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Abstract

We study extremal questions on induced matchings in certain natural graph classes. We
argue that these questions should be asked for twinless graphs, that is graphs not containing
two vertices with the same neighborhood. We show that planar twinless graphs always contain
an induced matching of size at least n/40 while there are planar twinless graphs that do not
contain an induced matching of size (n+10)/27. We derive similar results for outerplanar graphs
and graphs of bounded genus. These extremal results can be applied to the area of parameterized
computation. For example, we show that the induced matching problem on planar graphs has
a kernel of size at most 40k that is computable in linear time; this significantly improves the
results of Moser and Sikdar (2007). We also show that we can decide in time O(91k +n) whether
a planar graph contains an induced matching of size at least k.

Key words: Induced matching, planar graphs, outerplanar graphs, kernel, parameterized al-
gorithms, twins

1 Introduction

A matching in a graph is an induced matching if it occurs as an induced subgraph of the graph.
Determining whether a graph has an induced matching of size at least k is NP-complete for general
graphs and remains so even if restricted to bipartite graphs of maximum degree 4, planar bipartite
graphs, 3-regular planar graphs (see [6] for a detailed history). Furthermore, approximating a
maximum induced matching is difficult: the problem is APX-hard, even for 4r-regular graphs [6, 16].

In terms of the parameterized complexity of the induced matching problem on general graphs,
it is known that the problem is W [1]-hard [11]. Hence, according to the parameterized complexity
hypothesis, it is unlikely that the problem is fixed-parameter tractable, that is, solvable in time
O(f(k)nc) for some constant c independent of k.

There are several classes of graphs for which the problem turns out to be polynomial time
solvable, for example chordal graphs and outerplanar graphs (see [6] for a survey and [10] for the
result on outerplanar graphs).

Very recently, Moser and Sidkar [10] considered the parameterized complexity of planar-IM:
finding an induced matching of size at least k in a planar graph. They showed that planar-IM
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has a linear problem kernel, but left the constant in the kernel size undetermined. Their result
automatically implies that the problem is fixed-parameter tractable.

In the current paper we take a combinatorial approach to the problem establishing lower and
upper bounds on the size of induced matchings in certain graph classes. In particular, an application
of our results to Planar-IM give a significantly smaller problem kernel than the one given in [10].
We also apply the results to give a practical parameterized algorithm for planar-IM that can be
extended to graphs of bounded genus and could be used as a heuristic for general graphs.

Let us consider the induced matching problem from the point of view of extremal graph theory:
How large can a graph be without containing an induced matching of size at least k? Of course,
dense graphs such as Kn and Kn,n pose an immediate obstacle to this question being meaningful,
but they can easily be eliminated by restricting the maximum or the average degree of the graph.
Indeed, for strong edge colorings the maximum degree restriction is popular: a strong edge coloring
with k colors is a partition of the edge set into at most k induced matchings [14]. A greedy
algorithm shows that graphs of maximum degree ∆ have a strong edge chromatic number of at
most 2∆(∆ − 1) + 1, and, of course, ∆ is an immediate lower bound. If we are only interested
in a large induced matching though, perhaps we need not restrict the maximum degree. On the
other hand, bounding only the average degree of a graph allows pathological examples such as
K1,n, which has average degree less than 2 but only a single-edge induced matching. This example
illustrates another obstacle to a large induced matching: twins. Two vertices u and v are said to
be twins if N(u) = N(v). Obviously, at most one of u and v can be an endpoint of an edge in
an induced matching and if one of them can, either can. Thus, from the extremal point of view
(and since they can be easily recognized and eliminated) we should study the induced matching
problem on graphs without twins. Twinlessness does not allow us to drop the bounded average
degree requirement however, as shown by removing a perfect matching from Kn,n, which yields a
twinless graph with a maximum induced matching of size 2.

We begin by studying twinless graphs of bounded average degree. Those graphs might still not
have large induced matchings since they could contain very dense subgraphs (Remark 3.4 elaborates
on this point). One way of dealing with this problem is to extend the average degree requirement
to all subgraphs. In Section 3 we see that a slightly weaker condition is sufficient, namely a bound
on the chromatic number of the graph. We show that a graph of average degree bounded by d and
chromatic number at most k contains an induced matching of size Θ(n1/(d+1)).

While we cannot expect to substantially improve the dependency on the average degree of
this result in general (see Remark 3.3), we do investigate the case of planar graphs and graphs of
bounded genus, for which we can show the existence of induced matchings of linear size. Indeed,
a planar twinless graph always contains an induced matching of size n/40. We also know that
this bound cannot be improved beyond (n + 10)/27 (Remark 4.11). Planar graphs and graphs of
bounded genus are discussed in Section 4.

We next investigate the case of outerplanar graphs: an outerplanar graph of minimum degree
2 always contains an induced matching of size n/7 (even without assuming twinlessness), and
this result is tight (Section 5). Our bounds fit in with a long series of combinatorial results on
finding sharp bounds on the size of induced structures in subclasses of planar graphs (see for
example [7, 13, 1, 12]).

We also use our combinatorial results to obtain fixed-parameter algorithms for the induced
matching problem. For example, we show that planar-IM can be solved in time O(91k + n) by a
very practical algorithm, while—on the more theoretical side—there is an algorithm deciding it in

time O(2159
√

k + n) using the Lipton-Tarjan [9] separator theorem. Both results easily extend to
graphs of bounded genus.
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2 Preliminaries

Throughout this paper we only consider finite graphs that are simple (i.e., with no loops or multiple
edges). Our terminology and definitions generally agree with West [15].

For a graph G, we denote by V (G) and E(G) the set of vertices and edges of G, respectively,
and by n(G) and e(G) the number of vertices and edges in G, respectively. A graph with one vertex
is trivial. For a vertex v, we denote by N(v) the set of vertices adjacent to v, and by N [v] the set
N(v) ∪ {v}. The degree of a vertex in G is |N(v)|. We shall denote the degree of a vertex v in G
by deg(v), and its degree in a subgraph H ⊆ G by degH(v). For a vertex v in V (G), we denote by
G− v the graph obtained from G by removing v and its incident edges, and by G− e (resp. G+ e),
the graph obtained from G by removing (resp. adding) the edge e.

A matching in a graph G is a set of edges M such that no two edges in M share the same
endpoint. The size of a matching is its cardinality. A matching M is said to be an induced matching
if the subgraph induced by the vertices in M contains only the edges of M . An induced matching
M is a maximum induced matching if M has the maximum size among all induced matching in the
graph. We denote by mim(G) the size of of a maximum induced matching in a graph G.

The blocks of a graph G are its maximal 2-connected subgraphs, its cut-edges, and its isolated
vertices. Two blocks may only intersect at a cut-vertex of G. The block-cutpoint tree of a connected
graph G is the tree whose vertices are the blocks and cut-vertices of G, with an edge from cut-
vertex to each block that contains it. A connected graph that is not 2-connected has a nontrivial
block-cutpoint tree; its leaf blocks are its blocks that are leaves in its block-cutpoint tree. In such
a graph it is easy to find a cut-point which is in at most one non-leaf block, by deleting all leaves
from the block-cutpoint tree and selecting a vertex of degree at most 1 in the remaining graph.

A graph is planar if it can be drawn in the plane without edge intersections (except at the
endpoints). A plane graph has a fixed drawing. Each maximal connected region of the plane
minus the drawing is an open set; these are the faces. One is unbounded, called the outer face.
An outerplane graph is a plane graph for which every vertex is incident to the outer face; and
outerplanar graph is a graph that has such a planar embedding. Outerplanar graphs are precisely
the graphs that have no K4-minor nor a K2,3-minor (analogous to Wagner’s characterization of
planar graphs). In a 2-connected outerplane graph, the outer face is bounded by a Hamiltonian
cycle, and the other edges are chords of the cycle. The minimum degree of an outerplanar graph is
at most 2. (Thus, an outerplanar graph with no isolated vertices or leaves has minimum degree 2.)

A graph has genus g if it can be drawn on a surface of genus g without intersections. We say
a hypergraph H is embeddable in a surface if the bipartite incidence graph obtained from H by
replacing each of its edges by a vertex adjacent to all the vertices in the edge is embeddable in that
surface In particular, this definition allows us to speak of a planar hypergraph or a hypergraph of
genus g.

A graph H is a minor of G, written H � G if H can be obtained from a subgraph of G by
contracting edges. Planar graphs and graphs of genus at most g are easily seen to be downward
closed under minors.

A parameterized problem Q is a set of instances of the form (x, k), where x is the input instance,
and k is a positive integer called the parameter. A parameterized problem Q is said to be fixed-
parameter tractable [4] if there is an algorithm that solves Q in time f(k)|x|c, where c is independent
of k. If (x, k) is an instance of a parameterized problem Q, then by kernelizing the instance (x, k), we
mean applying a polynomial time preprocessing algorithm on (x, k) to construct another instance
(x′, k′) of Q, called the kernel of (x, k), such that (1) k′ ≤ k; (2) the kernel size |x′| of x′ is bounded
by a function of k′; and (3) a solution for (x, k) can be constructed in polynomial time from a
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solution for (x′, k′). The notion of a parameterized problem being parameterized tractable, and
of the problem being kernelizable, turn out to be very closely related. It has been proved that a
parameterized problem is fixed-parameter tractable if and only if the problem is kernelizable [5].

3 Induced matchings in graphs of bounded average degree

We will show that twinless graphs of average degree d contain induced matchings of size Θ(n1/(d+1)).
The core of the proof is a combinatorial result due to Füredi and Tuza [8, Theorem 9.13]. A system
of strong representatives of a set system F is a family (xF )F∈F such that xF ∈ F −⋃F ′ 6=F F ′ for
all F ∈ F .

Lemma 3.1 (Füredi and Tuza, 1985). If F is a collection of size at least
(

s+ℓ
ℓ

)

of sets of size
at most s, then there is a collection F ′ ⊆ F of size at least ℓ + 2 which has a system of strong
representatives.

Theorem 3.2. A twinless graph G with χ(G) ≤ k and average degree at most d must contain an
induced matching of size at least

(

d

2

(

n − 1

2k(d + 1)

)1/(d+1)

− (d + 1)

)

/(k − 1)

which is Θ(n1/(d+1)) where n = |V (G)|.

Proof. Since G is twinless, it contains at most one isolated vertex. Remove that vertex, so we can
assume that there are no isolated vertices. This is accounted for by replacing n with n − 1 in the
final bound.

Fix a k-coloring of G. Since the average degree of G is at most d, there are at least n/(d + 1)
vertices of degree at most d + 1, and at least n/(2(d + 1)k) of them have the same color.

Applying the result of Füredi’s-Tuza to the neighborhoods of these vertices, we can conclude
that there is a set A of at least ℓ := d/2(n/(2(d+1)k))1/(d+1) −(d+1) vertices whose neighborhoods
have a system of strong representatives:

(

(d + 1) + ℓ

ℓ

)

=

(

(d + 1) + ℓ

d + 1

)

≤ (e((d + 1) + ℓ)/(d + 1))d+1

≤ n/(2(d + 1)k),

where e is Euler’s constant. Hence, by Lemma 3.1, the system of strong representatives A exists.
Let n(v) ∈ N(v) be such a representative for N(v) with v ∈ A.

These n(v) can have at most k − 1 different colors, hence there are at least

(

d

2

(

n − 1

2k(d + 1)

)1/(d+1)

− (d + 1)

)

/(k − 1)

many vertices in A all of whose assigned neighbors n(v) have the same color. The edges vn(v) for
those vertices form an induced matching of size (d/2(n/(2(d+1)k))1/(d+1)) − (d+1))/(k−1): given
two edges un(u) and vn(v), there cannot be edges uv or n(u)n(v) by the choice of colors and there
cannot be edges un(v) or vn(u) by the choice of n(u) and n(v).
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Remark 3.3. Consider the following bipartite graph: take a set A of ℓ vertices, and for every d/2
element subset of A create a new vertex and connect it to the vertices of the subset.

This graph has n = ℓ +
(

ℓ
(d/2)

)

vertices, and its largest induced matching has size ℓ/(d/2).

Moreover, its average degree is 2 · d
2

( ℓ
d/2

)

/
(

ℓ +
( ℓ
d/2

)

)

≤ d. For d fixed, ℓ/(d/2) is of order n2/d,

which shows that the bound of the theorem (while not being tight) has the right form.

Remark 3.4. The preceding example can be extended to show that bounding the chromatic
number is necessary: take the graph as constructed in the previous remark and add all edges
between the ℓ vertices of A. Assuming d ≥ 4, this gives a graph of average degree at most d + 2.
However, the largest induced matching in this graph has size 1.

4 Planar graphs and graphs of bounded genus

4.1 Matchings and Induced Matchings

To find large induced matchings in graphs we often proceed in two steps: we first find a large
matching in the graph and then turn it into an induced matching. To make this work we need
assumptions on the graph: to obtain a large matching, we assume an upper bound on α(G), the size
of the largest independent set in G. To turn the matching into an induced matching, we assume
that the graph is twinless and all minors of G have a large independent set.

Lemma 4.1. A graph G with α(G) ≤ αn, where n = n(G), contains a matching of size at least
(1 − α)n/2.

Proof. Let M ⊆ E be a maximal matching in G on vertex set V (M). Then I = V − V (M) is an
independent set. By assumption, |I| ≤ αn. Adding |V (M)| to either side gives us n ≤ αn+|V (M)|,
and, therefore, |V (M)| ≥ (1 − α)n.

Lemma 4.2. Assume that any minor H � G of a graph G fulfills α(H) ≥ α n(H). Then any
matching M in G contains an induced matching in G of size at least α|M |.

Proof. Remove all vertices not in V (M) and contract the edges of M (removing duplicate edges).
The resulting graph is a minor of G, and, by assumption, has an independent set of size α|M |. The
edges in M which were contracted to the vertices in the independent set, form an induced matching
in G.

By this lemma a matching of size k in a planar graph contains an induced matching of size
k/4. In [2] the authors show that a 3-connected planar graph contains a matching of size at least
(n + 4)/3, which allows us to draw the following conclusion.

Corollary 4.3. A twinless, 3-connected planar graph contains an induced matching of size (n +
4)/12.

This result is nearly tight as we will see in Remark 4.11.

To apply the two lemmas to planar graphs and graphs of bounded genus we need some gener-
alizations of Euler’s theorem.

Lemma 4.4. A hypergraph of genus at most g on n vertices has at most 2n+4g−4 edges containing
at least three vertices, unless n = 1 and g = 0.
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Proof. Discard all edges of size less than three and let H be the resulting hypergraph. Let G be
the associated bigraph embedded on a surface of genus g. It has vertex set V (G) = V (H) ∪ VE ,
where VE = {ve : e ∈ E(H)}. We may assume that |VE | > 0.

For each ve ∈ VE with incident face f , if |f | 6= 3 then we add an edge drawn within f between
the neighbors of ve on the boundary of f . Repeat this step until we cannot, and let G′ be the
result. Note that while G′ might have multiple edges, it will not have 2-faces. Also, G′ − VE has a
distinct face that contains each vertex of VE . Add edges to triangulate G′ − VE , and let G∗ be the
resulting surface triangulation, say with n∗, e∗, and f∗ vertices, edges, and faces, respectively. Then
n∗ = |V (H)| = n, and we have observed that |VE | ≤ f∗. Since G∗ is a triangulation, 3f∗ = 2e∗.
By Euler’s formula we get 2 − 2g = n∗ − e∗ + f∗ = n − 1

2f∗, so |E(H)| = |VE | ≤ f∗ = 2n + 4g − 4,
as desired.

If H is a hypergraph of genus g such that all edges have size 2, we can take the associated
bigraph G of genus g and contract away all the the vertices that correspond to edges of H. This
produces a graph of genus g with |V (H)| vertices and |E(H)| edges, to which we may apply the
following consquence of Euler’s Theorem.

Lemma 4.5 (Euler). A graph of genus g on n vertices contains at most 3n+6g−6 edges if n ≥ 2.

By splitting edges of a hypergraph into those of size at least three, those of size two, and those
that contain a single vertex, we can derive the following.

Lemma 4.6. A hypergraph of genus at most g on n vertices has at most 6n + 10g − 9 edges if
n ≥ 2.

We are now ready to give a lower bound on the size of induced matchings in twinless graphs
of bounded genus. This includes the planar case, but in the next section we will give an improved
bound for that case. We need a result due to Heawood [15] that states that a graph of genus at
most g can be colored using at most (7 +

√
1 + 48g)/2. The statement remains true for the plane

case, g = 0, by virtue of the Four-Color Theorem.

Theorem 4.7. A twinless graph of genus at most g contains an induced matching of size at least
(n − 10g)/(49 + 7

√
1 + 48g), where n is the number of vertices of the graph.

Proof. Let G be a twinless graph of genus at most g, and assume temporarily that G does not
contain any isolated vertex. Let M ⊆ E be a maximal matching in G on vertex set V (M). Then
I = V − V (M) is an independent set. Let H be the hypergraph with vertex set V (M) and edges
N(v), v ∈ I. Then H is a hypergraph of genus at most g (as its bipartite incidence graph is
a subgraph of G), and by Lemma 4.6, has at most 6|V (M)| + 10g − 9 edges (note that we can
assume |V (M)| ≥ 2 since otherwise G consists of a single vertex, in which case there is nothing
to prove). As G contains no twins, each edge of H uniquely corresponds to a vertex in I, so
|I| ≤ 6|V (M)|+10g−9 and, therefore, |V (M)| ≥ (|V |−10g +9)/7. The original graph might have
contained at most one isolated vertex (since it is twinless), so |V (M)| ≥ (n − 10g)/7 and G has a
matching of size at least (n − 10g)/14.

By Heawood’s theorem and the Four-Color Theorem, a graph of genus at most g can be colored
using at most (7+

√
1 + 48g)/2 colors. Hence, G and any of its minors always contain independent

sets on a 2/(7 +
√

1 + 48g) fraction of their vertices. Then by Lemma 4.2, G has an induced
matching of size at least 2(n − 10g)/[14(7 +

√
1 + 48g)] = (n − 10g)/(49 + 7

√
1 + 48g).
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In particular, a planar twinless graph always contains an induced matching of size n/56. As we
mentioned, we will improve this bound for planar graphs in Section 4.2. Here we present a simple
consequence not involving the concept of twinlessness:

Corollary 4.8. A planar graph of minimum degree at least 3 contains an induced matching of size
at least (n + 8)/20, where n is the number of vertices of the graph.

Proof. Since the graph has minimum degree at least 3 it cannot contain degree 1 and 2 vertices.
Then by Lemma 4.4, the hypergraph constructed in the proof of Theorem 4.7 (for g = 0) contains at
most 2|V (M)|− 4 edges. However, it is now possible that more than one vertex in the independent
set results in the same edge of the hypergraph. However, there can only be at most two vertices
sharing the same neighborhood, since a planar graph does not contain a K3,3. Therefore, the size
of the independent set is at most 4|V (M)| − 8, and thus the graph contains a matching of size
at least (n + 8)/5. Using Lemma 4.2, it can be turned into an induced matching of size at least
(n + 8)/20.

The condition in Lemma 4.2 can be replaced by an average degree condition if we are looking
at graph classes that are not closed under minors.

Lemma 4.9. Assume that G and any of its subgraphs has average degree less than d. Then any
matching M in G contains an induced matching in G of size at least |M |/(2d − 1).

Proof. Let GM = G[V (M)] be the graph G restricted to vertices in V (M). An induced matching
in GM will be an induced matching in G. Let d(v) denote the degree of v in GM . By assumption,
the average degree of GM at most d.

Consider
∑

uv∈M

(d(u) + d(v)) =
∑

v∈V (M)

d(v) ≤ d|V (M)|.

Therefore, there is an edge uv ∈ M such that d(u) + d(v) ≤ 2d. Removing the two vertices and
its neighbors can destroy at most (d(u) − 1) + (d(v) − 1) + 1 ≤ 2d − 1 edges of the matching M in
GM . Thus the resulting graph contains a bipartite balanced graph with a perfect matching of size
at least |M | − (2d − 1)) in M . We can therefore repeat this process to keep picking edges for an
induced matching of size at least |M |/(2d − 1).

4.2 An Improved Bound For Planar Graphs

In this section we improve the bound on induced matchings in planar graphs given in Theorem 4.7.

Theorem 4.10. A twinless planar graph contains an induced matching of size at least n/40, where
n is the number of vertices of the graph.

Proof. Let G be a twinless graph, and let M , V (M), and I be as in the proof of Theorem 4.7.
Let c be a constant to be determined later. If I has at least 4n/c vertices of degree 1, let I1 be
the set of such vertices. Since G is twinless, no two vertices in I1 share the same neighbor, and
|N(I1)| = |I1|. By the Four-Color Theorem, at least n/c vertices in N(I1) form an independent set
in G. Now the edges joining these vertices to their neighbors in I1 form an induced matching in G
of size at least n/c.

A similar argument can be used to bound the number of vertices of degree 2 in I in terms of
the size of the induced matching. Let I2 be the set of vertices in I of degree 2. Let G2 be the
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graph formed by taking the induced graph on N(I2), and for each vertex w ∈ I2, if w is adjacent
to vertices w1, w2 with w1w2 6∈ E(G), then we add the edge w1w2 to G2. Then n(I2) ≤ e(G2).
Since w has degree 2 and G is planar, each new edge w1w2 can be drawn near the edges w1w,ww2

in a planar drawing of G. Hence G2 is planar, and e(G2) ≤ 3n(G2). By the Four-Color Theorem,
G2 has an independent set of size at least n(G2)/4. By picking a neighbor in I2 of every vertex in
this independent set we obtain an induced matching in G of at least n(G2)/4 ≥ n(I2)/12 vertices.
It follows from this that if I contains at least 12n/c vertices of degree 2, then G has an induced
matching of at least n/c edges.

By Lemma 4.4 applied with g = 0, the number of vertices in I of degree at least 3 is bounded
by 2|V (M)|. Therefore, assuming that there is no induced matching of at least n/c edges whose
edges are all incident on vertices in I, we have |I| − 16n/c ≤ 2|V (M)|. Since |I|+ |V (M)| = n, we
obtain |V (M)| ≥ n(c − 16)/(3c). If V (M) contains at least 8n/c vertices, then by Lemma 4.2, G
has an induced matching of at least n/c edges. By choosing c = 40 so that 8n/c = n(c − 16)/(3c),
we can conclude that G has an induced matching of at least n/40 edges.

Remark 4.11. We do not have a matching upper bound to complement Theorem 4.10, but we
can get close. The following construction builds a graph whose largest induced matching has size
(n + 10)/27.

We first build a basic gadget for the construction. Draw a K4 on vertex set V4. Add a degree
3-vertex to each face. Add a degree 1 vertex attached to each vertex of V4. Add a degree 2 vertex
adjacent to each pair of vertices in V4 (drawn near an edge of the original K4). Now exactly two
vertices of V4 will be on the outer face. Note that the gadget has 18 vertices; if we remove all
vertices of degree 1 and 2 it has 8 vertices.

For convenience, we describe the full construction by first drawing a framework for the graph,
before using it to construct the desired graph. Draw a 2k-cycle on vertices v1, . . . , v2k. On the
interior of the cycle add edges v1vj for 3 ≤ j ≤ 2k − 1, and on the exterior of the cycle add edges
v2kvj for 2 ≤ j ≤ 2k − 2. Note that there are no multiple edges, and that the faces are incident
to distinct 3-sets of vertices. Now we construct the desired graph: Add a vertex of degree 3 to
each face. For 1 ≤ j ≤ k replace the edge v2j−1v2j by a gadget with v2j−1 and v2j as its exposed
vertices, and subdivide every other edge of the framework.

By the construction, we obtain a planar twinless graph. The framework is a triangulation on 2k
vertices, 6k − 6 edges, and 4k − 4 faces, so our final graph has 18k + (5k − 6) + (4k − 4) = 27k − 10
vertices.

Note that any edge in the graph has at least one endpoint in V4 of some gadget, and that the
neighborhood of that endpoint contains all of V4 from that gadget, and that the gadget minus
V4 is an independent set. Therefore an induced matching contains at most one edge incident to
that gadget. Thus the maximum size of an induced matching is bounded above by the number of
gadgets, k, and obviously it equals k. In terms of the total number of vertices n = 27k − 10, this
is (n + 10)/27.

By deleting the vertices of degree 1 and 2, we get a twinless planar graph of minimum degree
3 on 8k + (4k − 4) = 12k − 4 vertices, and a maximum induced matching of size k. In terms of
the total number of vertices n, this is (n + 4)/12. For comparison the bound from Corollary ?? is
(n + 8)/20. We can further modify this example to show that the bound given in Corollary 4.3 is
nearly tight: For each gadget, take its degree 3 vertex x incident to its outer face, which lies in a
face f of the framework, and identify x with the degree 3 vertex added to f . The resulting graph
is a twinless, 3-connected planar graph on (12k − 4) − k = 11k − 4 vertices. In terms of the total
number of vertices n, this is (n + 4)/11.
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5 Induced matchings in outerplanar graphs

The main result of this section is the following: A nontrivial connected outerplanar graph G with
minimum degree 2 has an induced matching of size ⌈n

7 ⌉. This result is sharp, as will be seen later.
Before deriving the sharp result, we show how to apply the methods from the previous section

to obtain an easy lower bound of ⌈n
9 ⌉ on the size of the induced matching in an outerplanar graph.

To do so, we will show that an outerplanar graph has a matching on at least ⌈n
3 ⌉ edges; then

Lemma 4.2 with the fact that an outerplanar graph is 3-colorable (see [15, Exercise 6.3.3]), gives
us an induced matching of at least ⌈n

9 ⌉ edges. Note that ⌈n
3 ⌉ is asymptotically tight for matchings

in outerplanar graphs, as seen in Figure ??.
If G is 2-connected, then it is Hamiltonian (see [15]), and G has a matching of size ⌊n

2 ⌋ ≥ ⌈n
3 ⌉.

Otherwise, let B be a leaf-block in the block decomposition of G, and suppose that u ∈ B is a
cut-point in G. Then B is Hamiltonian, and it is not difficult to see that B contains a matching
of size ⌈n(B)−1

3 ⌉ in which no edge is incident to u. By considering this matching, and recursing on
G− (V (B)− u), we obtain a matching in G on at least ⌈n

3 ⌉ edges, and an induced matching on at
least ⌈n

9 ⌉ edges.

· · ·

Figure 1: 3ℓ + 1 vertices and a maximum matching of size ℓ + 1.

To derive the tight bound of ⌈n
7 ⌉, we first consider a special case, which will also arise later in

the proof of the main result.

Lemma 5.1. Suppose that G is a connected graph for which the block-cutpoint tree is a path and
all blocks are triangles or cut-edges; or, equivalently, G is the union of a path of length ℓ ≥ 1
and at most ℓ triangles, with each edge of the path in at most one triangle, and exactly one edge
of each triangle in the path. If 2 ≤ n(G) ≤ 5 then mim(G) ≥ ⌈n(G)+1

6 ⌉ and if n(G) ≥ 6 then

mim(G) ≥ ⌈n(G)+3
6 ⌉.

Proof. If 2 ≤ n(G) ≤ 5, there is an induced matching of size 1 (simply pick any edge in G), and
this suffices. Since n(G) 6= 1, we may assume that n(G) ≥ 6.

If a leaf-block B is a triangle, then we can apply induction to G − V (B) to obtain an induced

matching in G − V (B) of size at least ⌈n(G)−3+1
6 ⌉. To this we add the one edge of B that is not

incident to the cut-vertex of G in B. This gives us an induced matching of G of size at least
⌈n(G)−2

6 ⌉ + 1 = ⌈n(G)+4
6 ⌉, which is sufficient.

If a leaf-block of G consists of an edge (u, v) with deg(v) = 1, let B be the other block incident
to u in the block-cutpoint tree. We can apply induction to G−V (B)−v since n(G)−n(B)−1 ≥ 2,

giving us an induced matching of size at least ⌈n(G)−4+1
6 ⌉. To this we can add the edge (u, v) to

obtain an induced matching of at least ⌈n(G)−3
6 ⌉ + 1 = ⌈n(G)+3

6 ⌉, which is sufficient.

We note that the bound ⌈n(G)+1
6 ⌉ is tight when n(G) = 5 and G is a triangle with two edges

attached to two distinct vertices in this triangle.
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Corollary 5.2. Let G be a 2-connected outerplanar graph with exactly one non-leaf face, such that
every leaf face is a 3-face. Then for any vertex v, mim(G − v) ≥ ⌈n(G)

6 ⌉.

Proof. If v is on the non-leaf face, apply the previous lemma to G−v; this suffices. Assume now that
v is on a leaf face. If 3 ≤ n(G) ≤ 6, then clearly mim(G−v) ≥ 1. If n(G) = 7, then it can be verified
by the reader that there is an induced matching in G of two edges such that none of them is incident
on v. Therefore, the statement is true when v is on a leaf face of G and 3 ≤ n(G) ≤ 7. Assume
now that n(G) ≥ 8 and that v is on a leaf face of G. Let u be a neighbor of v. Apply Lemma 5.1

to G−{u, v} and note that n(G−{u, v}) ≥ 6. We get mim(G−{u, v}) ≥ ⌈n(G)−2+3
6 ⌉ = ⌈n(G)+1

6 ⌉.
Therefore mim(G − v) ≥ ⌈n(G)

6 ⌉, and the statement follows.

To prove the main result of this section, namely that a nontrivial connected outerplanar graph
G of minimum degree 2 has an induced matching of size ⌈n

7 ⌉, we use induction after separating the
graph into components (by removing vertices that form a certain cut in the graph). To apply the
inductive statement, each of these components must have minimum degree 2. This, however, may
not be true after the removal of the cut-set from the graph. We next define an operation, called
the patching operation, that patches each of these components so that its minimum degree is 2.

Definition 5.3. Let H be an outerplanar graph with n(H) ≥ 4 and with at most two degree 1
vertices. We define an operation that can be applied to H, called the patching operation, to obtain
a graph H ′ as follows.

(a) If there is no degree 1 vertex in H let H ′ = H.

(b) If there is exactly one degree 1 vertex u in H, let u′ be its neighbor. If degH(u′) ≥ 3, let
H ′ = H − u. Otherwise (degH(u′) = 2), let v be the other neighbor of u′. Let v′ be a vertex
after v on the boundary walk in H − {u, u′}. Let H ′ = (H − u) + u′v′.

(c) If there are exactly two degree 1 vertices u and v in H, let u′ be the neighbor of u and v′ be
the neighbor of v. Remove u from H and add the edge u′v. Let H ′ be the resulting graph.

Proposition 5.4. Let H be an outerplanar graph with n(H) ≥ 4 and with at most two degree 1
vertices. Moreover, when H has exactly two degree 1 vertices u and v, then adding a path from
u to v leaves H outerplanar. Let H ′ be the graph resulting from the application of the patching
operation to H. Then H ′ is an outerplanar graph such that: (1) the minimum degree of H ′ is 2,
(2) n(H ′) ≥ n(H) − 1, and (3) mim(H) ≥ mim(H ′).

Proof. H ′ is clearly outerplanar except in case (b) when the degree of u′ is 2. In this case, we could
add u′ to an outerplane embedding of H − {u, u′} such that the edge v′u′ is near vu′ in the outer
face, which gives an outerplane embedding of H ′ (such that v, v′, u′, v bounds a leaf face). From the
patching operation, it is clear that H ′ has minimum degree 2. Moreover, if the patching operation
follows scenario (a) in Definition 5.3, then n(H ′) = n(H), and if it follows scenario (b) or (c) then
n(H ′) = n(H) − 1. Therefore, in all cases we have n(H ′) ≥ n(H) − 1.

To show that mim(H) ≥ mim(H ′), let M ′ be a maximum induced matching in H ′. We only
need to consider the cases when the operation follows scenario (b) or (c). We prove that this is the
case for scenario (c); the proof for scenario (b) is very similar.

If u′v 6∈ M ′, then clearly M ′ is also an induced matching in H and mim(H) ≥ mim(H ′).
Therefore, we may assume that u′v ∈ M ′. It can be easily verified in this case that M = (M ′ +
uu′) − uv is an induced matching of H of the same size as M ′, and mim(H) ≥ mim(H ′). This
completes the proof.
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Theorem 5.5. A nontrivial connected outerplanar graph G of minimum degree 2 has an induced
matching of size ⌈n

7 ⌉.
Proof. Clearly the statement is true if 3 ≤ n ≤ 7. Therefore, we may assume in the remainder of
the proof that n ≥ 8, and that, inductively, the statement is true for any graph with fewer than n
vertices.

Let u be a cut-point in G which is in at most one non-leaf block. Let B1, · · · , Bℓ be all the leaf
blocks containing u, let B0 = G −⋃ℓ

i=1[V (Bi) − u], and let ni = n(Bi), for i = 0, · · · , ℓ. If G has
no cut-points, let u be any vertex in G, and let B0 = G.

Let Bi, where i ∈ {1, · · · , ℓ} be a block such that ni ≥ 7. Let B′
i be the block obtained from Bi

by deleting the chord of each 3-face of Bi. Suppose that B′
i is not a cycle. Clearly, any leaf face in

B′
i must be of length at least 4.

Suppose that B′
i has a leaf face of length at least 6, with boundary F = (u1, . . . , ur, u1) such

that u1ur is a chord and u1 6= u. Let H = G − {u1, u2, u3, u4, u5}, and note that none of the
vertices in H is a cut-point in G. Therefore, H is an outerplanar graph with at most two degree 1
vertices. Apply the patching operation to H to obtain a graph H ′. Then H ′ is a connected

outerplanar graph with minimum degree two. Inductively, we have mim(H ′) ≥ ⌈n(H′)
7 ⌉. Since

n(H ′) ≥ n(H) − 1 and mim(H) ≥ mim(H ′) by Proposition 5.4, we have mim(H) ≥ ⌈n(H)−1
7 ⌉ =

⌈n(G)−6
7 ⌉. A maximum induced matching in H plus edge u2u3 is an induced matching in G, because

any edge of E(Bi) − E(B′
i) incident to u2 or u3 has the other endpoint as u1, u4, or u5, by the

construction of B′
i and F . We conclude that mim(G) ≥ ⌈n(G)−6

7 ⌉ + 1 = ⌈n(G)+1
7 ⌉, which suffices.

If B′
i contains a leaf face F = (u1, · · · , ur, u1) with r = 4 or r = 5, and such that u1 6= u and

ur 6= u, then similar to the above, we let H = G − {u1, · · · , ur}. Again note that none of the
vertices in H is a cut-point in G. Using the same analysis as in the above paragraph, we obtain
mim(G) ≥ ⌈n(G)+1

7 ⌉.
Assuming that ni ≥ 7 and that B′

i is not a cycle, it follows now that every leaf face in B′
i has

length 4 or 5 and is incident to the cut-point u in G. Therefore, B′
i has exactly two leaf faces that

contain u, and each of length 4 or 5. Let F = (u1, · · · , ur, u1) and F ′ = (u′
1, · · · , u′

s, u
′
1) where

r, s ∈ {4, 5}, u = u1 = u′
1, and u1ur and u′

1u
′
s are chords. Note that it is possible that ur = u′

s. Let
H be the graph obtained from Bi by removing the vertices in F ∪F ′; then H is a path so it has at
most two vertices of degree 1. If n(H) ≥ 1 then the edges u2u3 and u′

2u
′
3 give an induced matching

in Bi of size 2. Since ni ≤ 10, Bi has a matching Mi of size at least ⌈ni+4
7 ⌉. If n(H) is 2 or 3, then H

has a maximum induced matching of size at least 1, which together with edges u2u3 and u′
2u

′
3 give

an induced matching in Bi of size 3. Since in this case ni ≤ 12, we conclude that Bi has an induced
matching Mi of at least ⌈ni

6 ⌉. Moreover, no edge of Mi is incident on the cut-point u of G. Now if
n(H) ≥ 4, we apply the patching operation to H to obtain an outerplanar graph of minimum degree

two. Inductively, mim(H ′) ≥ ⌈n(H′)
7 ⌉, and hence mim(H) ≥ ⌈n(H)−1

7 ⌉. Now any induced matching
in H plus edges u2u3 and u′

2u
′
3 gives an induced matching Mi in Bi such that none of the edges in

Mi is incident on u. It follows that mim(G) ≥ 2+mim(H) ≥ 2+⌈n(H)−1
7 ⌉ ≥ 2+⌈ni−9−1

7 ⌉ ≥ ⌈ni+4
7 ⌉.

Therefore, in this case Bi contains an induced matching Mi, none of its edges is incident on u, of
size at least ⌈ni+4

7 ⌉.
Now, for any i ∈ {1, · · · , ℓ} we have the following:
If ni ≤ 6, then clearly Bi contains an induced matching Mi, none of its edges is incident on u,

of size at least ⌈ni

6 ⌉. Simply let Mi be any edge in Bi that is not incident on u.
If ni ≥ 7 and B′

i is a cycle, then Bi satisfies the conditions of Corollary 5.2, and Bi has an
induced matching Mi of size at least ⌈ni

6 ⌉, none of its edges is incident on u (by choosing v = u in
Corollary 5.2).
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If ni ≥ 7, and B′
i is not a cycle, then from the above discussion, Bi has an induced matching of

size at least min{⌈ni+4
7 ⌉, ⌈ni

6 ⌉}.
Let M =

⋃ℓ
i=1 Mi. Let H = B0 − u and note that H has at most two degree 1 vertices. If

n(H) ≤ 3, then clearly mim(H) ≥ ⌈n0

6 ⌉. If n(H) ≥ 4, apply the patching operation to H to obtain
an outerplanar graph H ′ of minimum degree 2. Now by applying the inductive statement to H ′, we
get mim(B0) ≥ ⌈n0−2

7 ⌉. Let M0 be a maximum induced matching in B0 − u, and note that since
none of the induced matching edges in M ∪ M0 is incident on u, M ∪ M0 is an induced matching
in G.

If G has no cut-points, then G is 2-connected and we let B1 = G. In this case we have
mim(G) ≥ min{⌈n(G)+4

7 ⌉, ⌈n(G)
6 ⌉} ≥ ⌈n(G)

7 ⌉.
Now we can assume that ℓ ≥ 1. Note that in this case we have n0 + n1 + · · · + nℓ = n + ℓ.
If at least one block Bi has |Mi| ≥ ⌈ni+4

7 ⌉, then by using ⌈ni

7 ⌉ as a lower bound on the size of
the matching in each block Bj where j ∈ {1, · · · , ℓ} and j 6= i, we get:

|M ∪ M0| ≥
ℓ
∑

j=1,j 6=i

⌈nj

7
⌉ + ⌈ni + 4

7
⌉ + ⌈n0 − 2

7
⌉ ≥ ⌈n + 2 + ℓ

7
⌉ ≥ ⌈n

7
⌉.

Otherwise, we can use ⌈ni

6 ⌉ as a lower bound on the size of each block Bi where i ∈ {1, · · · , ℓ}.
If ℓ ≥ 2, we have:

|M ∪ M0| ≥
ℓ
∑

i=1

⌈ni

6
⌉ + ⌈n0 − 2

7
⌉ ≥

ℓ
∑

i=1

⌈ni

7
⌉ + ⌈n0 − 2

7
⌉ ≥ ⌈n + ℓ − 2

7
⌉ ≥ ⌈n

7
⌉.

If ℓ = 1 and n1 ≤ 5, by picking M to be any edge that is not incident on u in block B1, we get:

|M ∪ M0| ≥ 1 + ⌈n0 − 2

7
⌉ = ⌈n0 + 5

7
⌉ ≥ ⌈n

7
⌉.

If ℓ = 1 and n1 ≥ 6, we have:

|M ∪ M0| ≥ ⌈n1

6
⌉ + ⌈n0 − 2

7
⌉

≥ ⌈7n1 + 6n0 − 12

42
⌉ = ⌈6(n1 + n0) + n1 − 12

42
⌉

≥ ⌈6n + 6 + n1 − 12

42
⌉ ≥ ⌈n

7
⌉.

This completes the induction and the proof.

Figure 1 shows an example of a graph in which the size of the maximum induced matching
is exactly ⌈n/7⌉. A graph in this family consists of a cycle of length 2ℓ (ℓ ≥ 3) with ℓ gadgets
attached as indicated in the figure. The total number of vertices in this graph is 7ℓ, and it is easy
to verify that the maximum induced matching has size exactly ℓ.

6 Applications to parameterized computation

In this section we apply our previous results to obtain parameterized algorithms for IM on graphs
of bounded genus. Let (G, k) be an instance of IM where G has n vertices and genus g for some
integer constant g ≥ 0.
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Figure 2: An illustration of a family of outerplanar graphs for which the lower bound on the size
of an induced matching is tight.

6.1 A problem kernel

We first show how to kernelize the instance (G, k) when G is planar (i.e., for the case g = 0). We
then extend the results to graphs with genus g for any integer constant g > 0.

Theorem 4.10 shows that any twinless planar graph on n vertices has an induced matching of at
least n/40 edges. Observing that if u is a vertex in G that has a twin then mim(G) = mim(G−u),
by repeatedly removing every vertex in G with a twin, we end up with a twinless graph G′ such
that G has an induced matching of size k if and only if G′ does. If k ≤ n(G′)/40 then the instance
(G′, k) of IM can be accepted; otherwise, the instance (G′, k) is a kernel of (G, k) with n(G′) ≤ 40k,
and we can work on (G′, k).

Therefore, our task amounts to reducing the graph G to the twinless graph G′. We describe
next how this can be done in linear time.

Assume that G is given by its adjacency list and that the vertices in G are labeled by the integers
1, . . . , n. We can further assume that the neighbors of every vertex appear in the adjacency list
in increasing order. If this is not the case, we create the desired adjacency list by enumerating
the vertices in increasing order, and inserting each vertex in the neighborhood list of each of its
adjacent vertices. This can be easily done in O(n) time.

For every vertex v of degree d, we associate a d-digit number xv = v1 · · · vd, where v1, . . . , vd

are the neighbors of v in the order they appear in the adjacency list of v (i.e., in increasing order).
We perform a radix sort on the numbers associated with the vertices of G using only the first three
or less (leftmost) digits of these numbers. Since each digit is a number in the range 1 . . . n, and
there are at most O(n) numbers (twice the number of edges in the planar graph), radix sort takes
O(n) time. Let π be this sorted list. Observe that two vertices u and v are twins if and only if
xu = xv. Moreover, since the graph is planar, and hence does not contain the complete bipartite
graph Kr,r for any integer r ≥ 3, any twin vertices of degree at least 3 must have their numbers
adjacent in π (otherwise there will be at least 3 vertices with the same neighborhood). Therefore,
we can recognize the twins in G as follows. Process the numbers in π in order: Let xu and xv be
two adjacent numbers in π, and assume that xu appears before xv. We check whether u and v
are twins by comparing the corresponding digits of xu and xv. If u and v are twins, we mark u.
When we have finished this process, we remove all marked vertices from the graph. We let G′ be
the resulting graph. Since for each number xu in π we spend time proportional to the number of
digits in xu and that of the number appearing next to xu in π, the running time is proportional to
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the sum of the degrees of the vertices in G, which is O(n). We have the following theorem.

Theorem 6.1. Let (G, k) be an instance of IM where G is a planar graph on n vertices. Then in
O(n) time we can compute an instance (G′, k′) where (G′, k′) is a kernel of (G, k) and such that
either n(G′) ≥ 40k′ and we can accept the instance (G, k), or n(G′) < 40k′.

The above theorem gives a kernel of size 40k for Planar-IM, and is a significant improvement
on the results in [10] where a kernel of size O(k) was derived without the constant in the asymptotic
notation being specified. The above results give a concrete value for the bound on the kernel
size. Moreover, this value is moderately small and the analysis techniques are much simpler when
compared to the technique of decomposing a planar graph into regions used in [10].

The same technique can be used to eliminate twin vertices from a graph with genus g. Using
Euler’s formula on Kr,r with the fact that faces in an embedded bipartite graph have length at
least 4, it can be easily shown that:

Proposition 6.2. A graph with genus g does not contain the complete bipartite graph Kr,r for any
r > 2 + 2

√
g.

Using Theorem 4.7 and Proposition 6.2, Theorem 6.1 can now be generalized to graphs with
bounded genus.

Theorem 6.3. Let (G, k) be an instance of IM where G is a graph on n vertices with genus
g. Then in O(gn) time we can compute an instance (G′, k′) where (G′, k′) is a kernel of (G, k)
and such that either n(G′) ≥ (49 + 7

√
1 + 48g)k′ + 10g and we can accept the instance (G, k), or

n(G′) < (49 + 7
√

1 + 48g)k′ + 10g.

6.2 Parameterized algorithms for IM on graphs with bounded genus

We shall again treat the planar case first.
Assume that we have an instance (G, k) of Planar-IM. By Theorem 6.1, we can assume that

after an O(n) preprocessing time, the number of vertices n in G satisfies n ≤ 40k. We will show how
to design a parameterized algorithm for the Planar-IM problem. Our algorithm is a bounded-
search-tree algorithm that uses the Lipton-Tarjan separator theorem [9]. Our results answer an
open question posed by [10] of whether a bounded-search-tree algorithm exists for Planar-IM.
We also show at the end of this section how these results can be extended to bounded genus graphs.

Theorem 6.4 ([9]). Given a planar graph G = (V,E) on n vertices, there is a linear time algorithm
that partitions V into vertex-sets A,B, S such that:

1. |A|, |B| ≤ 2n/3;

2. |S| ≤
√

8n; and

3. S separates A and B, i.e. there is no edge between a vertex in A and and a vertex in B.

Given an instance (G, k) of Planar-IM, where G = (V,E) and |V | = n, we partition V into
vertex-sets A,B, S according to the Lipton-Tarjan theorem. Let GA, GB , and GS be the subgraphs
of G induced by the vertices in A, B, and S, respectively. The idea is simple: separate the graph
by enumerating a possible status for the vertices in S, and then use a divide-and-conquer approach.
However, special care needs to be taken when enumerating the vertices in S as this enumeration is
not straightforward. We outline the general approach below
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Each vertex u in S is either an endpoint of an edge in the induced matching or not. Therefore,
we assign each vertex u two possible statuses: status 0 if u is an endpoint of an edge in the induced
matching and 1 if it is not. Suppose that we have assigned a status to every vertex u in S. If
the assigned status to u is 0, we simply remove u (and its incident edges) from G. If the assigned
status to u is 1 and there is an edge uu′ where u′ ∈ S and the status assigned to u′ is 1, then uu′

has to be an edge in the induced matching if our enumeration is correct. Therefore, we can add
uu′ to the matching and remove all the neighbors of u and u′ from G. If the assigned status to u
is 1, and no vertex u′ ∈ S exists such that the assigned status to u′ is 1, then we further assign u
two statuses: status 1A if u is matched to a vertex in GA in the induced matching, and status 1B

if u is matched to a vertex in GB . In the former case, we add u to GA and remove all its neighbors
in GB , and in the latter case, we add u to B and remove all its neighbors in GA.

After assigning each vertex in S a status from {0, 1A, 1B}, and updating the graph according
to the above description, GA and GB are separated, and we can recurse on them to compute an
induced matching MA of GA and MB of GB . We then return MA ∪ MB plus all the edges uu′

where u, u′ ∈ S, and the assigned status to u and u′ is 1. Note that since our enumeration might
be incorrect, the returned set of edges may not correspond to an induced matching. Therefore, we
will need to verify that the returned set corresponds to an induced matching before returning it.

If there exists an induced matching of at least k edges in G, then it is not difficult to see that at
least one enumeration will return such an induced matching. Otherwise, no enumeration can find
an induced matching of at least k edges, and we can reject the instance.

Finally, note that in the recursive calls, some of the vertices in GA and GB may have already
been assigned the status 1, and we need to respect the assigned statuses in any possible future
enumeration of those vertices in GA and GB .

The running time of the algorithm can be expressed using the following recurrence relation:

T (n) ≤
{

O(1) if n = O(1)

2 · 3
√

8nT (2n/3 +
√

8n) + O(n) otherwise.

By solving the above recurrence relation, we get T (n) = O(225
√

n). Noting that n ≤ 40k, we
have the following theorem:

Theorem 6.5. In time O(2159
√

k + n), it can be determined whether a planar graph on n vertices
has an induced matching of at least k edges.

The above results can be extended to bounded genus graphs. Let G be a twinless graph on n
vertices with genus g. By Theorem 4.7, G has an induced matching of size at least (n− 10g)/(49+
7
√

1 + 48g). Therefore, we can assume that n < (49 + 7
√

1 + 48g)k + 10g; otherwise, we can
accept the instance (G, k) of the induced matching problem. The following theorem by Djidjev and
Venkatsen is the dual of the Lipton-Tarjan theorem for bounded genus graphs:

Theorem 6.6 ([3]). Let G be a graph on n vertices and genus g. There is a linear time algorithm
that partitions the vertices of G into three sets A, B, C, such that no edge joins a vertex in A with
a vertex in B, |A|, |B| ≤ n/2, and |C| ≤ c0

√

(g + 1)n, where c0 is a fixed constant.

Using the above theorem, and the same approach used for Planar-IM, we conclude with the
following theorem:

Theorem 6.7. Let G be a graph on n vertices with genus g. In time O(2O(
√

gk) + n), it can be
determined whether G has an induced matching of at least k edges.
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Due to the large constant in the exponent of the running time of the above algorithms, it is
clear that these algorithms are far from being practical. We shall present in the next section more
practical parameterized algorithms for IM on bounded genus graphs.

7 Practical algorithms for IM on graphs of bounded genus

We start with the planar case. Let (G, k) be an instance of Planar-IM where G has n vertices.
By Theorem 6.1, we can assume that after an O(n) preprocessing time, the number of vertices n
in G satisfies n ≤ 40k.

Let M be a maximal matching in G and let I = V (G) − V (M). If V (M) contains more than
8k vertices, then by contracting each edge of M in GM = G(V (M)) then applying the Four-Color
Theorem to GM , we conclude that GM , and hence G, has an induced matching of at least k edges,
and we can accept the instance (G, k). Assume that V (M) < 8k.

The algorithm will look for a set of exactly k edges that form an induced matching. These
edges will have at most 2k endpoints in V (M). Therefore, we start by enumerating every subset
S ⊆ V (M) of size at most 2k. There are at most

∑2k
i=0

(8k
i

)

such subsets. Let S be such a subset.
We work under the assumption that every vertex in S is an endpoint of an edge in the induced
matching until we either find the desired induced matching, or this assumption turns out to be
false. In the latter case we enumerate the next subset S.

If two vertices u and v in S are adjacent, then uv must be an edge in the induced matching;
therefore, in this case we include uv, remove every neighbor of u and v from G, and reduce k by
1. After we have included (in the induced matching) every edge whose both endpoints are in S,
every remaining vertex in S must be matched with a vertex in I. Observe that if there is a vertex
w ∈ I that is adjacent to at least two vertices in S, then none of the edges joining w to S is in the
induced matching. Hence, w could not be an endpoint to an edge in the matching, and w can be
removed from I. After removing every such vertex w from I, each remaining vertex in I is adjacent
to at most one vertex in S. Now if our original choice of the set S was correct, then by choosing a
neighbor in I for every vertex in S, we should obtain an induced matching in G of size k. If such
a choice is not possible (for example, a vertex in S does not have a neighbor in I), or the total
number of edges in the induced matching at the end of this process is less than k, then our choice
of S was incorrect, and we enumerate the next subset S of V (M) of size at most 2k. After we have
enumerated all subsets of V (M) of size at most 2k, either we have found an induced matching of at
least k edges, or no such a matching exists. Noting that there are at most

∑2k
i=0

(

8k
i

)

≤ (2k +1)
(

8k
2k

)

such subsets, and that the number of vertices in G is O(k), we have the following theorem:

Theorem 7.1. The Planar-IM problem can be solved in O(
(8k
2k

)

k2 + n) = O(91k + n) time.

The above algorithm is a more practical algorithm for small values of the parameter k than the
one described in the previous section. In particular, it reduces the problem to a simple enumeration
algorithm, as opposed to the previous algorithm which relies on the complicated procedure of
separating the planar graph using the Lipton-Tarjan theorem.

We now generalize the result to bounded genus graphs.
By Heawood’s Theorem [15], the chromatic number of a graph with genus g is bounded by

(7 +
√

1 + 48g)/2. Thus, a graph on n vertices with genus g has an independent set of at least
2n/(7+

√
1 + 48g) vertices. It follows from the above that if V (M) contains at least (7+

√
1 + 48g)k

vertices, then G has an induced matching of at least k edges. Otherwise, we can enumerate all
subsets of V (M) of size at most 2k and proceed as before. We conclude with the following theorem.
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Theorem 7.2. The IM problem on graphs with n vertices and genus g can be solved in

O(
((7+

√
1+48g)k
2k

)

k2 + n) time.
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