Segmentation of Soft Tissue Using Texture Features and Gradient Snakes
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Abstract

Snakes have been used extensively in locating object boundaries. However, in the medical imaging field, many organs in close proximity have similar intensity values, limiting the usefulness of snakes in segmentation of abdominal organs. In this paper, we use the gradient vector flow snake to test the benefits of running snakes on texture features from a Markov Random Fields model as opposed to the pixel intensity. Our results show that using Markov Random Fields has a positive effect on the effectiveness of snake.

1. Introduction

Segmentation of human organs in medical images is of benefit in many areas of medicine, including measurement of tissue volume, computer-guided surgery, diagnosis, treatment planning, and research and teaching.  There are many segmentation approaches that have been proposed by various researchers for different imaging modalities and 

pathologies; these techniques have varying degrees of success.
These approaches can be divided into thee main categories [1]: the thresholding approach, the active contour mappings approach, and the model-based (deformable) approach. In the traditional thresholding approach, the segmentation is performed by grouping all pixels that pass the predefined intensity criteria into regions of interest [2]. The active 
contour (e.g. snake [3, 4]) is a boundary-based 
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approach which deforms a manually chosen initial boundary towards the boundary of the object by minimizing the image energy function.  While the 
thresholding approach has to be tuned in order to find the best values for the thresholds producing the right segmentation, the active contour approach has to deal with the manual selection of the initial points on the region’s boundary.  Furthermore, when the edge of an object is not sharply different from the background, the active contour approach by itself may not differentiate between the region of interest and background.  To overcome this challenge, most recent work of active contour mappings combines the active contours with the level sets approaches [5].  While the thresholding and active contour approaches do not use any a-priori information, the model-based approach uses a template to find the region of interest; the template can also be deformed using certain rules in order to deal with different scales and positions of the regions of interest [6, 7]. Since the model-based segmentation approach is heavily based on shape information, the approach may fail when detecting organs where some abnormalities (such tumors) are present. 
Most of these segmentation approaches applied in medical field are based on the gray-intensities. To perform medical image segmentation, the gray-levels alone may not sufficient as many soft tissues have overlapping gray-level ranges and, thus, the use of the properties of the corresponding anatomical structures in necessary to perform accurate medical image segmentation [8]. Since the shape of the same organ might be different across a sequence of 
2-D axial slices or even more, across different patients, several texture-based segmentation approaches have been proposed as a way to quantify the homogeneity and consistency of soft tissues across multiple Computed Tomography slices.

There are a large number of texture-based segmentation algorithms in the literature; among the most commonly used segmentation algorithms based on the texture features are clustering techniques, region growing, and split-and-merge techniques. Segmentation using these traditional techniques requires considerable amounts of expert interactive guidance or does not incorporate any spatial modeling which can result in poor segmentation results.  

In this paper we propose hybrid approach for liver segmentation that combines the advantages of using texture-based image features to encode the image content and snakes to delineate the boundary of the region of interest.  The approach consists of three stages: first, a Markov Random Field (MRF) is calculated for each image along with five pixel-based image features; second, since snakes work on 1-dimensional input, Principal Component Analysis (PCA) is applied to find the linear combinations that capture the most variance in the data; and third, the gradient snake approach is applied on the most important combination (principal component) to determine the boundary of the organ of interest.  The entire process is summarized in figure 1.  
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Figure 1. Methodology
While we applied our approach for liver segmentation in 2-D Computed Tomography (CT) images, the proposed approach can be applied for the segmentation of any other organ in CT images.  We believe that the automatic detection of organs of interest in CT data will have a signification impact on building context-sensitive reporting tools (for instance, apply a computer-aided diagnosis (CAD) tool for liver only if the region of interest is a liver).

The rest of this paper is organized as follows. Our methodology is discussed in Section 2, the preliminary experimental results are presented in Section 3, and the conclusions are discussed in Section 4.

2. Methodology

2.1. Texture feature extraction: markov random fields (mrf)
Markov random fields (MRF) were first used in 1983 to capture the local contextual information of an image [9].  Since then, MRFs have gained increasing popularity because of their ability to create an image model that can be successfully used for image classification, segmentation, and texture synthesis [10].
In a MRF model, an image is represented by a two-dimensional lattice S. The value at each pixel in the lattice is a random variable with values in the set of 
[image: image2.wmf]{

}

4095

,...,

1

,

0

 for a 12- bit Digital Imaging and Communications in Medicine (DICOM) image.  The lattice S is said to be a MRF if
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where s and r are pixel locations in the lattice, and
[image: image4.wmf]s

X

and 
[image: image5.wmf]r

X

are the gray-level at the s and r locations, respectively; 
[image: image6.wmf]s

d

is a neighborhood of the pixel at location s and 
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is the probability of finding the gray level 
[image: image8.wmf]s

X

at location s given the gray levels in the neighborhood 
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[11].  In other words, a pixel presents the MRF property, if its gray-level value depends only on the gray-levels within a certain neighborhood instead of the gray-levels in the entire lattice (as the old adage goes, “Where you stand depends on where you sit.”)
For our MRF texture representation, we considered the Gaussian MRF (GMRF) model which makes use of Gaussian distributions functions to calculate the local conditional probabilities.  Using the four texture features proposed by Cesmeli and Wang [12] and the least-square method for the Gaussian parameters’ estimation, we calculated four response images as follows:
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where 
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denotes the orientation (0o, 45o, 90o and 135o ) along the pixel of interest at location r and R(s) is the estimation window.  The four parameters 
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of the GMRF model denote the four directions estimated using the following formula: 
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Along with the four response images generated by
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, we also used the variance response image to encode the GMRF texture property of the nodules.   

At the end of this stage, each pixel from the CT image is encoded by a feature vector with five GMRF values as described above.  Figure 2 shows the original image and figure 3 shows the MRF images of the five features.
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Figure 2. Original image
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Figure 3. Texture images
2.2 Principle component analysis

Principal Components Analysis (PCA) offers a method to identify and rank the low-level features according to the amount of variation within the image data explained by each feature [13]. PCA uses the covariance between the features to transform the feature space into a new space where the features are uncorrelated. First, the covariance matrix for the feature data is calculated and then, the eigenvectors (principal components) are extracted to form a new linear transformation of the original attribute space: 
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where j stands for the jth principal component (
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 are the features contributions to forming the component.  The features with large loadings (weights) contribute more to the principal component of the data, the features with lower loadings (weights) can be considered noise. Using both the loadings (weights of the original features) and the amount of variance explained by the principal components, the importance of the individual features can be compared and ranked.  

After ranking each eigenvector (principal component) for the amount of dataset variation they explain, the top ranking eigenvectors are selected to represent the entire dataset.  In our proposed approach, we consider only the first principal component for further analysis.  That is, instead of applying the snake on the original gray-level image, we apply the snake on the first principal component image formed by replacing each pixel’s intensity by its representation in the PCA space: 
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2.3 Gradient vector flow snake approach

Snakes or active contours were first introduced by Kass et al. [3] in 1987 to locate the boundaries of an object of interest.   Since then, snakes have been used in many applications, such as edge detection, shape modeling [14] and object tracking [15].  The traditional snake approach is based on the image energy function and attempts to conform to an energy minimization solution by deforming to certain internal and external forces:
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where S(X) and P(X) are the internal and potential energy functions respectively. S(X) is generally represented by
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where the first term represents resistance to stretching and the second term dampens bending. These two terms are called tension and rigidity.  P(X) is computed by
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                         (9) where P(X(s)) is calculated from the image data and takes smaller values at object boundaries and other features of interest.   
The problem associated with the traditional snake approach is that the suggested external forces are faulty when it comes to converging to desired concave boundaries. Also, another inherent problem with snakes is that the initialization of the snake heavily influences the outcome of its deformation. 
In 1998, Xu and Prince [4] introduced the gradient vector flow (GVF) in order to solve these two problems associated with snakes. Using a gradient edge map derived from the image, a diffusion model was applied to deform the snake such that it was able to converge to concave boundaries.  Furthermore, the map did not rely on initialization by an expert user as long as the map is automatically initialized within the vicinity of organ of interest. Therefore, the GVF model was defined by the following equation:
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where 
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is the internal force that resist to stretching and bending while v is a new static external force field that pulls the snake towards the desired object. The snake is iteratively deformed using the parameters α, β, κ, μ, and γ (tension/elasticity, rigidity, external weight force, noise filtering, and viscosity) which returns a new set of points that represent the deformation of the snake after a set number of iterations.  The GVF model defined by equation (10) is applied on the matrix defined by formula (6).
3. Results and evaluation 

3.1 Data set, feature extraction, and pca

Our experimentation was performed on data from 5 patients with an average of 38 CT images each. The CT images were taken using a HiSpeed CT/I scanner (GE Medical Systems) and stored as DICOM images, 512 by 512 pixels with a 12-bit gray level resolution.  Using Markov Random Fields, 5 texture matrices were produced from each CT image. PCA was then applied, using the matrices as variables and the indexes as independent cases. As explained in the previous section, the snake works with only input value per pixel, so the pixel representation with respect to the first principal component was fed as the input of the snake algorithm.  Working with the principal component instead of the gray-level allowed us working with the most important and largest variance (99%) in the data while neglecting the noise and redundant information.  

3.2. GVF parameters and evaluation
We empirically determined two sets of parameter values for each patient: a parameter set that generates the best segmentation results for the texture image and a parameter set that generates the best segmentation results on the original gray-level image.  These sets were chosen in order to be able to compare the performance of the snake on texture versus gray-level.  With respect to the distance between snake points, we experimentally determined that the best segmentation results were obtained for both intensity-based and textured-based segmentations when the distance was set between .5 and .75. Furthermore, since we had to analyze nearly 200 CT slices, we chose the seed points automatically by selecting the top and bottom most pixels of the ground truth along with twelve evenly spaced points, five on the left and five on the right.

Using these seed points and texture biased settings we ran the snake code over the original gray level images, then using the same settings we ran the snake code over the consolidated Markov Random Field texture outputs explained above. This procedure was then repeated using the snake’s parameters that produced the best results for the gray-level images. The segmentation results were evaluated using the following measure:


[image: image27.wmf]Snake

Ground

Snake

Ground

Snake

Ground

Overlap

U

I

=

)

,

(

 (11)

‘Ground’ is the set of all pixels designated “Liver” by the ground truth and ‘Snake’ is the set of all pixels within the active contour’s boundaries.
A maximum value of 1 for the overlap measure denotes a perfect match between the snake segmentation results and the liver as delineated by the radiologist, while a value of 0 means no overlap between the computer results and the radiologist’s annotation at all.  

Table 1 through Table 4 show the five-number summary and the standard distribution of the overlap values distribution for all five patients and 200 slices.  The results show that, for the majority of the slices for each patient, applying the snake to the principal component image (obtained as a linear combination of the MRF texture images) yields a 4% increase in average precision compared to applying the GVF snake to the original gray-level intensity images.  Furthermore, besides having the highest median, Tables 2 and 4 also have the maximum overlap values and the lowest standard deviations. The highest maximum values are obtained for the texture-based snake and are obtained on the first several CT slices while on the last ones (in which the liver region becomes significantly smaller), the precision drops significantly (Figure 3).   The low standard deviations values show that there is no much variation in the segmentation accuracy from one slide to another one.  Moreover, in looking at the segmentation results, we also noticed that the boundary of the texture-based snake is much smoother than for the intensity-based snake; an example is illustrated in Figures 4 and 5.

In conclusion, regardless of the snake parameters’ values we choose, whether they are texture-biased or intensity-biased, applying the snake to texture images produces more precise and smoother segmentation results than applying the snake to standard pixel intensity images.  While five patients is not enough to have statistically significant results, we believe that the results of these initial steps warrant further testing on additional patients.  

Table 1:  Results of applying snake on the gray-level images using texture biased parameters
	Patient
	Minimum
	Quartile 1
	Median
	Quartile 3
	Maximum
	STD

	CT00019683 (1)
	0.02
	0.45
	0.62
	0.7
	0.78
	0.2

	CT00024577 (2)
	0.11
	0.48
	0.58
	0.7
	0.76
	0.15

	CT00038150 (3)
	0.01
	0.39
	0.56
	0.73
	0.8
	0.23

	CT01019194 (4)
	0.02
	0.36
	0.58
	0.71
	0.78
	0.22

	CT02114823 (5)
	0
	0.36
	0.58
	0.73
	0.8
	0.23


Table 2: Results of applying snake on the first principal component texture image using texture biased parameters.

	Patient
	Minimum
	Quartile 1
	Median
	Quartile 3
	Maximum
	STD

	CT00019683 (1)
	0.02
	0.48
	0.64
	0.73
	0.79
	0.2

	CT00024577 (2)
	0.19
	0.53
	0.66
	0.71
	0.82
	0.14

	CT00038150 (3)
	0
	0.39
	0.59
	0.77
	0.81
	0.24

	CT01019194 (4)
	0.05
	0.4
	0.62
	0.7
	0.83
	0.21

	CT02114823 (5)
	0.03
	0.41
	0.61
	0.74
	0.81
	0.22


Table 3:  Results of applying snake on the gray-level images using gray scale biased parameters.

	Patient
	Minimum
	Quartile 1
	Median
	Quartile 3
	Maximum
	STD

	CT00019683 (1)
	0.02
	0.44
	0.62
	0.7
	0.78
	0.2

	CT00024577 (2)
	0.12
	0.5
	0.6
	0.7
	0.77
	0.16

	CT00038150 (3)
	0.01
	0.38
	0.57
	0.73
	0.8
	0.23

	CT01019194 (4)
	0.06
	0.36
	0.59
	0.71
	0.78
	0.21

	CT02114823 (5)
	0
	0.36
	0.58
	0.72
	0.8
	0.23


Table 4: Results of applying snake on the MRF images using grayscale biased parameters
	Patient
	Minimum
	Quartile 1
	Median
	Quartile 3
	Maximum
	STD

	CT00019683 (1)
	0.02
	0.48
	0.64
	0.73
	0.79
	0.2

	CT00024577 (2)
	0.18
	0.54
	0.66
	0.72
	0.82
	0.14

	CT00038150 (3)
	0
	0.4
	0.59
	0.75
	0.8
	0.23

	CT01019194 (4)
	0.06
	0.4
	0.62
	0.73
	0.84
	0.21

	CT02114823 (5)
	0.03
	0.39
	0.62
	0.74
	0.8
	0.22
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Figure 3: Overlap measure values for the first patient (intensity- based snake) 

[image: image29.jpg]



Figure 4: Snake applied to a gray scale intensity image using gray scale biased parameters
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Figure 5: Snake applied to a texture image using gray scale biased parameters
4. Conclusions and future work

We proposed a segmentation approach that combines texture-based features, principal component analysis and the gradient vector flow to produce a snake-based segmentation algorithm invariant to the gray-level overlap presented by soft tissues.   We showed that, the texture-based snake approach produces an increase of 4% on average and smoother boundaries for the liver.  

For the current implementation, we plan on improving our Markov Random Fields model through optimization and by implementing adaptive windowing for the pixel-level features calculation through use of a 1st order discontinuity detector.   Given the 3D nature of the medical images, another interesting avenue of exploration would be the investigation of the geometric deformable model behavior to 3D images.

While the proposed approach was presented for MRF texture-based features and liver as the organ of interest, it can be applied to any other organ and type of texture features (co-occurrence matrices, Gabor filters, etc).   
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