
A Computational Model of Web Navigation

Craig S. Miller
School of Computer Science

DePaul University
243 S. Wabash Ave.
Chicago, IL 60604
+1 312 362 5085

cmiller@cs.depaul.edu

Roger W. Remington
NASA Ames Research Center

Moffett Field, CA 94035
+1 650 604 6243

rremington@mail.arc.nasa.gov

ABSTRACT
We describe a computational model of Web navigation.
This model simulates a user searching a Web site for a
specified target item located under one of the site’s
terminal links. The model’s simple, yet plausible,
implementation produces results that are consistent with
published empirical studies. In particular, under certain
conditions, it produces longer search times and a higher
failure rate for a three-level site than for comparable two-
level sites. Despite its simplicity, it demonstrates complex
interactions between site depth and the quality of Web link
labels and predicts that, as the quality of link labels
diminish, the advantage for flatter Web structures
increases.

Keywords
Cognitive model, Web navigation.

INTRODUCTION
The World Wide Web is an integral part of our culture. As
a result, Web page usability has become an issue affecting
a large number of people, often with significant money at
stake. There seems to be no shortage of advice on how to
design effective, usable Web pages [2, 6]. Perhaps much of
this advice is sound and useful, particularly if it is the result
of extensive experience and observation. Yet, it can be
difficult to independently evaluate the validity of such
advice when its reasons are often not articulated and the
supporting evidence is hidden from scientific scrutiny. For
example, Spool et al. [6] base their advice on test problems
given to a sample of users. However, they do not report
important methodological details and it is not certain how
their results would generalize to different problems.
Lately, there has been an effort to establish design
guidelines based on systematic studies. For example,
Byrne, et al. [1] developed a taxonomy of Web actions
based on observed user behavior from which they were
able to compute the frequency of different classes of
behavior. Larson & Czerwinski [4] examined user search

times in Web pages of differing hierarchical depth. They
found that flat structures produced faster search time than
deep hierarchical structures. This is consistent with results
from studies of menu depth [3].
While such empirical studies are essential, it can be
difficult to generalize from these studies to situations other
than those tested. In addition, empirical testing is too
expensive and time consuming to address the wide range of
content, configurations, and user strategies that characterize
the Web. For example, the content of some sites may be
extremely difficult to break into clear unambiguous
categories, whereas the content of other sites may suggest
obvious easy-to-understand categories, perhaps even at
multiple levels of abstraction. The same design advice on
link structure may not be equally applicable to these
diverse sites. Perhaps a flat broad structure is appropriate
for the first, a deep narrow structure for the second. Such
problems of generalization make it imperative to augment
empirical testing with other approaches.
The ability to generalize empirical results comes from an
understanding of the underlying process that produced the
results. One approach is to develop a cognitive model that
simulates the user interacting with the computer interface.
By constructing the model so that it is functionally
sufficient and uses plausible cognitive mechanisms, we
obtain a working, explicit hypothesis of user interaction
which can be further tested by comparing its behavior to
known empirical results. For example, Peck & John [5]
used a computational model to highlight patterns of
interactions with a browser.
In this paper, we describe a computational model of a task
similar to Peck & John. We simulate a user searching a
Web site for a specified target item located under one of the
terminal links. Our goal was to test the effectiveness of flat
versus hierarchical arrangement of information under
conditions in which the link labels differ in their semantic
relatedness to the target information. Depth of hierarchy
has been shown to affect search times in menus [3] and
Web pages [4]. Our factor of relatedness is similar to Scent
for Information [4], which is widely held to influence
search times. The interaction of these two factors has not
before been investigated. Our user model implements a
simple, yet plausible, strategy using a set of cognitive
resources that approximate those of a human user. We

show how a simple model combined with simulation
allows us to investigate the effects of factors that pertain to
a wide range of Web site organizations.

REPRESENTING A WEB SITE
Our model interacts with a simplified, abstract
representation of a Web browser and a Web site. This
abstraction gives us control over the domain's variables and
allows us to qualify how our simulation results generalize
to a larger class of Web sites. Following the empirical
study of Larson and Czerwinski, we restrict our Web sites
to structures that are balanced trees. Each site has one root
node (i.e. the top page), consisting of a list of labeled links.
Each of these links leads to a separate child page. For a
shallow, one-level site, these child pages are terminal
nodes, one of which contains the target information that the
user is seeking. For deeper, multi-level sites, a child page
may consist of a list of links, each leading to child pages at
the next level. The bottom level of all our sites consists
exclusively of terminal pages, one of which is the target
page.
When navigating through a site, a user must perceive link
labels and gauge their relevance to the sought-after
information. While the evaluation is a complex and
interesting process in itself, we choose not to model the
process per se. Rather, our interest involves the
consequences of different levels of perceived relevancy.
As a proxy for each link label, we fix a number, which
represents the user's immediately perceived likelihood that
the target will be found by pursuing this link.

Figure 1

.0

.0 .0

.3

.0 .2

.0

.0 .0

.7

.6 .4

Figure 1 shows an example of a simple two-level Web site.
The rectangles represent Web pages. the underlined
numbers represent links to child and parent pages. The
numerical values associated with a link represent its
perceived relevance. The top page in Figure 1 contains four
links labeled with numerical likelihood factors of .0, .3, .7
and .0. Like the concept of Scent, these numbers represent
the user's belief that the path associated with a given link
contains the target information. Each link leads to a child
page containing two links. For example, the child page
behind the third top-level link (labeled with .7) has two
labeled links where the user believes that the first one has
the greater likelihood (.6) than the second one (.4). There

are eight terminal pages, one of which (filled rectangle)
contains the target information. In our terminology, this
example site has a 4x2 architecture, where 4 is the number
of links at the top-level and 2 is the number of links on
each child page.
For the above example, a user strategy that merely follows
the most likely links would directly lead to the target. Our
method also provides the flexibility for representing sites
and user knowledge where the user is partially mistaken (or
misled) as to where the target is. For example, Figure 2
shows the same site with a different user for whom the
meaning of the labels differ from the user in Figure 1. This
user would find the target under what he or she perceives as
a less plausible sequence of link selections. In this way it is
possible to represent sites that differ widely in strength of
association between link label and target information --
from virtual certainty (links of 1.0) to complete uncertainty.

Figure 2

.0

.0 .0

.7

.5 .2

.0

.0 .0

.3

.4 .0

MODELING THE WEB BROWSER AND USER ACTIONS
Byrne, et al. [1] found that selecting a link and pressing the
Back button accounted for over 80% of the actions used for
going to a new page. Consequently, we focused our
modeling on the component actions underlying these
behaviors. These include:

• Selecting a link

• Pressing the Back Button

• Attending to and identifying a new page

• Checking a link and evaluating its likelihood

All four are primitive actions that our model performs
serially. Fixed times are assigned to each action to account
for their duration during a simulation. Our model also
simulates changing the color of a link when it is selected so
that the modeled user can "perceive'' whether the page
under this link was previously visited.

A simple strategy
These four primitive actions can be combined to create a
simple yet plausible model of a user navigating a Web site
attempting to find target information located on one page.
With the appearance of a new page, the model first attends
to the page, which, if it is a terminal page, includes
checking if it contains the target information. If it does not,

the model scans the links on a page selecting in turn those
links whose likelihood is equal to or above a fixed
threshold. For now, we choose a value of 0.5 with the
interpretation that selecting a link of equal or greater value
will likely lead to success. When a page appears by
selecting a link, the process of checking and scanning the
page is repeated.
Once the model detects no unselected links above the
threshold value, it returns to the parent page by pressing the
Back button. When a previous page reappears by pressing
the Back button, the model continues scanning links
starting at the last selected link. It does not scan links it has
already evaluated. Determining the last link selected places
no demands on memory since the last selected link is easily
detected by its color, and many browsers return the user to
the location of the last selected link.
If the model backs up to the root page and finds no
remaining unselected pages above the threshold, it then
reduces the likelihood threshold to a second value
(currently fixed at .1) and starts exploring unselected links.
In avoiding previously explored pages, the model only
scans links that were not previously selected. Below is a
more formal specification of what this "threshold'' model
does upon the appearance of a page in the browser. The
items with an asterisk incur a time cost that adds to the
cumulative simulated time.

attend to new page*
check for target
if target
 terminate (successful)
else
 for each unvisited link (starting at last selected link)
 determine if link is above threshold (relevant) *
 if link is relevant
 select link * and reset strategy

if no links were selected on this page
 if at root page
 if threshold has already been reduced
 terminate (unsuccessful) task
 else
 reduce threshold to secondary value (i.e. .1)
 else
 press Back button* and reset strategy

To illustrate, let us consider how the model would search
the pages given the likelihood factors in Figure 2. The
model would first attend to the page then scan the topmost
links from left to right. The first (.0) is below threshold
(.5), but the second (.7) is above, and is selected. When the

new page appears the model first determines that it is not
the target. It then scans the links on this page, again from
left to right. The first link (.5) is evaluated and selected.
Since this page neither contains the target nor has any links,
the Back button is pressed. The previous page appears and
the model continues scanning the next link (.2). Since it is
below threshold and there are no more links, it presses
Back again. Once the top level is presented it continues
scanning the remaining two links (.3 and .0). They are both
below threshold with no remaining unexamined links.
Since this is the root level, the threshold is reset to .1 and
the remaining unexamined links reevaluated. The first (.0)
fails, the second (.7) has already been examined and is
skipped, but the third (.3) is above the new, lower
threshold. It is now selected. With the lower threshold, the
first link (.4) is selected and the target found. The detailed
trace of this example is specified below. The notes in
parentheses are for explanatory purposes and do not incur
any time cost.

Attend to page
Link (.0) is evaluated, below threshold
Link (.7) is evaluated, above threshold
Link (.7) is selected
(new page appears)
Attend to page
Link (.5) is evaluated, above threshold
Link (.5) is selected
Attend to page -- no target present
Press Back Button
Attend to page
Link (.2) is evaluated, below threshold
Press Back Button (no remaining unexamined links)
Attend to page
Link (.3) is evaluated, below threshold
Link (.0) is evaluated, below threshold
(threshold is reduced to .1)
Attend to page
Link (.0) [first link] is evaluated, below threshold
(link (.7) is skipped; it is already examined)
Link (.3) is evaluated, above threshold (.1)
Link (.3) is selected
(new page appears)
Attend to page
Link (.5) is evaluated, above threshold
Link (.5) is selected
(new page appears)

Attend to page -- target is present

We can calculate a simulated search time by assuming
plausible time values for attending to a page, evaluating a
link, selecting a link, and for pushing the Back button. The
above trace shows that attending to a new page occurred 8
times, evaluating a link occurred 9 times, selecting a link 4
times, and pushing the Back button 2 times. For now, we
assume that evaluating a link requires a half second and the
remaining events require one second. For this example, the
total simulated time is 18.5 seconds (8 + .5 * 9 + 4 + 2).
Interestingly, had the target been in the terminal Link (.2),
under the top-level Link (.7) the strategy would fail to find
it. The Link (.2) was examined under the high threshold
(.5). When the threshold is later reduced, this link is
"hidden" because its parent Link (.7) had been previously
selected. We will later see that this situation accounts for a
significant portion of search failures as it demonstrates a
pitfall of deep-structured architectures.
While the actual practice of Web navigation is certainly
varied and complex, the threshold strategy has at least three
general qualities that make it a reasonable approximation of
actual Web navigation. First, it successfully finds the target
whenever it lies behind likely links. Second, by skipping
less likely links, it finds the target quickly, again provided
that the target is behind likely links. Finally, it places few
cognitive demands on the user. Instead of using memory to
store previously explored links and pages it uses the
browser's record of visited links to indicate what has been
explored.

Exploring the effects of site architecture and label
ambiguity
Larson and Czerwinski found that human users were faster
and more accurate in finding target information with flatter
structures, 16x32 and 32x16, than with deeper hierarchies,
8x8x8. There was no significant difference between the
performances on the 16x32 and 32x16 architectures. Our
initial goal was to test whether our threshold strategy
coupled with the user model could replicate the Larson and
Czerwinski results using plausible parameters. For our
simulations, we created representations of their three
architectures: 8x8x8, 16x32, and 32x16. We also created a
fourth architecture that had a flat structure of 512 links.
For each generated site representation, we randomly placed
the target at one of the site's terminal pages.
To assign likelihood factors to the links, we first assigned a
one to links that led to the target and a zero to those that did
not. We then perturbed these values with noise according
to the formula below. For each link, this algorithm was
repeatedly invoked until it generated a number in the range
from zero through one.

g * n + v
where g is a number chosen randomly from a standard
normal distribution (mean=0, stdev=1); n is the noise factor
multiplier (equivalent to increasing the variance of the

normal distribution); and v is the original likelihood value
(0 or 1).
Figure 3 shows a 4x2 architecture n = .3 that was used in
our simulation. This procedure also generated atypical
representations in which the target was not associated with
the highest valued link.

Figure 3

.02

.36 .53

.24

.27 .35

.84

.15 .75

.35

.02 .24

Our simulations paired each of the four architectures
(8x8x8, 32x16, 16x32, and a flat 512) with a range of noise
parameters (0.0 through 0.5). For each pairing, 10,000
times trials were run, each of which used a newly generated
site representation.
As in the example trace, computations of search time
assumed that evaluating a link required a half second and
the remaining events (selecting a link, pressing the back
button, and attending to a new page) required one second.
We chose these times since they lie within a range of
plausible values. For example, very short link labels could
each be examined more quickly than a half second whereas
longer labels may require as much as several seconds.
Likewise, the duration of one second for browser events
assumes a reasonably responsive browser and internet
connection. Certainly these times could be slower. While
we will not further explore the consequences of varying
time costs here, future experimentation would show what
interactions do occur, if any. Following the Larson and
Czerwinski study, any trial lasting longer than 5 minutes
(300 seconds) of simulated time was terminated and
labeled as a failed search.

SIMULATION RESULTS
So that we may compare our results with those reported by
Larson and Czerwinski, we encoded failed attempts as
taking 300 seconds (5 minutes) when calculating mean
times. All mean times had a 95 percent confidence interval
that is plus or minus 2 seconds or smaller. Because the
performances on the 32x16 and 16x32 architectures were
nearly identical, we only display the 16x32 here. Figure 4
shows the calculated mean times from the simulation
conditions. The most salient trend is that link noise has a
profound detrimental effect on search time. The flat 512
architecture clearly produced the slowest times. The deep
8x8x8 architecture and the broader 16x32 architecture
produced nearly identical search times. However, an
analysis of the failure percentages, shown in Figure 5,

indicates that for the noisier configurations, the 8x8x8
architecture had a significantly higher failure rate than the
16x32. Histograms plotting the time distribution at a noise
factor of 0.3 further confirm the performance differences
between all three architectures. The flat architecture
produces the most uniform distribution whereas the deepest
architecture (8x8x8) produces a bimodal distribution with
the two modes lying at the extremes. The 16x32
architecture produces less extreme modes, both in terms of
placement and magnitude.

Figure 4

0

50

100

150

200

250

300

0 0.2 0.4 0.6

Noise Level

8x8x8
16x32
512x0

 Like Larson and Czerwinski we found that the 16x32 and
32x16 architectures produced nearly identical mean times
and failure rates. For sufficiently noisy sites, the 16x32
and the 32x16 architectures yielded a lower failure rate
than the 8x8x8 architecture. However, whereas Larson and
Czerwinski reported slower mean times for the 8x8x8, our
simulations found no differences in mean times between
the 8x8x8 architecture and the two two-level architectures.
In considering this last discrepancy between the mean
times of the model and of the actual users, we discovered
that the reported mean times led to a misleading
comparison. Because the 8x8x8 had a higher failure rate,
we determined that the 5 minute cut-off strongly favored
the 8x8x8 architecture and thus artificially lowered its
mean time. Also, at a middle level of noise (i.e. 0.3), our
simulated times were more than twice as slow as the results
reported by Larson and Czerwinski. To address the former
and to compensate for the latter, we halved the costs of all

simulated actions and ran the simulations again. This time,
we found that for sufficiently noisy sites (0.3 and larger),
the 2-level architectures produced faster mean times than
the 8x8x8 architecture. For example, at noise level of 0.3,
the 16x32 architecture produced a mean time of 65.9
seconds and the 8x8x8 architecture produced a mean time
of 75.4 seconds. In general, for this last round of
simulations, our model fully replicated the qualitative
aspects of the Larson and Czerwinksi results at noise
factors of 0.3 and greater.

Figure 5

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6
Noise Level

8x8x8
16x32
512x0

DISCUSSION
We have shown here that a simple model of Web page
navigation can account for the search times observed in
empirical studies. Our simulations support the empirical
observation that a deep hierarchy produces slower search
times. Our results go further in suggesting that the
perceived relevance between the link label and the target
information played the key role. We used gaussian noise to
vary label relevance, where high noise is associated with
ambiguous relevance. As noise increased the advantage for
flatter structures increased. Moreover, we noted qualitative
aspects of performance that were revealing. Deep structures
(8x8x8) produced a bimodal distribution. There were
extremely fast times at the cost of increased failures. These
results obtain largely because when the model readjusts its
threshold at the top level it does not explore the children of

Figure 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

40 80 120 160 200 240 280 300
Search Time

16x32

8x8x8

512x0

Architecture Noise = 0.3
N = 10,000

links it has already examined (at the higher threshold). It
remains to be determined whether subjects show the same
behavior pattern.
Our simulations revealed a complicated pattern of
interactions between the factors underlying search in Web
pages. This suggests that general design principles may be
too simplistic to be applied across the board. Instead, we
argue that continued model-based simulation should be
focused at more complex architectures that better
characterize the link structures in Web pages that more
accurately capture Web interaction. These and future
simulations should also serve in directing further user
studies.

REFERENCES
1. Byrne, M.D., John, B.E., Wehrle, N.S., & Crow, D.C.

(1999). The tangled web we wove: A taskonomy of
WWW use. In Proceedings of CHI'99 Human Factors in
Computing Systems, ACM press.

2. Forsythe, C., Grose, E., & Ratner, J. (1998). Human
Factors and Web Developmentt. London: Lawrence
Erlbaum Associates.

3. Landauer, T. K., & Nachbar, D. W. (1985). Selection
from alphabetic and numeric menu trees using a touch
screen: Breadth, depth, and width. In Proceedings of
CHI'85 Human Factors in Computing Systems, ACM
press, pp. 73-78.

4. Larson, K. & Czerwinski, M. (1998). Web page design:
Implications of memory, structure, and scent for
information retrieval. In Proceedings of CHI'98 Human
Factors in Computing Systems, ACM press.

5. Peck. V. A. & John, B. E. (1992). Browser Soar: A
computational model of a highly interactive task. In
Proceedings of CHI'92 Human Factors in Computing
Systems, ACM press, pp. 165-172.

6. Spool, J. M., Scanlon, T., Schroeder, W., Snyder, C. &
DeAngelo, T. (1999). Web Site Usability: A Designer's
Guide. San Francisco: Morgan Kaufmann, Inc.

