

Towards a Unified Process for Automated Traceability

Master of Science in Software Engineering Thesis

By:
Carlos Castro-Herrera, MBA

carlosacastroh@ieee.org

Research advisor:
Jane Cleland-Huang, PhD

jhuang@cs.depaul.edu

Center for Requirements Engineering
School of CTI, DePaul University

Chicago, IL, USA
Spring 2007

mailto:carlosacastroh@ieee.org
mailto:jhuang@cs.depaul.edu

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

2 | P a g e

Acknowledgements:

I would like to extend my utmost gratitude to Dr Jane Cleland-Huang for her help and invaluable input in

this thesis. Her passion for knowledge, her hard work and her constant dedication have been an

inspiration for me. I also gratefully acknowledge the feedback and input that I received from the thesis

committee: Dr Orlena Gotel, Dr Xiaoping Jia, and Harold Streeter. Additionally I would like to extend a

thank you to Brian Berenbach of Siemens Corporate Research for his early feedback and to Stephen

Clark for his contribution of the trace strategy diagram shown in Appendix 2: Trace Strategy and

Granularity.

The work described in this thesis was partially funded by NSF grant CCR- 0306303 and by a Fulbright

grant.

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

3 | P a g e

Table of Contents

List of Figures .. 5

List of Tables ... 6

Abstract ... 7

1. Introduction .. 8

2. Traceability .. 10

2.1. Definition .. 10

2.2. Use .. 11

2.3. Importance .. 12

2.4. Implementation .. 13

3. Automated Traceability .. 16

3.1. Definition .. 16

3.2. Benefits and Limitations ... 18

3.3. Experimental Results .. 18

3.4. Best Practices for Automated Traceability ... 19

4. Process Groundwork ... 21

4.1. Benefits of a Process ... 21

4.2. The Automated Traceability Process Meta-Model ... 22

4.3. Paradigm for Creating Processes – Eclipse Process Framework ... 25

4.4. Content Starting Point – Basic Open Unified Process ... 27

5. Process for Automated Traceability .. 30

5.1. Building blocks – Method Content .. 30

5.1.1. New Method Content ... 30

5.1.2. Modified Method Content .. 33

5.2. Linking the Building Blocks – Process Content .. 36

5.3. Usage of the Sample Process Add-On ... 37

5.4. Modification of the Sample Process Add-On .. 38

6. Validation of the Work .. 40

6.1. Meta-Model Support for Traceability ... 42

6.2. Meta-Model Support of Best Practices ... 42

6.3. Process Add-On as Instance of Meta-Model .. 43

7. Conclusions and Further Work ... 45

8. References .. 47

Appendix 1: Automated Traceability Facilitator ... 49

Appendix 2: Trace Strategy and Granularity ... 50

Appendix 3: Traceability Request ... 52

Appendix 4: Traceability Results ... 53

Appendix 5: Create Trace Strategy ... 54

Appendix 6: Run Automated Traceability Analysis ... 56

Appendix 7: Set Up In-Place Traceability .. 58

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

4 | P a g e

Appendix 8: Test and Verify the Automated Traceability Results .. 59

Appendix 9: Automated Traceability .. 61

Appendix 10: Guidelines for Creating Traceable Documents ... 63

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

5 | P a g e

List of Figures

Figure 1. Sample Traceability Links ... 10

Figure 2: Sample Traceability Matrix in the Commercial Tool Caliber .. 14

Figure 3: Schematic of Automated Traceability .. 16

Figure 4: Experimental Results With Different Datasets Using Poirot .. 18

Figure 5: Benefits of Adopting a Formal Process .. 22

Figure 6: Automated Traceability Process Meta-Model ... 24

Figure 7: Bridging the Gap Between Process and Project .. 26

Figure 8: Separation of Method Content and Process Content [22] .. 27

Figure 9: Content Areas and Roles of the OUP/Basic ... 28

Figure 10: Lifecycle of the OUP/Basic ... 28

Figure 11: Linking the New Tasks Into the OUP/Basic Workflows. ... 37

Figure 12: Mapping of Meta-Model to PDCA ... 42

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

6 | P a g e

List of Tables

Table 1: New Method Content ... 30

Table 2: Modified Method Content .. 34

Table 3: Mapping Between Meta-Model and Sample Process Add-On ... 43

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

7 | P a g e

Abstract

Automated Traceability presents a new way of implementing traceability that can potentially save time

and effort over the traditional approaches that require links to be set up and maintained manually.

However, in order to maximize the results of this technique, automated traceability has to be

implemented within the context of a software engineering process. In this thesis we will present a

generic process meta-model that will guide organizations in incorporating automated traceability into

their own software engineering processes. We will also provide an example of an instantiation of this

meta-model for a particular process and tool. This example, besides illustrating the instantiation of the

meta-model, will present a paradigm and technique used to build processes and it will also serve as an

open source content starting point.

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

8 | P a g e

1. Introduction

“The hardest single part of building a software system is deciding precisely what

to build. No other part of the conceptual work is as difficult as establishing the

detailed technical requirements, including all the interfaces to people, to

machines, and to other software systems. No other part of the work so cripples

the resulting system if done wrong. No other part is more difficult to rectify

later." [5]

The previous quote was written in 1987 by Dr. Frederick Brooks for an article titled “No Silver Bullet:

Essence and Accidents of Software Engineering” published by Computer magazine. This quote is still as

true today, twenty years later, as it was in 1987; and chances are that it will continue to hold true for

many years to come.

In this quote Dr. Brooks alluded to the problems surrounding the requirements for a software system.

For such a seemingly simple thing: what the system must do (functional requirements) and what

qualities it must possess (non-functional requirements) [33]; there are plenty of issues that haunt it.

Questions like: are they well understood?, are they all accounted for?, are they clear and correct?, are

they well documented?, are all of them implemented in the system?, what happens if they change?,

what will be the impact on the cost and schedule when they change?, among others are just some of the

many questions that software engineers have to face on a daily basis when dealing with the

complexities of the requirements.

One thing is clear though, the requirements are crucial to the success of any software engineering

project. They are a key part of the documentation, they help converge the interests and understanding

of the stakeholders [27], they are essential in managing the risks of a project in terms of the impact to

cost and schedule [36], and they provide the initial input into the subsequent activities of design,

implementation and testing. The CHAOS report, published by the Standish group, has consistently listed

requirements related problems as a key failure factor in most of the impaired and challenged projects

[35].

This thesis will address one specific problem that affects requirements, the problem of traceability. This

work will try to demonstrate how a combination of techniques, tools and processes can help software

engineers handle this problem and manage the requirements of a software system more efficiently and

effectively.

The thesis starts by defining what traceability is in Chapter 2, listing its importance and common ways of

implementing it. This is followed by a description in Chapter 3 of a technique called automated

traceability that is used to operationalize it. Following this description, the pros and cons of this

technique are listed along with some early results and identified best practices. Chapter 4 will explain

why this technique should be used within the framework of a process in order to achieve better results.

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

9 | P a g e

This chapter starts by listing some of the benefits of having a formal process in place, and by explaining

why the best practices for automated traceability should be part of a software engineering process. It

then lays the groundwork for creating a new tailored process for automated traceability. It does this

describing a generic process meta-model for automated traceability, the framework chosen to

instantiate this tailored process, and a sample content starting point. Chapter 5 will go into the details

of the newly created process add-on, followed by a validation of the work done in Chapter 6. The thesis

ends in Chapter 7 by presenting a list of conclusions and further work that could be done.

The ultimate goal and contribution of this thesis is to provide software engineers with a way of

incorporating the use of automated traceability into their software engineering process, in an effort to

alleviate the problems surrounding traceability and maximize its potential. As a result two products are

delivered. The first one is the high level process meta-model that indicates which elements need to be

added to a software engineering process in order for it to support automated traceability. The second

product is a sample instantiation of this meta-model, i.e. a modified process that supports automated

traceability. This second product, besides exemplifying the instantiation of the meta-model, also

illustrates a particular technology that can be used to model and present processes, and can be used as

a starting point for organizations that wish to use its content.

This work is the continuation and completion of the early results paper “Towards a Unified Process for

Automated Traceability” *6] presented on the ACM International Symposium on Grand Challenges of

Traceability in Lexington Kentucky on March 2007. It forms part of the body of knowledge created in

the DePaul Center for Applied Requirements Engineering lab, and it fits into a wider research initiative

that aims to enhance and promote the use of automated traceability.

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

10 | P a g e

2. Traceability

2.1. Definition
Consider the following scenario: you are a project manager in charge of software engineering project.

After a lot of effort you have compiled what you think is a complete list of requirements (at least for that

moment in time). You give those requirements to your analysts and developers and they start refining

the problem, coding it and testing it. The project is advancing and things are going more or less

according to plan. You get called into a meeting with the primary stakeholders and they ask you the

typical question: “how is the project doing?” To answer this you need to know what percentage of the

requirements are fully implemented and tested. Next, they tell you that they are changing one of the

requirements – a fairly common scenario. Now you need to be able to understand the impact of such a

change; which code, supporting design documents, and tests will need to be modified. A discussion

promptly follows, and then someone asks why a particular requirement was defined that way. Now you

need to be able to identify who defined that requirement and what was the rationale behind it.

The previous scenario is common to all software engineering projects. Anyone who has worked in this

field has been exposed to similar situations at one point or another.

In this scenario there is a common denominator among all the situations that arose in the meeting. All

of them need for a particular characteristic to be present: traceability. Intuitively traceability is a way of

identifying relationships between the different artifacts that are created throughout the software

development lifecycle. These artifacts include work products such as requirements, use cases, classes in

UML class diagrams, classes or methods, and test cases. More formally, traceability has been defined as

the ability to follow the life of a requirement, in both a forwards and a backwards direction, all the way

from its origin to its deployment [20]. Figure 1 illustrates this by showing a few sample traceability links

that exist from the stakeholders all the way down to the unit tests.

Figure 1. Sample Traceability Links

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

11 | P a g e

As Figure 1 illustrates, traceability is commonly divided into two phases: Pre-Requirements specification

and Post-Requirements specification [20]. The reason for this division is that each phase deals with

different information, and each has a different purpose and use.

The pre-requirements specification phase focuses on the issues that arise before the requirement is

formally defined and written in the requirement specification [19, 20]. It deals mainly with tracing from

the source of a requirement to the requirement itself and vice versa [27]. This entails tracking the

rationales behind a requirement (in terms of why a requirement arose, and any assumptions and

arguments that surround it) [32]; and tracking the different contributions of the stakeholders (in terms

of who contributed, when, and in what capacity) [21].

The post-requirement specification phase deals with the tracing from an already specified requirement

down to the artifacts that are related to it, and back up from any of those artifacts to the originating

requirement [27]. The links between these artifacts and the requirements range from simple non-

qualified links to much more complex and qualified relationships between artifacts [32]. For example, a

simple link might be: artifact X traces to artifact Y. A complex link might look like: artifact X {depends on

| is part of | evolves into | is satisfied by | is developed for | generates | is based on} artifact Y; just to

name a few.

2.2. Use
After defining what traceability is, the need arises to understand how it is used. Intuitively, from the

scenario presented at the beginning of this chapter, traceability provides information. This information

can later be used during the software engineering tasks in a wide variety of ways.

The general consensus amongst the research community is that traceability is mainly used for the

following tasks [7, 11, 15, 25, 27, 32]:

 Change impact analysis / Derivation Analysis: provides better understanding of the impact of a
change to the cost, schedule and technical aspects of the project. Answers questions like: what
documents, models, code modules, and tests (among other artifacts) will be impacted by a
particular change?

 Coverage analysis / Compliance Verification: allows validation of which requirements have been
fully implemented in the system and which ones are not. Answers questions like: which
requirements have been designed, coded, tested, and deployed? This provides greater
confidence in whether the objectives are being met or not, helps to understand the contribution
of the work to the whole, and helps to track the progress of the project.

 Guard against gold platting: provides a mechanism to make sure that all the features that are
present in a system actually correspond to a requirement; as opposed to being unnecessary
features that raise the cost and risk of the project.

 Tracking rationales: if the proper information is stored, it allows an understanding of why a
particular decision was made. It answers questions like: who made it, what were the
alternatives, and what the pros and cons were (among other rationale information)?

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

12 | P a g e

 Regression testing: when a fix is introduced in the system that in turn breaks something else,
traceability facilitates regression testing in order to identify what other parts of the system were
affected by the change.

 Trade off analysis: when different implementation options exist, traceability facilitates a trade
off analysis by allowing a comparison between the different repercussions of each option. This
provides the foundation for further cost-benefit analysis.

However, not all organizations use traceability in the same way. In a seminal paper on traceability

Ramesh and Jarke identified two different levels of users of traceability: low end users and high end

users [32]. Low end users tend to use traceability as a mandate to comply with policies or standards, as

a kind of safeguard against criticism and law suits [27]. They tend to only keep simple non-qualified links

between their artifacts. On the other side of the spectrum, high end users employ a richer type system

that allows them to classify and differentiate between the different types of links. They tend to view

traceability as an opportunity for knowledge creation and user satisfaction. They define their trace links

are products, and view them as an investment in corporate knowledge and asset management [27].

2.3. Importance
After understanding how traceability is used at a high level, it is evident the importance that it has

within the software engineering activities. Traceability provides software engineers with a major source

of information that they can use as a tool in their activities. But beyond the importance that comes

directly from reaping the benefits of the uses listed in the previous section, there is something else to

consider: traceability is required and mandated by a lot of popular software engineering, business and

military standards.

As an example, the Software Engineering Institute’s Capability Maturity Model Integration (CMMi)

dictates that traceability is required in order to comply with the Key Process Area (KPA) of Requirements

Management. This KPA is part of the staged maturity Level 2 (Managed), and more specifically it

requires that an organization must [13]:

 Obtain an Understanding of Requirements

 Obtain Commitment to Requirements

 Manage Requirements Changes

 Maintain Bidirectional Traceability of Requirements

 Identify Inconsistencies between Project Work and Requirements

Note that this Key Process Area not only literally indicates that organizations must maintain bidirectional

traceability links, but it also alludes in the other required practices to tasks that directly benefit from

traceability. Obtaining the understanding and commitment to the requirement relies on being able to

track the rationales and contribution structures. Managing the changes requires the ability to identify

the impact of a change and to be able to execute regression tests. Identifying inconsistencies between

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

13 | P a g e

project work and requirements can only be achieved with tools that allow requirement validation and

gold platting checks.

Other equally important software engineering standards such as: IEEE Standard 830-1998 –

Recommended practice for software requirements specifications, and the ISO/IEC 12207 – Software

Lifecycle Processes call for requirements traceability to be in place. This is a key area which this thesis

addresses, since by explicitly adding traceability related tasks to a software engineering process it will be

easier for organizations to comply with these standards.

There is also research that indicates that neglecting or omitting traceability has a negative impact on the

overall quality of the product being developed [15]. It is understood that if there is no traceability in

place more manual revisions will have to be made in order to obtain the information that traceability

provides. This will directly cause an increase in cost, time, and errors. Not having it will also make the

organization more prone to lose of knowledge when individuals leave, to miscommunications and

misunderstandings.

2.4. Implementation
The question now arises as to how to implement this important characteristic of traceability, in order to

use it effectively and reap its benefits. There are several ways to implement traceability, and each one

has advantages and disadvantages over the others. In a related paper Cleland-Huang divided the

different traceability implementations into several different techniques, of which the three main ones

are listed bellow [7]:

 Simple links: Traceability is implemented via a table that illustrates the logical links between
artifacts – known as a traceability matrix [37], or via other static representations such as hyper
text or graphs. This is the most common method for implementing traceability, and support for
this method has been implemented in several commercial tools such as Requisite Pro, Doors and
Caliber. This method is simple and well understood, but very hard to set up and maintain when
the number or artifacts to trace is large. Figure 2 shows a typical traceability matrix captured
from the commercial tool Caliber.

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

14 | P a g e

Figure 2: Sample Traceability Matrix in the Commercial Tool Caliber

 Semantically retrieved links: Traceability is implemented via tools that utilize information
retrieval techniques to identify the links between artifacts based on the co-occurrence of words
and terms. Chapter 3 goes into details on how this technique works.

 Executable links: Traceability is implemented via tools that define certain criteria that when met
will raise an event that signifies a change to an element, which will in turn have an impact on
other elements. For example this is used in simulations and models where certain non
functional requirements are defined as parameters, that when changed will affect other parts of
the system. This technique is also used in event based traceability [8] and in several systems
that define impact analysis rules between the different elements [4, 14]. This technique is
particularly good for non functional requirements.

This list is by no means exhaustive; there are other ways in which an organization could implement

traceability. In fact, it has been suggested that organizations should use a combination of these

techniques to make the most of their effort [7].

There are several well known and documented problems that arise when trying to implement

traceability. Some of these problems are specific to one implementation technique but others apply to

all of them. The following is a sample list of these common problems:

 If the links need to be identified and maintained manually it is usually very time consuming,
error prone and they become outdated easily. [32]

 Usually there is no clear specification of what to trace and why. [20]

 It is difficult to document, manage and visualize the traces. Some of the more complex
relationships are challenging to model. [20, 21]

 Different users have different views and ideas so it is hard for links to be defined and used
consistently. [21]

 Implementing traceability can become expensive. [27]

 Sometimes it is a politically sensitive issue, where the team fears that the traces will be used
against them. [27]

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

15 | P a g e

These problems need to be carefully considered when implementing traceability, but in spite of them

the consensus is that benefits of traceability are worth it.

After this brief introduction to traceability, the following chapter will go more in depth on the particular

technique of automated traceability, since this will be the base technique used throughout the paper to

implement and operationalize traceability.

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

16 | P a g e

3. Automated Traceability

3.1. Definition
Automated Traceability is one of the possible techniques for implementing traceability. The main idea

behind this technique is that it utilizes information retrieval algorithms in order to generate the

traceability links automatically between the various types of software engineering work products [1, 7,

9, 11, 24, 25].

In general, the tools that implement automated traceability parse the artifacts created in the project

and look for semantic similarities that could signify a dependency relationship between them. Figure 3

illustrates this by showing how traces can be identified from a requirement to several other artifacts,

based on the use of similar words or phrases.

Figure 3: Schematic of Automated Traceability

More specifically, automated traceability tools make use of information retrieval models such as the

Vector Space Model (VSM) [9, 24, 25] and the Probabilistic Network Model (PN) [11]. Another approach

known as Latent Semantic Indexing (LSI) has also been used [1, 24]. In these models, traces are

generated through computing a similarity score between a query (which in most cases corresponds to

the text of a requirement) and each artifact in a set of traceable artifacts.

Automated traceability has been implemented in several research tools, such as Poirot1 (developed in

the Center for Requirements Engineering at DePaul University) [10] and RETRO (developed in the

Department of Computer Science at the University of Kentucky) [24].

The remainder of this section illustrates the automated generation of traceability links through the use

of the PN model. Prior to computing the similarity score, the words in the query and traceable artifacts

1
 Note: while most of the work of this thesis is tool independent, for the most part Poirot is used as an example.

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

17 | P a g e

are stemmed to their root forms and “stop” words (i.e. very common words that occur across numerous

documents) are removed.

In Poirot, the PN model is implemented using the following formula to compute the basic probability of
a link between a query q and a traceable artifact a as follows:

)(/),()|()|(
1

qprtqprtaprqapr
k

i

iijj

The first component of the formula pr(aj|ti) is estimated as:

k

kj

ij

ij
tafreq

tafreq
tapr

),(

),(
)|(

It represents the dispersion of a term ti within the artifact aj, normalized over the total number of words
in the artifact. The second component, pr(q,ti) is computed as:

i

i

i
n

tqfreq
tqpr

),(
),(

Here ni is the number of artifacts in the collection containing the term ti. It represents the dispersion of
the term ti in the query, normalized over the total number of potential queries in which ti occurs. The
third component of the formula, pr(q) is computed (using simple marginalization techniques) as:

i

itqprqpr),()(

This represents the relevance of the term ti to describe the query concept q; in other words: the extent

to which the term ti describes the query concept q.

This formula belongs to the family of algorithms known as Term Frequency – Inverse Document

Frequency (tf-idf), and it returns a probability value that is inversely proportional to the number of

artifacts containing the index term, reflecting the assumption that rarer index terms are more relevant

than common ones in detecting potential links. A more complete description is provided in several

other papers [9, 24].

For experimental purposes, results are evaluated using the standard information retrieval metrics of
recall and precision. Precision is measured as the ratio of the true links returned over the total candidate
links the tool returns (signal to noise ratio); and recall is measured as the ratio of the true links returned
over the total true links that exist (fraction of true relationships included) [10, 11]. These formulas are
shown next:

linksretrieved

linkstruelinkscorrect
precision

linkscorrect

linkstruelinkscorrect
recall

In general, for most information retrieval purposes, precision is the most important metric, however for

requirements traceability, recall has to be favored over precision, since industry practitioners need all

true links to be identified. As there is typically a tradeoff between recall and precision, traceability tools

tend to deliver high recall values at the expense of relatively low precision (i.e. many of the candidate

links identified will not be true links). The alternative of favoring precision over recall is unacceptable

for traceability purposes, as many true links would remain unidentified [10].

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

18 | P a g e

3.2. Benefits and Limitations
There are two key benefits of using automated traceability tools and techniques. The first one is the

significant time savings in comparison to manually establishing a traceability matrix [10, 11]. It is not

uncommon for practitioners to spend hours, days, or even weeks performing manual traceability tasks,

which could be performed much more efficiently using an automated trace tool. The second key benefit

is that they provide automatic support for tracing new artifacts as they are created, known as just-in-

time traceability [10, 11]. Just in time traceability eliminates the risk of having to manually update a

matrix each time that an artifact is added.

There is however, an important limitation to using automated traceability. Since it is based on

underlying information retrieval techniques, and these are probabilistic in nature, it will never provide

perfect results (100% recall with 100% precision). This limitation is one of the key motivations for this

thesis, as it proposes to use this technique within a tailored software engineering process in order to

improve the results. This will be explored in more detail throughout this thesis.

3.3. Experimental Results
The Center for Requirements Engineering at DePaul University has conducted several experiments with

the automated traceability tool Poirot. The results for five different datasets [9, 11] are shown below in

Figure 4. These results and the characteristics of each dataset are fully discussed in [11], and illustrate

that in general recall of 90% is achievable at precision rates of 20-30%. A notable exception is the final

dataset L&A (terse), for which the highest achievable recall was 58% at a dismal precision of 4%. The

poor results achieved in this experiment were partially caused by the terseness of the data in the

business and system use cases, and by the inconsistent use of a project glossary.

Figure 4: Experimental Results With Different Datasets Using Poirot

Ice Breaker EBT
Light

Control
L&A (rich) L&A (terse)

Recall 90% 90% 90% 90% 58%

Precision 32% 18% 37% 31% 4%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Trace retrieval results for different datasets

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

19 | P a g e

The fact that different data sets perform in significantly different ways when it comes to automated

traceability has sparked considerable interest in the research community. Throughout these

experiments the same automated traceability tools and algorithms were used, however each dataset

produced different results. This can only mean that the data used in each experiment had varying

degrees of quality. The positive side of this is that the quality of the artifacts that are going to be traced

can be influenced by the implementation of some common best practices. The following section lists

some of these best practices.

3.4. Best Practices for Automated Traceability
In a paper that addresses this issue of why different datasets perform so distinctly [9], Cleland-Huang

identified a set of best practices that if implemented consistently can improve the results of the

automated traceability tools. A brief explanation of these practices is listed below.

 Trace for a purpose: Before starting any trace implementation, identify all the artifacts and the
links that will be recorded. It is important to also understand why each link is being kept and
how it is going to be used. Note that this best practice is key to the success of any traceability
effort, as it will provide the backbone for all traceability decisions.

 Define a suitable trace granularity: Again, prior to implementing traceability, decide what level
of detail the trace strategy will support. For example, when tracing to code, links can be kept at
the package, a class or method level. Organizations should set the level according to their
information needs, bearing in mind that a finer detail may not always be beneficial.

 Support In Place Traceability: If the technological infrastructure permits, get the artifacts where
they are created and/or stored. For example, if a CASE tool is used to track the requirements
(such as Requisite Pro) set the traceability infrastructure so that it will query the requirements
directly from that tool. This best practice guarantees that the latest and most up to date version
of all the artifacts is kept.

 Utilize a well defined Project Glossary: Since automated traceability utilizes information
retrieval techniques, a consistent usage of terms will improve the results of these algorithms.

 Write quality requirements: As the corner stone of traceability, the requirements must be of
good quality. This means that they must be: correct, non ambiguous, complete, consistent,
prioritized, verifiable, understandable, identifiable, etc.

 Construct a meaningful hierarchy of information: Keeping a good hierarchical structure
between the artifacts (such as meaningful packages of classes or appropriate sub titles in the
documents) can be used by the automated traceability tools to strengthen and improve its
results.

 Bridge the inter-domain semantic gap: If within the organization the same terms are used with
different meanings, the results of the automated traceability tools will not be reliable. To
alleviate this, the organization should implement some kind of translation mechanism between
them, prior to their use in the automated traceability tools.

 Create rich content: When constructing any artifact, care should be given to incorporate
rationale and domain knowledge. This will create stronger links between the artifacts which in
turn will improve the results. For a more in depth explanation of this best practice refer to [26]

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

20 | P a g e

 Utilize a process improvement plan: Automated traceability should be implemented within the
greater context of a process, where it can be tested, tried and improved if necessary.

Note that most of these best practices are applicable to traceability in general, not only to automated

traceability. However, since this thesis forms part of the research effort of the DePaul Center for

Applied Requirements Engineering lab – a promoter of automated traceability, our main focus is to use

these best practices within the context of automated traceability.

These best practices are a one of the primary foundations of this thesis, as they help organizations and

project stakeholders build systems and their associated work products that are conducive to effective

automated traceability.

Since actual automated traceability results have shown to be highly dependent upon the quality of the

artifacts that are to be traced, these best practices need to be incorporated into the day to day work of

software engineering practitioners. In other words, these best practices need to be part of the software

engineering process that the organization follows.

The next two chapters will illustrate how to incorporate these best practices (among other things) into a

software engineering process, as well as present a sample process add-on that was tailored specifically

for automated traceability and Poirot. This is done with the goal of aiding organizations that wish to use

automated traceability, so that they can maximize the benefits of this technique.

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

21 | P a g e

4. Process Groundwork

4.1. Benefits of a Process
Before going into the details of the created process, it is important to first explain what a process is and

what the benefits of having a formal process are. This will help reinforce why we chose to create a

tailored process for automated traceability.

A process, as defined in the dictionary, is a “series of actions and operations conducing to an end” *31].

Basically, a process describes the steps that are required to achieve an end result. Under this definition

every individual or organization that develops software has a process, the difference lies in whether or

not the process is formal. Formal processes are processes that are carefully constructed to maximize

efficiency and comply with regulations or obligations; they are well documented, offer repeatable

results, are supported by upper management, and are well understood by the organization. Informal

processes are ad-hoc, with little or no documentation, and hence tend to be executed differently each

time.

Having a formalized process in place, whether for software engineering or for any other discipline, has

been highly regarded as a success factor (or a requirement) in almost all of the current business

standards and methodologies; including ISO 9000, Total Quality Management, Six Sigma, COBIT,

Sarbanes Oxley and CMMI. But beyond having a process just for compliance reasons, there are tangible

benefits for companies that implement and follow a formal process.

One of these key benefits is that a formal process facilitates understanding and communication within

the organization. By having a repository where the activities that have to be executed are detailed and

explained, the personnel can be trained, a common vocabulary can be established and the overall

understanding of the business will increase among the organization [28]. This in turn will help to reduce

frustration among the employees and will boost their morale, improving the work environment [12].

Another benefit of having a well defined process in place is that it supports the management of the

organization. It provides greater visibility into the operations, and therefore facilitates the capturing of

data for measurements. Having measurements is a requirement for estimation, which improves the

chances of meeting schedule deadlines and cost restrictions in future projects. Also, having a better

insight into the way the organization works will help improve quality and reduce the number of defects

[12].

As a tangible example of these benefits, the Software Engineering Institute (SEI) collected and combined

data from several software engineering projects at Teradyne, Boeing, AIS and Hill Air Force Base [34]. In

order to be able to see the effect of implementing a formal process, they gathered the data from these

organizations before and after their adoption of the software engineering processes of Team Software

Process (TSP) and Personal Software Process (PSP). The results are very impressive and are shown in the

following set of graphs.

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

22 | P a g e

Figure 5: Benefits of Adopting a Formal Process

Graph (a) shows that, after the adoption of the TSP/PSP, the number of defects (per thousand lines of

code) found after the release of the software were considerably reduced – increasing the quality.

Graphs (b) and (c) show that the number of days spent in testing (both system and acceptance testing)

decreased – lowering the costs. Graphs (d) and (e) show that the accuracy of the estimation of schedule

and effort was greatly improved – enabling better management. Note that all of these graphs show a

reduction both in the absolute numbers and in their ranges.

Ultimately, all of these benefits affect the bottom line, raising productivity and increasing the return on

investment of the project or product [12]. Creating a software engineering process tailored for

automated traceability will harness these benefits, while also improving the results that the automated

traceability tools provide.

4.2. The Automated Traceability Process Meta-Model
One of the main contributions of this thesis is to provide organizations that wish to use automated

traceability with a roadmap that guides them in how to incorporate this technique into their software

engineering process. This roadmap takes the form of a process meta-model that will point out the key

elements that organizations should add to their processes to support automated traceability.

However, in order to adapt any software engineering process for automated traceability it is important

to first identify and understand the tasks related to automated traceability. In other words, the first

thing needed is to determine what this process add-on will include. Note that this section starts from

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

23 | P a g e

the premise that the organization already has a formal software engineering process in place and that it

will be augmented with the specific automated traceability tasks.

To begin with, this new process addition will need to fully support the use of traceability. Section 2.2

discussed the high level uses of traceability that have been identified in previous research [7, 11, 15, 25,

27, 32], such as: verifying or validating which requirements have been implemented, executing impact

analysis when a change request comes in, identifying tradeoffs between different choices, looking up

the rationale behind a decision or choice that was made, etc. These high level uses of traceability

constitute the information goals that initiate a traceability analysis. Since it is outside the scope of this

thesis to execute a complete usability study of traceability from the human interaction perspective, we

have chosen to view traceability as an information providing service that aids the software engineering

tasks. This way any task that would benefit from the information that traceability provides can use this

service. The manner in which this service is used will be guided by a specific traceability strategy [9, 32].

This traceability strategy will have to be developed by the organization, and it will include what

traceability links are stored, their level of granularity, and why and how they will be used. Note that this

strategy is a key part of the process, since it is here that the organization asks all the important why

questions: “why do we need traceability?”, “why do we want to trace to this artifact?”, “why do we see

this as useful?”, etc. It is with the definition of the strategy that the organization tailors the process to

its needs; hence this is what makes the process highly adaptable to different organizations, scenarios

and uses of traceability.

At a lower level, this process will also need to include all the necessary activities that are required to set

up and maintain the technological platform and infrastructure that will support the traceability service.

Note that this is also driven by the strategy. In addition, the process needs to incorporate periodic

quality control tasks, which will make sure that the automated traceability technique is providing the

level of results that are expected in the organization.

And finally this tailored process will need to include guidelines and best practices that feed into the

software engineering process. These guidelines will help improve the quality of the artifacts created and

hence increase the probability of getting better results from the automated traceability tools.

It is from this previous list of automated traceability related tasks that we have derived the ‘Automated

Traceability Process Meta-Model’. This meta-model, which points out the main elements that need to

be added to a software engineering process, is shown in the following figure.

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

24 | P a g e

Figure 6: Automated Traceability Process Meta-Model

The idea behind this high level process meta-model is that any organization that has a formal software

engineering process in place, and that wants to use automated traceability for their tracing needs, will

be able to instantiate it and create an addition to their software engineering process. This meta-model

is instantiated by creating the specific tasks, roles, work products and guidelines that will operationalize

it, and then incorporating these into the existing organizational software engineering process.

Note that the elements in the process meta-model fall into three different categories (identified with

the numbered color triangles in the bottom left corner). The first category includes items that are

specific to traceability (color coded in green – number 1). The second category is comprised of elements

that are specific to automated traceability (color coded in yellow –number 2). And the last category is of

those elements that are specific to an automated traceability tool (color coded in red – number 3). The

reason for this division is to facilitate reuse from previous instantiations of the meta-model. For

example, imagine that the meta-model is instantiated and a process addition is created for the

automated traceability tool Poirot. If at a later point the process engineer wishes to reuse this process

to create one for RETRO, then he/she will only have to modify those elements that are specific to the

tool Poirot (red elements – number 3).

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

25 | P a g e

The rest of this thesis will present an example of how this high level process meta-model for automated

traceability was instantiated to create a specific process add-on that uses the Poirot tool as their

automated traceability tool.

4.3. Paradigm for Creating Processes – Eclipse Process Framework
To instantiate the process meta-model presented in the previous section we chose to follow the process

creating paradigm and use the tools provided by the Eclipse Process Framework – EPF. EPF is an open

source project under the Eclipse Technology Project. It is based on the IBM Unified Method

Architecture, which in turn is an evolution of the current Object Management Group (OMG) Software

Process Engineering Metamodel Specification (SPEM) [18].

The main goal of EPF is to provide an extensible framework and tools for software process engineering,

and to provide exemplary and extensible process content [22, 23]. Currently, in the software

engineering industry there are a lot of great ideas and knowledge on how to develop software. These

ideas come from different places (organizations, companies, communities, academia, research groups);

and they are geared towards different technologies (.NET, J2EE), specialty domains (iterative, agile), and

industries (financial, embedded, etc) [18]. The problem arises when an organization has to combine all

of this knowledge and apply it to their projects. It is difficult to integrate all this information; there is

redundant content, inconsistencies, isolated work, and lack of flexibility. The EPF addresses this

problem by proving a standardized way of representing and managing the content and then facilitating

its application within a project [18].

The content produced by the EPF is presented as a web site, which gives centralized access to the

information about the practices and processes used by the organization [22, 23]. This web site allows

the users to navigate and view the process through different perspectives, such as by work product, by

role, and by time, among others. For example, a user can go into the web site and select a role and see

the detailed description of that role, the activities in which it participates and its responsibilities.

Alternatively a user can select the time perspective (lifecycle) and identify for the current stage of the

process, which are the next activities, what are their inputs and outputs, and who participates in them.

Note that this also serves as an educational knowledge base that can be used to train the team

members.

Furthermore this web site helps to effectively execute processes in projects by bridging the gap between

process management and project management [2]. When a process engineer designs a process, he/she

will model the flow of the process using workflow diagrams, which the process authoring tool

automatically transforms into work breakdown structures (WBS). This feature helps project managers

plan and track projects based on the process. This is illustrated in the following diagram:

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

26 | P a g e

Figure 7: Bridging the Gap Between Process and Project

The EPF proposes that processes should be created in two steps. In the first step the building blocks of

the process have to be defined. These building blocks are the roles (who will participate), the tasks

(what needs to be done and how), the artifacts (what will be produced) and any additional guidelines.

These building blocks are independent of any process, and they are called ‘Method Content’ in the EPF

lingo [2, 22, 23].

Once these building blocks have been defined, the second step of the process authoring is to link and

group them together in a behavioral sense. This linkage between them is what describes the lifecycle of

the process, i.e. how the process will be executed through time, and it is represented as workflows and

work breakdown structures. The products of this second step are what the EPF calls the ‘Process

Content’ [2]. The Process Content is constructed two steps [22, 23]:

1. First ‘Capability Patterns’ are created. These represent process knowledge for a specific area,
and they are composed of instances of the ‘Method Content’ optionally grouped in ‘Activities’.
They can also have other process elements, such as ‘Milestones’, ‘Phases’ and ‘Iterations’.

2. Then the ‘Delivery Process’ is created. This is a grouping of instances of ‘Capability Patterns’ and
it represents the complete and integrated process.

The following figure illustrates the separation of Method Content and Process Content in the EPF.

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

27 | P a g e

Figure 8: Separation of Method Content and Process Content [22]

The simple philosophy of process authoring proposed by the Eclipse Process Framework, along with the

state of the art tool for authoring processes, the user friendly web site used to deliver the content and

the other benefits that the framework and the tool provide, were the main reasons why the EPF was

selected to create the sample process tailored for automated traceability and Poirot.

4.4. Content Starting Point – Basic Open Unified Process
As stated earlier, to instantiate the process meta-model presented in section 4.2 an organization needs

to have a formal software engineering process in place, so that they can augment it with the specifics of

automated traceability and their chosen tool. For the sample process that is being created with the EPF

for Poirot we choose to use as the Basic Open Unified Process (OUP/Basic) as the starting software

engineering process.

The OUP/Basic is part of the process content delivered by the Eclipse Process Framework to fulfill its

goal of proving exemplary and extensible process content [22, 23]. At the time of writing the EPF is

proving process content for OUP/Basic, Scrum and Extreme Programming.

In particular, the OUP/Basic is an iterative software engineering process, that claims to be minimal,

complete, and extensible [2]. It is a streamlined and agile version of the Rational Unified Process, with

fewer artifacts and a low level of ceremony tasks [2]. The main contributors of the OUP/Basic are

important and recognized companies and institutions in the software engineering field, such as IBM, Ivar

Jacobson, the European Software Institute, and the University of British Columbia among others.

The OUP/Basic is mainly intended for small teams that do not need excessive deliverables and formality.

It is based on the following core principles: collaborate to align interest and understanding, balance

priorities to maximize the benefits to the stakeholders, focus on architecture to mitigate risks early, and

evolve continuously to get feedback and improve [2].

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

28 | P a g e

The content of the OUP/Basic is organized into the following four content areas, known as ‘Sub-

Processes’ *2]: (note that each one corresponds to a statement in the Agile Manifesto [3] – shown in

italics)

 Communication and Collaboration (Individuals and interactions over processes and tools): This is
the foundation layer and it deals with the communication of the team. All of the roles are
defined in this area.

 Intent (Customer collaboration over contract negotiation): This area deals with identifying the
wants and needs of the stakeholders and making sure they are met throughout the increments
of the project. Most of the tasks related to requirements and testing are defined here.

 Solution (Working software over comprehensive documentation): This area is about solving the
problem by creating the product. It includes tasks related to analysis, design, implementation,
and testing.

 Management (Responding to change over following a plan): This area is in charge of leading the
project. It focuses on a coaching style of management where all the team members contribute
and estimate their own work. It mainly includes tasks related to project management.

The work in the OUP/Basic is executed by six different roles: Stakeholder, Analyst, Tester, Developer,

Architect and Project Manager. Each one of these roles has different abilities and responsibilities, and

their focus aligns with the previously listed content areas [2] as shown in the following figure:

Figure 9: Content Areas and Roles of the OUP/Basic

All of these elements come together to form the Lifecycle Process which is structured into four

iterations: Inception, Elaboration, Construction and Transition. This lifecycle is illustrated in the

following figure:

Figure 10: Lifecycle of the OUP/Basic

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

29 | P a g e

There are several reasons why the OUP/Basic was selected as the starting point for tailoring a process

for the needs of automated traceability. The first reason is that the OUP/Basic includes a fairly complete

set of initial content, including many of the proven best practices of the software engineering industry

(based on the widely used and recognized Rational Unified Process – over half a million users in more

than three thousand companies by 2003 [29]). This content provides a solid starting point for the

additions and modifications required for automated traceability. The second reason is that, since the

OUP/Basic is modeled in the EPF, its content is highly extensible and customizable. The benefit of this is

twofold: it will allow for easy incorporation of the automated traceability needs into the process, as well

as leave the possibility for the users of the process to further modify the rest of it to fit their needs

(resizing it, integrating proprietary knowledge, etc). The third is that it benefits from the features and

characteristics of the EPF such as the state of the art tool for authoring processes, and the user friendly

web site used to deliver the content. And finally, the OUP/Basic is open source (under Eclipse Public

License v1.0), which allows for public use and modification without problems related to copyright

infringement.

Despite its virtues we are not advocating the OUP/Basic as the panacea or silver bullet in software

processes. We are using the OUP/Basic solely as a content starting point, which will allow us to

augment it with the specific needs of automated traceability and Poirot. Ultimately, each organization

that wishes to instantiate the process meta-model is encouraged to use their institutionalized software

engineering process.

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

30 | P a g e

5. Process for Automated Traceability

Following the paradigm of process authoring proposed by the Eclipse Process Framework, and using as a

starting point the content provided by the OUP/Basic, the following subsections describe the work done

to instantiate the process meta-model and create a sample process add-on for automated traceability

and Poirot. This is followed by a couple of short hypothetical walkthroughs that illustrate how this

sample add-on is used and how it can be modified.

Bear in mind that throughout this work the following design principles and ideas were followed:

 All of the additions and modifications had to be related to the traceability, automated
traceability and Poirot. And as a whole, they had to form a cohesive set of changes.

 The work was limited to implementing what the meta-model needed, it was not meant to be a
complete overhaul of the OUP/Basic.

 Any addition/modification had to be as unobtrusive possible, creating the lowest possible
coupling between the OUP/Basic and the created add-on.

5.1. Building blocks – Method Content
The first part of defining the process add-on involved identifying the basic building blocks (i.e. ‘Method

Content’) that would be needed. For this, a detailed revision of the ‘Method Content’ of the OUP/Basic

was done. The OUP/Basic is comprised of seven roles, thirteen work products, eighteen tasks and

approximately two hundred and fifty guideline elements (checklists, guidelines, examples, reports,

templates, definitions, etc.). To this initial set we decided to add and modify some of them to comply

with what the meta-model indicated.

5.1.1. New Method Content

The following table briefly illustrates all of the new ‘Method Content’ elements that were created for

the process add-on. These additions are discussed in greater detail after the table.

Table 1: New Method Content

Type of item Name Scope Brief description

Roles

Automated Traceability

Facilitator
Poirot Tool

Sets up the technical infrastructure required to support

the Poirot tool.

Work

Products

Trace Strategy and

Granularity
Traceability

Used to describe the different traces that the project

stakeholders wish to record and the rationale supporting

their decisions.

Traceability Request Traceability
Its purpose is to initiate a traceability query and to

document the intent of the trace.

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

31 | P a g e

Type of item Name Scope Brief description

Work

Products

Traceability Result Poirot Tool
Represents the output generated by the traceability tool

when a query is executed (in a raw or aggregated form).

Tasks

Create Trace Strategy Traceability
Task it that creates the Trace Strategy and Granularity

work product.

Run Automated Traceability

Analysis
Poirot Tool

Details the steps required to execute an automated

traceability analysis using the Poirot tool.

Set up in-place Traceability Poirot Tool

Task to set up the server that will run the Poirot tool, and

all the required adapters that will interconnect the

information repositories and case tools from which

Poirot will obtain the data.

Test and Verify the

Automated Traceability

Results

Automated Traceability
Provides a framework to validate the effectiveness of the

results provided by the automated traceability tools.

Concepts

Automated Traceability Automated Traceability Definition of Automated Traceability

Precision Automated Traceability Definition of the Precision metric.

Recall Automated Traceability Definition of the Recall metric.

Guidelines

Guidelines for Creating

Traceable Documents
Automated Traceability

Guideline that provides pointers to improve the artifacts

that are created during the software engineering

process, so that the results provided by the automated

traceability tool are better.

Automated Traceability Facilitator: This role is responsible for setting up the technical infrastructure

needed for Poirot. The person (or persons) who will play this role will have to install the server, install

the adapters needed and provide technical support. Strong technical skills are required in Tomcat, MS

SQL Server, XML and any case tool used by the organization. A screen shot of how this method content

element this looks in the published web site can be viewed in Appendix 1: Automated Traceability

Facilitator. Note that this role is not the one responsible for executing the trace queries. The trace

queries are executed mainly by the Analyst, which is an existing role in the OUP/Basic that was

enhanced to accommodate these new responsibilities (this is further explained in the next subsection).

Trace Strategy and Granularity: This work product is an artifact used to describe the different traces

that the project stakeholders wish to record; it represents the organization’s expectations of

traceability. When the stakeholders instantiate this document they will: name all the types of links that

can be identified between the different artifacts, their purpose, and the level of granularity desired [9].

For example, if the stakeholders wish to trace between a use case and a code file, they will describe this

link, write down the purpose of it, and will define to which level they wish to trace to (i.e. will they trace

to the code file as a whole, or will they trace down to the specific methods). The rationale behind this

artifact is twofold. First, it guides the Automated Traceability Facilitator when he is setting up the

technical infrastructure needed, since he will be able to easily identify the different parts that need to

be interconnected. Secondly, it facilitates the process of using the results provided by the trace tool. In

the case of automated traceability tools, even though they will identify the candidate links without this

document, its existence will aid in determining the true links out of the candidate links. This work

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

32 | P a g e

product plays a key role in the process add-on, since this it defines the traceability strategy that the

organization will use. A screen shot of how this method content element looks in the published web site

can be viewed in Appendix 2: Trace Strategy and Granularity.

Traceability Request: This work product is used as a formality to record the intent of the trace and to

initiate the workflow required to execute it. It contains information such as: who initiated the request,

what information they wish to obtain from it, and why they need this information. This work product is

entirely optional, and can easily be omitted. However, it is suggested to record this artifact, since it will

provide useful insight into what the real traceability needs are. This information can then in turn be

used by future projects to further refine the organization’s Trace Strategy. A screen shot of this how

method content element looks in the published web site can be viewed in Appendix 3: Traceability

Request.

Traceability Results: This work product represents the results of a traceability query. It was defined as a

tool specific method content element, since in its simplest form it will constitute the report that the

Poirot tool creates after the candidate links have been filtered. However, any other kind of

representation, such as an aggregated report created by the Analyst, will also work. These results are

what is fed into the different tasks of the process that benefit/make use of traceability. A screen shot of

how this method content element looks in the published web site can be viewed in Appendix 4:

Traceability Results.

Create Trace Strategy: This is the task that produces the new Trace Strategy and Granularity document,

it actively guides the organization in the steps required to create and document the trace strategy. The

Analyst, Stakeholders and the Automated Traceability facilitator will work together to execute this task.

They will start by reviewing pertinent documentation (requirements, standards, architectural diagrams,

the list of work products created throughout the software engineering lifecycle, past traceability

requests, etc.) and from this they will select which artifacts they wish to trace to and the different

relationships between them. They will document their results in the Trace Strategy and Granularity

document. Note that this is a task that can be performed on a per project basis or on a per organization

basis. A screen shot of how this method content element looks in the published web site can be viewed

in Appendix 5: Create Trace Strategy.

Run Automated Traceability Analysis: This is a tool specific task that describes how to use the

automated traceability tool Poirot. This task includes the detailed instructions of how to run a

traceability query, from logging on to the server, selecting the project, running the query, reviewing the

candidate links, accepting the true links and creating the final report. This task is mainly executed by the

Analyst, but any role that has the appropriate user rights can execute it. Note that this task uses the

Traceability Request as its main input and produces the Traceability Results as the output. A screen shot

of how this method content element looks in the published web site can be viewed in Appendix 6: Run

Automated Traceability Analysis.

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

33 | P a g e

Set up in-place Traceability: This task, executed by the Automated Traceability Facilitator, is focused on

setting up the environment to deploy the automated traceability tool Poirot. Its scope includes the

installing of the servers (Tomcat, MS SQL, and Poirot) and the setting up of software adapters and local

servers that enable the tool to trace into geographically distributed third party case tools. Note that this

task refers the user to the System Documentation of Poirot for the low level details of how to execute

the required steps. A screen shot of how this method content element looks in the published web site

can be viewed in Appendix 7: Set Up In-Place Traceability.

Test and Verify the Automated Traceability Results: This is a quality control task used to measure the

effectiveness of the automated traceability tool. It outlines the steps needed to conduct an experiment

and evaluate the performance of the tool in terms of Precision and Recall. It starts by the Analyst

selecting a manageable set of requirements and manually creating a traceability matrix. The Analyst

then proceeds to trace with the tool each one of the selected requirements. After reviewing and

refining the results then both matrices can be compared and Precision and Recall calculated. If the

metrics are not at the organization’s desired level, then a careful analysis should be performed to

determine why this happened and how it can be improved. A screen shot of how this method content

element looks in the published web site can be viewed in Appendix 8: Test and Verify the Automated

Traceability Results.

Automated Traceability, Precision, & Recall: These method content elements are a special kind of

element in the EPF called Concepts. They represent key terms and definitions that are used throughout

the process. In particular, these three concepts define what automated traceability, precision and recall

are. A screen shot illustrating how the concept of Automated Traceability looks in the published web

site can be viewed in Appendix 9: Automated Traceability.

Guidelines for Creating Traceable Documents: This last method content element is what the EPF

defines as a guideline. The purpose of this guideline is to improve the effectiveness of the automated

traceability tools by making sure that all the different artifacts that are created comply with a certain

level of quality. These guidelines provide the users with ideas such as: making sure that the terms in the

document are used consistently with the ones defined in the glossary, that all artifacts should include

rich additional content (such as rationale and domain knowledge), that everything is uniquely

identifiable, and that the artifacts should be structured into meaningful hierarchies, among others [9,

26]. If followed correctly the number of shared meaningful terms that will be present in the various

artifacts can increase and hence improve the results of the information retrieval techniques that the

automated traceability tools use. A screen shot of how this method content element looks in the

published web site can be viewed in Appendix 10: Guidelines for Creating Traceable Documents.

5.1.2. Modified Method Content

In addition to the new method content elements that were added for the process add on, a number of

the existing elements of the OUP/Basic were also modified. The following table briefly lists the changes

that were introduced.

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

34 | P a g e

Table 2: Modified Method Content

Type of item Name Scope Brief description of change

Roles

Analyst
Traceability, Automated

Traceability, and Poirot Tool

Added skill related to requirements, Traceability, Automated

Traceability, and Poirot tool.

Architect
Traceability, Automated

Traceability, and Poirot Tool

Added skill related to requirements, Traceability, Automated

Traceability, and Poirot tool

Project Manager
Traceability, Automated

Traceability, and Poirot Tool

 Added skill related to Traceability, Automated Traceability,

and Poirot tool

Tasks

Analyze Architectural

Requirements

Added an optional link to the Run Automated Traceability

Analysis task to aid in performing tradeoff analysis and

tracking rationales.

Assess Results
Added an optional link to the Run Automated Traceability

Analysis task to aid in requirements coverage analysis.

Create Test Cases
Added an optional link to the Run Automated Traceability

Analysis task to aid in tests coverage analysis.

Define Vision
Added an optional link to the Run Automated Traceability

Analysis task to aid in identifying system constraints.

Demonstrate the

Architecture

Added an optional link to the Run Automated Traceability

Analysis task to make sure that proof of concepts trace back to

all the important requirements.

Manage Iteration
Added an optional link to the Run Automated Traceability

Analysis task to aid in performing impact or coverage analysis.

Request Change
Added an optional link to the Run Automated Traceability

Analysis task to aid in performing impact analysis.

Work

Products

Actor Automated Traceability
Added a reference to the Guidelines for Creating Traceable

Documents

Architecture Automated Traceability
Added a reference to the Guidelines for Creating Traceable

Documents

Design Automated Traceability
Added a reference to the Guidelines for Creating Traceable

Documents

Developer Test Automated Traceability
Added a reference to the Guidelines for Creating Traceable

Documents

Glossary Automated Traceability

Enhanced the importance of the Glossary for automated

traceability – ensuring a consistent and reliable use of

vocabulary.

Implementation Automated Traceability
Added a reference to the Guidelines for Creating Traceable

Documents

Iteration Plan Automated Traceability
Added a reference to the Guidelines for Creating Traceable

Documents

Project Plan Automated Traceability
Added a reference to the Guidelines for Creating Traceable

Documents

Risk List Automated Traceability
Added a reference to the Guidelines for Creating Traceable

Documents

Status Assessment Automated Traceability
Added a reference to the Guidelines for Creating Traceable

Documents

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

35 | P a g e

Type of item Name Scope Brief description of change

Work

Products

Supporting

Requirements
Automated Traceability

Added a reference to the Guidelines for Creating Traceable

Documents

Test Case Automated Traceability
Added a reference to the Guidelines for Creating Traceable

Documents

Test Log Automated Traceability
Added a reference to the Guidelines for Creating Traceable

Documents

Test Script Automated Traceability
Added a reference to the Guidelines for Creating Traceable

Documents

Use Case Automated Traceability
Added a reference to the Guidelines for Creating Traceable

Documents

Use Case Model Automated Traceability
Added a reference to the Guidelines for Creating Traceable

Documents

Vision Automated Traceability
Added a reference to the Guidelines for Creating Traceable

Documents

Work Items List Automated Traceability
Added a reference to the Guidelines for Creating Traceable

Documents

Concepts

Traceability Traceability
Augmented the definition and provided examples of use and

implementation.

The three roles that were modified – the Analyst, the Architect and the Project Manager – were

basically augmented with traceability related skills to reflect their new responsibilities within the process

add-on. Note that these changes are at the three scope levels (traceability, automated traceability and

tool specific), since they include skills that range from generic requirements and traceability skills to

much more specific Poirot skills.

The modifications to the tasks consist of an optional step that was added to each one. This optional

step links each task with the Run Traceability Analysis task. The idea behind this modification is that

these tasks are clear and evident examples of tasks that can benefit from the results of a traceability

analysis. The optional execution of a traceability analysis will support these tasks in the executing trade-

off analysis, tracking rationales, checking requirements and tests coverage, identifying constraints and

performing impact analysis.

The majority of the changes to the work products consisted of adding a link in each one to the

Guidelines for Creating Traceable Documents. This way, when the users of the process instantiate the

various artifacts, they can reference the guidelines, improve their quality and ultimately increase the

effectiveness of the automated traceability tools. The only different modification was the one made to

the Glossary. This change consisted of reaffirming the importance of this work product in the context of

automated traceability – key to ensure that the terms are used consistently and hence improve the

information retrieval results.

And finally, the last modification introduced was to the concept of Traceability. This concept was

enhanced with a more complete definition of the term, with an extended list of uses, and with a brief

description of how it is usually implemented.

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

36 | P a g e

5.2. Linking the Building Blocks – Process Content
After defining the method content, the next step of the process authoring paradigm of EPF is to link that

method content together with the rest of the process. It is in this way that the order and interaction of

the tasks is explicitly declared, defining the process content. Throughout this effort close attention was

paid to create an add-on that had the lowest possible coupling to the original OUP/Basic process – to

promote the portability of the add-on.

For the modified method content its use within the process was left as it was. In other words, all of the

modified method content is still used at the same time and place as it was defined prior to the

modifications that were introduced. Our only addition to this was to explicitly indicate the optional

traceability analysis step that was appended to the different tasks.

For the new method content, its integration into the OUP/Basic was more complex. The tasks of Create

Trace Strategy and Setup in-place Traceability were added as steps to the activity Initiate Project of the

Inception Iteration. The Initiate Project activity is executed at the beginning of each project, and it

includes the initial planning and envisioning of the system. It is at this time that the trace strategy

should be defined and the infrastructure set up. Note that these tasks do not necessarily need to be

executed on a per project basis; they can be executed once and then reused in future projects.

The task of Run Automated Traceability Analysis was included in the Ongoing Tasks activity. This

activity is present in every iteration of a project, and it is a placeholder for tasks that can occur at any

moment during the project. This was in line with our meta-model idea of having automated traceability

viewed as a service that can get called from multiple places under different circumstances. This is also

the activity that includes the Request Change task, so it is a natural place for the Run Automated

Traceability Analysis task. When linking this task it was characterized as an un-planned, repeatable,

event driven and optional task.

The Test and Verify the Automated Traceability Results task was also included in the Ongoing Tasks

activity. The rationale behind this decision is that this task can initiate at any time during the process,

i.e. when the users feel that the automated traceability is not working as it should. However, in contrast

to the Run Automated Traceability Analysis task, this one was characterized as a planned and optional

task.

Once all the new tasks were linked into the process, their corresponding work products and executing

roles were are automatically integrated as well.

The following diagram illustrates how these tasks were linked into the process by showing a screenshot

of the Inception Phase. The additions are denoted with a small arrow. Note that the Ongoing Tasks is

present in all the other phases as well.

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

37 | P a g e

Figure 11: Linking the New Tasks Into the OUP/Basic Workflows.

5.3. Usage of the Sample Process Add-On
The question now arises as to how an organization will use this sample process add-on. To illustrate

this, this subsection will present a hypothetical walk through of the software engineering process

highlighting some of the elements of the process add-on, this will give the basic idea of how this is used.

Note that since this process add-on was built around the OUP/Basic for Poirot, any organization that

wishes to use it as it is, will also need to use OUP/Basic and Poirot. If the organization does not use the

OUP/Basic, then they will have to instantiate the process meta-model for their own process; or if they

don’t want to use Poirot, then they will have to change the tool specific parts of the add-on (subsection

5.4 presents an example of this).

Now consider the scenario where a new project is about to begin, and upper management announces

that, for this project, traceability will be implemented via automated traceability tools. Since the project

is just starting, the team members open the process web site and in the lifecycle view they expand the

Inception phase (illustrated in Figure 11). In the work break down structure they see that the first

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

38 | P a g e

activity that they have to execute is the Initiate Project. They drill down on this activity and discover

that they need to define the vision and create an initial draft of the project plan (existing tasks of the

OUP/Basic). After executing these tasks their next assignment is to execute the Create Trace Strategy

(note that this can also be executed in parallel). For this the Analyst, the Automated Traceability

Facilitator, and any relevant Stakeholders get together and follow the steps defined in this task in order

to produce the Trace Strategy and Granularity work product. Upon completion of this task they ask the

Automated Traceability Facilitator to set up the required infrastructure to support the automated

traceability tool. He does this by following the steps of the Set up in-place Traceability.

After the initiation of the process, one of the next steps in the workflow is to Manage the

Requirements. The first task of this activity is to Find and Outline the Requirements. In this task the

Analyst, with help from the Stakeholders, drafts the initial requirements of the system (in the form of

Use Cases). As he is following the guidelines and examples of how to write use cases, he sees a link to

the Guidelines for Creating Traceable Documents. After reading these guidelines he goes back to the

Use Cases and improves them so that they comply with the guidelines. He does this by making sure that

the Use Cases include rich content, that they are uniquely identified, that they use the terms and

vocabulary consistently, etc. Note that these guidelines are linked to all the work products of the

process, so that when any of them is produced, its creator will be reminded to follow the guidelines.

The project progresses and the team is now in the middle of the Construction phase, when all of a

sudden a request from management comes in indicating that they wish to change a particular

requirement. The Analyst drills down into the Ongoing Tasks activity and selects the Request Change

task. After gathering the information about the request, he sees the optional link to the Run

Automated Traceability Analysis task, and he decides that this would be beneficial as he needs to

determine the impact of the change. He follows the steps of this task and he successfully creates a

report with the candidate artifacts that will likely be impacted by this change. He then returns to the

Request Change task and proceeds to finish the task by updating the Work Items List. Note that in this

particular example the need for a traceability query came from a change request, but in practice the

need for the information that traceability provides can come from any place within the process.

This sample walkthrough was meant to illustrate at a high level how the sample process add-on is used.

For the most part the rest of the additions and modifications are used in the same way.

5.4. Modification of the Sample Process Add-On
Another common question that arises is how would an organization that wishes to use another

automated traceability tool use the sample process add-on? This subsection will illustrate, again via a

hypothetical walkthrough, how to modify the sample process add-on for such a scenario. Note that this

example also assumes that the organization is using the OUP/Basic as their software engineering

process; if this is not the case then the organization would need to instantiate the meta-model for their

own process.

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

39 | P a g e

In this hypothetical scenario an organization wishes to modify the sample process add-on in order to

change the automated traceability tool from Poirot to RETRO, and to use it within an environment that

employs independent validation and verification (IV&V) techniques. Before changing the sample

process add-on, the first thing is to take a step back and first look at the meta-model (shown in Figure 6)

from which the sample process add-on was derived.

The meta-model clearly identifies that there are two elements that are tool specific: the Automated

Traceability Analysis, and the Automated Traceability Infrastructure. These two elements basically

define how to use the tool and how to set it up, and clearly they will have to be changed. Also, since the

scenario calls for using independent validation and verification techniques, the other element that might

need to be changed is the Automated Traceability Quality Control. This element basically assesses the

results of the automated traceability tools, and since IV&V tends to be stricter, this element will likely

need to be enhanced.

The next step is to identify all of the method content elements in the sample process add-on that

instantiated the previously listed meta-model elements. This is easily achieved by opening the process

web site, and selecting the ‘Customization for Poirot’ tab and looking through the different method

content elements. In addition, each element that was added or modified has a tag that indicates to

which level of scope does it belong to (specific to traceability, automated traceability or Poirot), which

simplifies the search. Alternatively Table 3, which is explained in the next chapter, can also be used to

identify which instantiated elements correspond to which meta-model element.

After performing this, the process engineer determines that the following elements need to change:

 Run Automated Traceability Analysis task: To list the steps required to issue queries in RETRO.

 Traceability Results document: To show how the results of a query are displayed in RETRO.

 Analyst, Architect, and Project Manager roles: To reflect any RETRO skills and responsibilities.

 Set-up In Place Traceability task: To detail how to set up RETRO’s infrastructure.

 Automated Traceability Facilitator role: To reflect the skills needed to set up RETRO.

 Test and Verify Automated Traceability Results task: To add more strict controls if desired.

In addition, the process engineer might wish to create additional elements that he deems necessary –

for example creating new roles that will execute the automated traceability analysis task in case they

wish to restrict it, or new tasks to reflect the IV&V needs.

The next step is to execute these method content changes within the EPF process authoring tool, and to

link any new elements into the process. For detailed instructions on how to do this with the EPF process

authoring tool please refer to [22, 23]. Once this is finished, the new web site with the modified process

can be published.

This hypothetical walkthrough illustrated the basic steps that organizations should follow if they wish to

change the sample process add-on.

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

40 | P a g e

6. Validation of the Work

Up to this point a process meta-model has been presented that in theory will allow organizations to

effectively implement automated traceability as part of their software engineering process. The

instantiation of this meta-model was illustrated with a sample process add-on that was created for

organizations that use the OUP/Basic as their software engineering process and that wish to use Poirot

as their automated traceability tool.

This chapter will attempt to validate some of the work done, but before doing so it will relate the course

by which the meta-model was derived. This will hopefully clarify some the rationale behind it. The

initial attempt to create a process for automated traceability started at a low level. The initial idea was

to modify the OUP/Basic. This started by reviewing the existing content of the OUP/Basic and drafting a

list of the new and modified elements that needed to be added in order for this process to comply with

the list of best practices presented in section 3.4 and with the needs of Poirot. When this was

completed it was realized that this attempt would be of very limited use, since it required that the

organizations use (or change to) the OUP/Basic and Poirot. In addition this approach would

automatically inherit all of the weaknesses (and strengths) of the OUP/Basic. At this point a step back

was taken, and the problem was analyzed from a process and tool independent stand point. A generic

solution was needed that would allow organizations to incorporate automated traceability into any

process. From this it was decided to develop a meta-model, which would serve as a roadmap/guideline

for process engineers. Also, more thought was given to the other traceability related tasks that occur

before and after the actual traceability analysis. These new tasks were grouped and categorized

together with the method content elements that had been originally developed. These groupings

became the meta-model elements. After an initial version of the meta-model was drafted, it was

noticed that the elements inside of it were of different types. Some of those elements were very tool

specific and others were broad enough to be useful within any traceability technique. From this it was

decided that the elements should be labeled according to their scope level, which would later facilitate

the reuse and modification of any process that was created from the meta-model. Finally, after all of

this was done, the initial changes that were made to the OUP/Basic were revisited and completed to

make sure that the sample process would include all of the elements that the meta-model indicated,

hence instantiating the meta-model.

Still, after having created the meta-model and the sample process add-on, it has not yet been shown

that such a meta-model is effective and complete, and that it will aid organizations that wish to use

automated traceability. Nor has it been demonstrated that the sample process that was created is in

fact an instance of the meta-model.

Now, it is important to mention that since processes are not an exact science and they are heavily

influenced by human factors, there is no such thing as a complete scientific validation of a process. It is

impossible to fully validate the effectiveness of a process. The closest thing that can be done in these

cases is to have real people use the process and then have a majority of them say that the process

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

41 | P a g e

worked. And even then, this would still not be considered a formal proof of the process. This kind of

validation would require extensive empirical research [17+, which is outside the scope of this Master’s

thesis. This research would first need to start by clearly defining the questions that need to be

answered, such as:

 Exploratory questions: Do organizations use formal processes? Do organizations use
traceability? Do they need/want to change their approach to traceability? Is there interest in
switching to automated traceability? What traceability tools are they using? How is the
effectiveness of a process measured? How is the effectiveness of a traceability trace measured?

 Base rate questions: How often is traceability used? How often is the current traceability
approach not successful? How do organizations use their formal processes? When and how is
traceability used? Is there a relationship between using the process add-on and better
traceability results? If there is such an improvement, is it caused solely by the process add-on?

 Design questions: How will the use of the process meta-model and the instantiated add-on
improve the use of traceability in an organization?

After defining these questions, the researcher would need to identify what he/she will accept as true

answers, and from there select the different research methods (controlled experiments, case studies,

surveys, ethnographies, action research, etc.) and data collection techniques (brainstorming, focus

groups, interviews, questionnaires, conceptual modeling, shadowing, observation, etc.) that will be used

to provide the answers to the chosen questions [17] Of course, the researcher is also going to need to

have access to sufficient test subjects and test data to be able to perform the experiments.

As can be seen, a complete empirical research approach to validate the work done would require

considerable experimentation, and as such it is outside the scope of this thesis – mainly due to time

constraints. Instead, this chapter will use a different approach to validate the work done.

This approach will attempt to demonstrate the following:

 Show how the meta-model supports the different uses of traceability. These uses have been
previously identified in research literature and are summarized in section 2.2.

 Show how the meta-model supports the best practices of automated traceability. Again these

best practices are taken from previous research literature and they are listed in section 3.4.

 Show that the sample process add-on that was created for Poirot and the OUP/Basic is an

instance of the meta-model.

This way, using as a foundation previous research literature, it can be shown how the meta-model (and

instances of it) support traceability and improve the results of automated traceability – which are two of

the key concepts of this thesis. The following subsections describe this in more detail.

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

42 | P a g e

6.1. Meta-Model Support for Traceability
From the list of uses of traceability presented in section 2.2 it can be seen that traceability is an

information providing activity. A traceability analysis is always executed in response to a prior

information need. Whether it is executed to analyze the impact of a change, or to execute a coverage

analysis, or for any other reason, traceability analyses are linked to originating activities. They way in

which the meta-model handles this is by following a service paradigm, in which a traceability analysis is

viewed as a service that gets called upon when needed from any point within the software engineering

process. This simple and fairly generic approach provides several advantages: first it promotes low

coupling between the software engineering process and the add-on; and second it does not require for

all the possible needs of traceability to be identified.

It is important to note that the meta-model not only supports the actual traceability analysis task, but it

also supports the activities that take place prior and post the traceability analysis. Prior activities include

the planning of the traceability strategy and the laying of the technical foundations needed to provide

the service. Post activities include the continual improvement via the quality control tasks. Note that

this is in compliance with the Plan, Do, Check, Act cycle – PDCA, which is a famous quality control and

process improvement cycle popularized by Dr. Edward Deming2 [30]. Deming states that any process

related effort (modifications, additions, quality improvement, etc.) should iteratively follow the cycle’s

steps; i.e. it should start by planning the effort, executing it, checking the results, and then acting to

improve them. The following figure illustrates how the meta-model tasks map to the PDCA.

Figure 12: Mapping of Meta-Model to PDCA

By taking a service approach, in which a traceability analysis can be called upon from any point and for

any reason, and by incorporating well known process improvement techniques, the meta-model fully

supports the traceability needs presented in section 2.2.

6.2. Meta-Model Support of Best Practices
The main purpose of the list of best practices for automated traceability presented in section 3.4 is to

improve the quality of the artifacts that are created throughout the software development process. The

premise behind this is that if the quality of the artifacts is superior, then the information retrieval

2
 Although the PDCA cycle was popularized by Edward Deming, its creator was Walter Shewhart who was Deming’s

mentor at Bell Labs.

• Automated Traceability
Quality Control

• Automated Traceability
Quality Control - Respond
to findings

• Automated Traceability
Analysis

• Traceability Strategy

• Best Practices for
Automated Traceability

• Traceability Infrastructure Plan Do

CheckAct

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

43 | P a g e

algorithms that are used by the automated traceability tools will have a better chance of identifying

candidate traceability links between the created artifacts.

Given that this is a key success factor for automated traceability, the meta-model explicitly indicates

that a set of best practices should be included in any process add-on that is created. However, at the

meta-model level these best practices are not listed. The reason for this decision is that best practices

are not a static entity; they are a continuously evolving artifact that varies depending on the context and

that get improved when new information is obtained. Consequently the specific best practices have to

be detailed when the meta-model is instantiated and a process add-on is created. It is in this way that

the meta-model supports the best practices.

6.3. Process Add-On as Instance of Meta-Model
The last part of the validation of the work consists of demonstrating that the sample process add-on

that was created for organizations that use the OUP/Basic and that wish to use Poirot as their

automated traceability tool, is in fact an instance of the meta-model. This is illustrated in the following

table that shows how each of the meta-model elements was instantiated in the sample process add-on:

Table 3: Mapping Between Meta-Model and Sample Process Add-On

Meta Model Element Instantiated / Implemented as:

Traceability Analysis

 Run Automated Traceability Analysis

 Traceability Request

 Traceability Results

 All the modified tasks that link to the optional step of a Traceability Analysis t

All the modified roles that now have additional skills and responsibilities related to

traceability.

Traceability Strategy

 Create Trace Strategy

 Traceability Strategy and Granularity

 The modified role of the Analyst that is in charge of creating the trace strategy.

Best Practices for Automated

Traceability

 Guidelines for creating traceable documents

 Automated Traceability

 All of the modified work products that link to the Guidelines

 The modified and enhanced Glossary work product

 The modified and enhanced concept of Traceability

Automated Traceability Infrastructure

 Set-up in place traceability

 Automated Traceability Facilitator

The modified role of the Project Manager that is in charge of creating the projects and

users.

Automated Traceability Quality Control

 Test and Verify Automated Traceability Results

 Precision

 Recall

 The modified role of the Analyst that is in charge of executing the quality control tasks.

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

44 | P a g e

As can be seen from the previous table, all of the elements that were created for the process add-on as

well as those that were modified from the original method content of the OUP/Basic, directly map to

one or more of the elements of the meta-model. It is also important to note that the best practices

included in the Guidelines for Creating Traceable Documents include all of the ones listed in section 3.4

plus a few more; this can be seen in Appendix 10: Guidelines for Creating Traceable Documents.

This chapter demonstrated that, to the best of our knowledge, the meta-model created effectively

supports the common uses of traceability (identified in research literature), and that it incorporated the

current known best practices of automated traceability (also taken from previous literature). In

addition, it was shown that the sample process add-on is indeed an instance of the proposed meta-

model.

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

45 | P a g e

7. Conclusions and Further Work

Throughout this work one of the many issues that affect the requirements of a software system was

explored: the issue of traceability. Traceability was defined as the ability to follow the life of a

requirement, and a list was presented of how this important characteristic is used. Following this an

innovative approach to implement traceability was described. This approach, called automated

traceability, uses information retrieval techniques that automatically identify candidate traceability links

between the different artifacts that are created in the lifecycle of a software project.

Next a set of best practices were presented that are known to improve the results of this probabilistic

technique – which is highly dependent on the quality of the artifacts that are going to be traced. In

order to guide potential users of automated traceability and to fully incorporate these best practices

into the day to day activities of software engineers, it was suggested that automated traceability should

be part of the software engineering process that the organization follows.

As such, a process add-on was created that can be “plugged” into any software engineering process that

an organization uses. This process add-on, which is one of the main contributions and products of this

thesis, incorporates the guidelines and best practices required to use automated traceability to its full

potential. This process add-on was created in the form of a generic process meta-model that can be

used under different circumstances and characteristics. Ultimately any organization that wishes to

utilize this process will need to instantiate it into concrete tasks and work products.

To illustrate the instantiation of the meta-model a sample process add-on was presented. This sample

process builds on the OUP/Basic software engineering process and has Poirot as its automated

traceability tool. This process exemplifies the instantiation of the meta-model and it constitutes the

other main product and contribution of this thesis. It also illustrates the useful process authoring

paradigm proposed by the Eclipse Process Framework and it shows how processes are delivered using

this framework. This sample process add-on can be viewed online at the following address:

http://castalia.cstcis.cti.depaul.edu/traceabilityprocess/ , and it can be used as an open source content

starting point for organizations that wish to adopt automated traceability.

Finally, the work was validated by demonstrating how it adheres to previous research literature and how

it supports the needs and best practices of traceability.

Overall, this work provides software engineers with a roadmap and sample content that they can use to

incorporate automated traceability into their software engineering process – which was the main goal of

this thesis.

There are several open areas of research that can be pursued from this work. The first area is that

considerable empirical research can be executed to further validate the work that was done (as stated in

chapter 6). This would help answer other fundamental questions about traceability that are still fairly

unexplored, such as: how to enhance the experience of using traceability to fully satisfy the needs of the

http://castalia.cstcis.cti.depaul.edu/traceabilityprocess/

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

46 | P a g e

user. Note that for this a multidisciplinary approach, that incorporates other fields such as the human

computer interaction field, would be needed.

Also, more research needs to be done to see whether such a process meta-model is applicable both to

green field projects as well as existing and legacy projects. In other words, can the plug-in be introduced

to an already running project?

Another area that needs to be further explored is that of the quality control tasks that validate the

effectiveness of the automated traceability tools. At this point there is a fairly good idea of how to

measure the effectiveness after the fact, but there is no clear solution as to what an organization should

do when the automated traceability is not providing the desired results, or how to measure it

continuously during the execution of the process.

And finally, a full financial and business cost-benefit analysis should be executed. This will help

understand better the pros and cons of incorporating the process add-on into existing processes. This

will also improve the likelihood of this technique being adopted by industry, since it will give industry

practitioners the key information and indicators that they can use to evaluate if this is something worth

adopting.

As can be seen there are several areas of research that can spawn from this work. However, as it is, it

represents an initial attempt to incorporate other success factors into the use of automated traceability

tools. The use of automated traceability tools within the context of a process is likely to improve the

returned results, which we hope will increase the appeal and adoption of this technique in industry.

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

47 | P a g e

8. References

[1] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E. “Recovering Traceability Links

between Code and Documentation”. IEEE Transactions on Software Engineering, 28, 10 (Oct
2002), 970-983.

[2] Balduino, R., Lyons, B. “OpenUP/Basic - A Process for Small and Agile Projects”. Eclipse Process
Framework Project (2006), http://www.eclipse.org/epf/general/OpenUP_Basic.pdf

[3] Beck, K., et al. “Manifesto for Agile Software Development”. The Agile Alliance (2001),
http://www.agilemanifesto.org/

[4] Briand, L., Labiche, Y., O’Sullivan, L. “Impact Analysis and Change Management of UML Models”.
Proceedings of the International Conference on Software Maintenance (September 2003), 256-
265.

[5] Brooks, F. “No Silver Bullet: Essence and Accidents of Software Engineering”. Computer, 20, 4
(April 1987), 10-19.

[6] Castro-Herrera, C., Cleland-Huang, J. "Towards a Unified Process for Automated Traceability".
ACM International Symposium on Grand Challenges of Traceability (March 2007), 56-64.

[7] Cleland-Huang, J., Zemot, G., Lukasik, W. “A Heterogeneous Solution for Improving the Return
on Investment of Requirements Traceability”. Proceedings of the 12th IEEE International
Requirements Engineering Conference (Sep. 2004), 230-239.

[8] Cleland-Huang, J., Chang, C., Wise, J. “Automating Performance Related Impact Analysis
through Event Based Traceability”. Requirements Engineering Journal, 8, 3 (August 2003), 171-
182.

[9] Cleland-Huang, J., Berenbach, B., Clark, S., Settimi, R., Romanova, E. “Best Practices for
Automated Traceability”. To appear in a future issue of IEEE Computer.

[10] Cleland-Huang, J., Settimi, R., BenKhadra, O., Bezhana, E., Christina, S. “Goal Centric Traceability
for Managing Non-Functional Requirements”, International Conference on Software Engineering
(2005), 363-371.

[11] Cleland-Huang, J., Settimi, R., Chuan, D., Zou, X. “Utilizing Supporting Evidence to Improve
Dynamic Requirements Traceability”. Proceedings of the 2005 International Conference on
Requirements Engineering (2005), 135-144.

[12] CMMI Product Team. “Capability Maturity Model® Integration (CMMI®) Version 1.2 Overview”.
Software Engineering Institute at Carnegie Mellon University (2006),
http://www.sei.cmu.edu/cmmi/adoption/pdf/cmmi-overview06.pdf

[13] CMMI Product Team. CMMI® for Development, Version 1.2. Carnegie Mellon University,
Pittsburgh, PA, 2006.

[14] Cysneiros, G., Zisman, A. “Tracing Agent-Oriented Systems”. ACM International Symposium on
Grand Challenges of Traceability (March 2007), 17-26.

[15] Dömges, R., Pohl, K. “Adapting Traceability Environments to Project-Specific Needs”.
Communications of the ACM, 41, 12 (Dec. 1998), 54-62.

[16] Dorfman, M., Thayer, R. Software Requirements Engineering. IEEE Computer Society Press, Los
Alamitos, CA, 1997.

[17] Easterbrook, S., Singer, J., Storey, P., Damian, D. “Empirical Research Methods in Software
Engineering” NOTE: Unpublished book.

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

48 | P a g e

[18] Eclipse Process Framework Project. “The Process Framework (EPF) Project <Beacon>”. Eclipse
Process Framework Project (2005), http://www.eclipse.org/proposals/beacon/

[19] Finkelstein, A. "Tracing Back from Requirements". IEEE Colloquium, Computing and Control
Division, Professional Group C1 (1991), 7/1-7/2.

[20] Gotel, O., Finkelstein, A. “An Analysis of the Requirements Traceability Problem”. Proceedings
First International Conference on Requirements Engineering (1994), 94-101.

[21] Gotel, O., Finkelstein, A. “Contribution Structures”. Proceedings of the Second International
Conference on Requirements Engineering (1995), 100-107

[22] Haumer, P. “Eclipse Process Framework Composer – Part 1: Key Concepts”. Eclipse Process
Framework Project (2006),
http://www.eclipse.org/epf/general/EPFComposerOverviewPart1.pdf

[23] Haumer, P. “Eclipse Process Framework Composer – Part 2: Authoring method content and
processes”. Eclipse Process Framework Project (2006), http://www.eclipse.org/epf/
general/EPFComposerOverviewPart2.pdf

[24] Huffman Hayes, J., Dekhtyar, A., Karthikeyan, S. “Advancing Candidate Link Generation for
Requirements Tracing: The Study of Methods”. IEEE Transactions on Software Engineering, 32, 1
(Jan. 2006), 4-19.

[25] Huffman Hayes, J., Dekhtyar, A., Osborne, J. “Improving Requirements Traceability via
Information Retrieval”. Proceedings of the 11th IEEE International Requirements Engineering
Conference (Sep. 2003), 138.

[26] Hull, E., Jackson, K., Dick, J. Requirements Engineering, Springer Verlag, London, UK, 2002.

[27] Jarke, M. “Requirements Tracing”. Communications of the ACM, 41, 12 (December 1998): 32-
36.

[28] Klingler, C. “A STARS Case Study in Process Definition”. University of Massachusetts Dartmouth
(1994), http://www2.umassd.edu/swpi/STARS/ProcessDefStudy/trw-symposium-paper.html

[29] Krutchen, P. The Rational Unified Process: An Introduction, 3rd Edition. Addison-Wesley
Professional, Reading, MA, 2003.

[30] “PDCA”. Wikipedia (2007), http://en.wikipedia.org/wiki/PDCA

[31] “Process”. Merriam-Webster Online Dictionary (2004), http://www.merriam-webster.com

[32] Ramesh, B., Jarke, M. “Toward Reference Models for Requirements Traceability”. IEEE
Transactions on Software Engineering, 27, 1, (Jan. 2001), 58-92.

[33] Robertson, S., Robertson, J. Mastering the Requirements Process. Adisson-Wesley Professional,
Boston, MA, 1999.

[34] Software Engineering Institute. “Compilation Data for Projects Using TSP and PSP”. Carnegie
Mellon University (2007), http://www.sei.cmu.edu/tsp/results/compilation.html

[35] The Standish Group. “Chaos Report”. The Standish Group (1994),
http://www.standishgroup.com

[36] Strens, M., Sugden, R. “Change Analysis: A Step towards Meeting the Challenge of Changing
Requiremts”. Proceedings of the IEEE Symposium and Workshop on Engineering of Computer
Based Systems (1996), 278-283.

[37] Weigers, K. Software Requirements. Microsoft Press, Redmond, WA, 2003

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

49 | P a g e

Appendix 1: Automated Traceability Facilitator

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

50 | P a g e

Appendix 2: Trace Strategy and Granularity

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

51 | P a g e

Continuation of Trace Strategy and Granularity:

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

52 | P a g e

Appendix 3: Traceability Request

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

53 | P a g e

Appendix 4: Traceability Results

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

54 | P a g e

Appendix 5: Create Trace Strategy

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

55 | P a g e

Continuation of Create Trace Strategy:

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

56 | P a g e

Appendix 6: Run Automated Traceability Analysis

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

57 | P a g e

Continuation of Run Automated Traceability Analysis

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

58 | P a g e

Appendix 7: Set Up In-Place Traceability

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

59 | P a g e

Appendix 8: Test and Verify the Automated Traceability Results

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

60 | P a g e

Continuation of Test and Verify the Automated Traceability Results

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

61 | P a g e

Appendix 9: Automated Traceability

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

62 | P a g e

Continuation of Automated Traceability

Towards a Unified Process for Automated Traceability Carlos Castro-Herrera

63 | P a g e

Appendix 10: Guidelines for Creating Traceable Documents

