 
shows the same site with a different user for whom the 
meaning of the labels differ from the user in Figure 1. This 
user would find the target under what he or she perceives as 
a less plausible sequence of link selections. In this way it is 
possible to represent sites that differ widely in strength of 
association between link label and target information -- 
from virtual certainty (links of 1.0) to complete uncertainty. 
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MODELING THE WEB BROWSER AND USER ACTIONS 
Byrne, et al. [1] found that selecting a link and pressing the 
Back button accounted for over 80% of the actions used for 
going to a new page. Consequently, we focused our 
modeling on the component actions underlying these 
behaviors. These include: 

• Selecting a link 

• Pressing the Back Button 

• Attending to and identifying a new page 

• Checking a link and evaluating its likelihood 
 
All four are primitive actions that our model performs 
serially.  Fixed times are assigned to each action to account 
for their duration during a simulation.  Our model also 
simulates changing the color of a link when it is selected so 
that the modeled user can "perceive'' whether the page 
under this link was previously visited. 

A simple strategy 
These four primitive actions can be combined to create a 
simple yet plausible model of a user navigating a Web site 
attempting to find target information located on one page. 
With the appearance of a new page, the model first attends 
to the page, which, if it is a terminal page, includes 
checking if it contains the target information.  If it does not, 



the model scans the links on a page selecting in turn those 
links whose likelihood is equal to or above a fixed 
threshold.  For now, we choose a value of 0.5 with the 
interpretation that selecting a link of equal or greater value 
will likely lead to success. When a page appears by 
selecting a link, the process of checking and scanning the 
page is repeated.  
Once the model detects no unselected links above the 
threshold value, it returns to the parent page by pressing the 
Back button. When a previous page reappears by pressing 
the Back button, the model continues scanning links 
starting at the last selected link. It does not scan links it has 
already evaluated.  Determining the last link selected places 
no demands on memory since the last selected link is easily 
detected by its color, and many browsers return the user to 
the location of the last selected link. 
If the model backs up to the root page and finds no 
remaining unselected pages above the threshold, it then 
reduces the likelihood threshold to a second value 
(currently fixed at .1) and starts exploring unselected links.  
In avoiding previously explored pages, the model only 
scans links that were not previously selected. Below is a 
more formal specification of what this "threshold'' model 
does upon the appearance of a page in the browser.  The 
items with an asterisk incur a time cost that adds to the 
cumulative simulated time. 

attend to new page* 
check for target 
if target 
 terminate (successful)  
else 
 for each unvisited link (starting at last selected link) 
  determine if link is above threshold (relevant) *  
  if link is relevant 
   select link * and reset strategy 
 
if no links were selected on this page 
 if at root page 
  if threshold has already been reduced 
   terminate (unsuccessful) task 
  else 
   reduce threshold to secondary value (i.e. .1) 
 else 
  press Back button* and reset strategy 

 
To illustrate, let us consider how the model would search 
the pages given the likelihood factors in Figure 2. The 
model would first attend to the page then scan the topmost 
links from left to right.  The first (.0) is below threshold 
(.5), but the second (.7) is above, and is selected. When the 

new page appears the model first determines that it is not 
the target. It then scans the links on this page, again from 
left to right. The first link (.5) is evaluated and selected.  
Since this page neither contains the target nor has any links, 
the Back button is pressed.  The previous page appears and 
the model continues scanning the next link (.2).  Since it is 
below threshold and there are no more links, it presses 
Back again.  Once the top level is presented it continues 
scanning the remaining two links (.3 and .0). They are both 
below threshold with no remaining unexamined links. 
Since this is the root level, the threshold is reset to .1 and 
the remaining unexamined links reevaluated. The first (.0) 
fails, the second (.7) has already been examined and is 
skipped, but the third (.3) is above the new, lower 
threshold. It is now selected. With the lower threshold, the 
first link (.4) is selected and the target found. The detailed 
trace of this example is specified below. The notes in 
parentheses are for explanatory purposes and do not incur 
any time cost. 
 

Attend to page 
Link (.0) is evaluated, below threshold 
Link (.7) is evaluated, above threshold 
Link (.7) is selected 
(new page appears) 
Attend to page 
Link (.5) is evaluated, above threshold 
Link (.5) is selected 
Attend to page -- no target present 
Press Back Button 
Attend to page 
Link (.2) is evaluated, below threshold 
Press Back Button (no remaining unexamined links) 
Attend to page 
Link (.3) is evaluated, below threshold 
Link (.0) is evaluated, below threshold 
(threshold is reduced to .1) 
Attend to page 
Link (.0) [first link] is evaluated, below threshold 
(link (.7) is skipped; it is already examined) 
Link (.3) is evaluated, above threshold (.1) 
Link (.3) is selected 
(new page appears) 
Attend to page 
Link (.5) is evaluated, above threshold 
Link (.5) is selected 
(new page appears) 



Attend to page -- target is present 
 
We can calculate a simulated search time by assuming 
plausible time values for attending to a page, evaluating a 
link, selecting a link, and for pushing the Back button.  The 
above trace shows that attending to a new page occurred 8 
times, evaluating a link occurred 9 times, selecting a link 4 
times, and pushing the Back button 2 times. For now, we 
assume that evaluating a link requires a half second and the 
remaining events require one second.  For this example, the 
total simulated time is 18.5 seconds (8 + .5 * 9 + 4 + 2). 
Interestingly, had the target been in the terminal Link (.2), 
under the top-level Link (.7) the strategy would fail to find 
it.  The Link (.2) was examined under the high threshold 
(.5). When the threshold is later reduced, this link is 
"hidden" because its parent Link (.7) had been previously 
selected. We will later see that this situation accounts for a 
significant portion of search failures as it demonstrates a 
pitfall of deep-structured architectures. 
While the actual practice of Web navigation is certainly 
varied and complex, the threshold strategy has at least three 
general qualities that make it a reasonable approximation of 
actual Web navigation. First, it successfully finds the target 
whenever it lies behind likely links. Second, by skipping 
less likely links, it finds the target quickly, again provided 
that the target is behind likely links. Finally, it places few 
cognitive demands on the user.  Instead of using memory to 
store previously explored links and pages it uses the 
browser's record of visited links to indicate what has been 
explored. 

Exploring the effects of site architecture and label 
ambiguity 
Larson and Czerwinski found that human users were faster 
and more accurate in finding target information with flatter 
structures, 16x32 and 32x16, than with deeper hierarchies, 
8x8x8. There was no significant difference between the 
performances on the 16x32 and 32x16 architectures. Our 
initial goal was to test whether our threshold strategy 
coupled with the user model could replicate the Larson and 
Czerwinski results using plausible parameters.  For our 
simulations, we created representations of their three 
architectures: 8x8x8, 16x32, and 32x16.  We also created a 
fourth architecture that had a flat structure of 512 links.  
For each generated site representation, we randomly placed 
the target at one of the site's terminal pages. 
To assign likelihood factors to the links, we first assigned a 
one to links that led to the target and a zero to those that did 
not.  We then perturbed these values with noise according 
to the formula below. For each link, this algorithm was 
repeatedly invoked until it generated a number in the range 
from zero through one. 

g * n + v  
where g is a number chosen randomly from a standard 
normal distribution (mean=0, stdev=1); n is the noise factor 
multiplier (equivalent to increasing the variance of the 

normal distribution); and v is the original likelihood value 
(0 or 1).  
Figure 3 shows a 4x2 architecture n = .3 that was used in 
our simulation. This procedure also generated atypical 
representations in which the target was not associated with 
the highest valued link. 
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Our simulations paired each of the four architectures 
(8x8x8, 32x16, 16x32, and a flat 512) with a range of noise 
parameters (0.0 through 0.5).  For each pairing, 10,000 
times trials were run, each of which used a newly generated 
site representation. 
As in the example trace, computations of search time 
assumed that evaluating a link required a half second and 
the remaining events (selecting a link, pressing the back 
button, and attending to a new page) required one second. 
We chose these times since they lie within a range of 
plausible values. For example, very short link labels could 
each be examined more quickly than a half second whereas 
longer labels may require as much as several seconds. 
Likewise, the duration of one second for browser events 
assumes a reasonably responsive browser and internet 
connection. Certainly these times could be slower. While 
we will not further explore the consequences of varying 
time costs here, future experimentation would show what 
interactions do occur, if any. Following the Larson and 
Czerwinski study, any trial lasting longer than 5 minutes 
(300 seconds) of simulated time was terminated and 
labeled as a failed search. 

SIMULATION RESULTS 
So that we may compare our results with those reported by 
Larson and Czerwinski, we encoded failed attempts as 
taking 300 seconds (5 minutes) when calculating mean 
times.  All mean times had a 95 percent confidence interval 
that is plus or minus 2 seconds or smaller. Because the 
performances on the 32x16 and 16x32 architectures were 
nearly identical, we only display the 16x32 here. Figure 4 
shows the calculated mean times from the simulation 
conditions. The most salient trend is that link noise has a 
profound detrimental effect on search time.  The flat 512 
architecture clearly produced the slowest times. The deep 
8x8x8 architecture and the broader 16x32 architecture 
produced nearly identical search times. However, an 
analysis of the failure percentages, shown in Figure 5, 



indicates that for the noisier configurations, the 8x8x8 
architecture had a significantly higher failure rate than the 
16x32.  Histograms plotting the time distribution at a noise 
factor of 0.3 further confirm the performance differences 
between all three architectures. The flat architecture 
produces the most uniform distribution whereas the deepest 
architecture (8x8x8) produces a bimodal distribution with 
the two modes lying at the extremes. The 16x32 
architecture produces less extreme modes, both in terms of 
placement and magnitude. 
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 Like Larson and Czerwinski we found that the 16x32 and 
32x16 architectures produced nearly identical mean times 
and failure rates.  For sufficiently noisy sites, the 16x32 
and the 32x16 architectures yielded a lower failure rate 
than the 8x8x8 architecture. However, whereas Larson and 
Czerwinski reported slower mean times for the 8x8x8, our 
simulations found no differences in mean times between 
the 8x8x8 architecture and the two two-level architectures.  
In considering this last discrepancy between the mean 
times of the model and of the actual users, we discovered 
that the reported mean times led to a misleading 
comparison. Because the 8x8x8 had a higher failure rate, 
we determined that the 5 minute cut-off strongly favored 
the 8x8x8 architecture and thus artificially lowered its 
mean time. Also, at a middle level of noise (i.e. 0.3), our 
simulated times were more than twice as slow as the results 
reported by Larson and Czerwinski.  To address the former 
and to compensate for the latter, we halved the costs of all 

simulated actions and ran the simulations again.  This time, 
we found that for sufficiently noisy sites (0.3 and larger), 
the 2-level architectures produced faster mean times than 
the 8x8x8 architecture.  For example, at noise level of 0.3, 
the 16x32 architecture produced a mean time of 65.9 
seconds and the 8x8x8 architecture produced a mean time 
of 75.4 seconds. In general, for this last round of 
simulations, our model fully replicated the qualitative 
aspects of the Larson and Czerwinksi results at noise 
factors of 0.3 and greater. 
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DISCUSSION 
We have shown here that a simple model of Web page 
navigation can account for the search times observed in 
empirical studies. Our simulations support the empirical 
observation that a deep hierarchy produces slower search 
times.  Our results go further in suggesting that the 
perceived relevance between the link label and the target 
information played the key role. We used gaussian noise to 
vary label relevance, where high noise is associated with 
ambiguous relevance. As noise increased the advantage for 
flatter structures increased. Moreover, we noted qualitative 
aspects of performance that were revealing. Deep structures 
(8x8x8) produced a bimodal distribution. There were 
extremely fast times at the cost of increased failures. These 
results obtain largely because when the model readjusts its 
threshold at the top level it does not explore the children of  



Figure 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

40 80 120 160 200 240 280 300
Search Time

16x32

8x8x8

512x0

Architecture Noise = 0.3
N = 10,000

 
links it has already examined (at the higher threshold). It 
remains to be determined whether subjects show the same 
behavior pattern. 
Our simulations revealed a complicated pattern of 
interactions between the factors underlying search in Web 
pages. This suggests that general design principles may be 
too simplistic to be applied across the board. Instead, we 
argue that continued model-based simulation should be 
focused at more complex architectures that better 
characterize the link structures in Web pages that more 
accurately capture Web interaction. These and future 
simulations should also serve in directing further user 
studies. 
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