
∆k-Confluent and Ok-Confluent Graphs

Michael J. Pelsmajer

Department of Applied Mathematics
Illinois Institute of Technology
Chicago, Illinois 60616, USA

pelsmajer@iit.edu

Marcus Schaefer

Department of Computer Science
DePaul University

Chicago, Illinois 60604, USA
mschaefer@cs.depaul.edu

Kevin Stern

Department of Computer Science
DePaul University

Chicago, Illinois 60604, USA
kevin.l.stern@gmail.com

June 14, 2007

Abstract

In this paper we extend the concept of ∆-confluence to ∆k-confluence

by allowing more generalized junctions, called ∆k-junctions. We present

an algorithm for recognizing graphs that are ∆k-confluent. We then gener-

alize ∆k-confluence to Ok-confluence by allowing non-intersecting chords

within a junction, resulting in Ok-junctions. We present an algorithm for

recognizing graphs that are Ok-confluent. Finally, we show that the clique

problem can be solved in polynomial time for ∆k-confluent graphs.

1 Introduction

Some years ago Dickerson, Eppstein, Goodrich and Meng introduced the notion
of confluent graph drawing, a new graph drawing model that—in a sense—
sidesteps the thorny crossing number issue. In a confluent graph drawing, one
thinks of curves as if they were train tracks: curves can merge, rather like train
tracks merge in a switch. Two vertices in the drawing are connected if one
can move from one vertex to the other without making any sharp turns on
the track, without passing over any point twice, and without passing through
another vertex. Figure 1 shows a confluent drawing of a K5; each pair of vertices
is connected by a smooth curve.

The basic tool in a confluent drawing is a switch, that is, a point in which
several curves merge smoothly. Figure 2 shows two switches, one of them simple,
meaning that only two curves merge. Figure 1 uses 15 switches to draw a K5

(it can be done with fewer).
It is not known how hard it is to recognize whether a graph is confluent

or not—that is, whether or not it has a confluent drawing—though a variant

1

Figure 1: Confluent drawing of a K5

of the problem does lie in NP [2, 6]. Consequently, there has been interest
in defining notions of confluency that can be recognized efficiently and capture
large classes of graphs. For example, tree-confluent graphs are those graphs
that have a drawing that can be obtained from a tree by replacing inner ver-
tices by switches [6]. ∆-confluent graphs were defined in [4] as an extension of
tree-confluent graphs, admitting ∆-junctions as well as switches. For example,
the drawing of K5 in Figure 1 uses five ∆-junctions; it is not however, a ∆-
confluent drawing, since it cannot be obtained from a tree. However, severing
the circle in the middle between any two vertices, then removing the four inci-
dent simple curves, yields a ∆-confluent drawing of a K5. The tree-confluent
graphs are the bipartite distance-hereditary graphs and the ∆-confluent graphs
are the distance-hereditary graphs [6, 2]. Thus, both classes of graphs are well-
understood and easily recognizable. In this paper, we investigate two natural
generalizations of tree-confluent and ∆-confluent graphs. The first, suggested
by Eppstein [3], is to allow junctions with an arbitrary number of ports rather
than just three. We call those drawings ∆∞-confluent; in Section 2 we give
an elimination ordering characterization of these graphs, showing, in particular,
that they can be recognized in polynomial time. We then take the notion one
step further, by allowing non-crossing chords to be drawn within the junctions.
This leads us to the notion of O∞-confluent graphs which also have an elimi-
nation ordering characterization. Although that characterization is a bit more
complex, it can be used to recognize and draw O∞-confluent graphs in polyno-
mial time (Section 3). Finally, we show that we can find all maximal cliques of

Figure 2: Two switches; the left one is simple.

2

a ∆∞-confluent graph in polynomial time. In particular, the CLIQUE problem
is polynomial time solvable for ∆∞-confluent graphs.

2 ∆k-Confluent Graphs

Figure 3: Drawings of a ∆2-junction, a ∆3-junction, and a ∆5-junction.

A smooth curve is the image of a differentiable map from the unit interval to
the plane. We will be representing graphs with drawings; in such a drawing a
legal curve is a smooth curve without self-intersections and which does not pass
through a point representing a vertex.

A switch is a point at which several curves combine and a simple switch is a
switch in which two curves merge into a single curve; the merging curves are the
tails of the switch, the merged curve its head. A branch is a curve not containing
any vertices or switches. Using this terminology, we define a ∆k-junction with
k ≥ 3 to consist of k simple switches, S0, . . . , Sk−1 arranged in a cycle with one
tail of Sj leading to a tail of S(j−1) mod k, and the other tail leading to a tail
of S(j+1) mod k and all the heads of the switches within the outside region of
the junction. We also define a ∆2-junction to be a simple switch (also called
a Λ-junction in [4]). A port of a ∆k-junction is the head of one of its simple
switches. A ∆k-junction has k ports with the exception of ∆2 which has 3 ports.

We say a port leads to another element of the drawing if there is a legal curve
between the port and that other element not passing through the junction that
the port belongs to. The set of all vertices a port leads to is called its port-set.

A ∆k-confluent drawing of a graph G is a drawing which can be obtained
from a tree by replacing some of the vertices of the tree with ∆ℓ-junctions,
2 ≤ ℓ ≤ k, where we require that the degree of the vertex and the number
of ports of the junction are equal. The remaining vertices of the tree (which
includes all its leaves) are the vertices of the graph G represented by the drawing;
there is an edge uv in G if there is a legal curve from u to v in the drawing. The
∆k-confluent graphs are those that admit a ∆k-confluent drawing. Note that
∆2-confluent graphs are the tree confluent graphs, ∆3-confluency is the same
as ∆-confluency, and a graph is ∆∞-confluent if it is ∆k-confluent for some k.

Note that in a ∆∞-confluent drawing, all port-sets are nonempty, since oth-
erwise the drawing would not have the tree-structure required of a ∆∞-confluent
drawing.

3

We observe that the use of ∆k-junctions in a ∆∞-confluent drawing forces
there to be a copy of Ck, that is, a k-cycle as an induced subgraph of whatever
graph is represented by the confluent drawing.

Lemma 2.1. If a ∆∞-confluent drawing of a graph contains a ∆k-junction,
then the graph contains a copy of Ck.

Proof. Consider the ∆k-junction in the drawing. Since port-sets are nonempty,
we can pick one vertex from each port-set of the ∆k-junctions. Because of the
tree-structure of the drawing, the only legal curves between those vertices are
through the ∆k-junction, hence this set of vertices induces a Ck in the graph.

Although the ∆3-confluent graphs are the same as the ∆4-confluent graphs
(which follows since a ∆4-junction can be replaced by two 2-switches, see Fig-
ure 4), the other ∆k-confluent graphs form a proper hierarchy. This is demon-
strated by the k-cycle, Ck, which is ∆k-confluent, but not ∆k−1-confluent unless
k = 4.

A

B C

D A

C D

B

Figure 4: Replacing a ∆4-junction by two simple switches

Theorem 2.2. Ck is not ∆k−1-confluent when k = 3 or k ≥ 5.

Note that we need to exclude the case k = 4, since C4 is tree-confluent as
shown in Figure 5.

Figure 5: Tree-confluent drawing of C4

Proof. Ck is not tree-confluent when k = 3 (not bipartite) or k ≥ 5 (not
distance-hereditary). In the case where k = 3 we are done because the ∆k−1-
confluent graphs are simply the tree-confluent graphs. In the case where k ≥ 5,
this implies that a ∆k−1-confluent drawing of Ck must contain a ∆ℓ-junction
with 3 ≤ ℓ ≤ k − 1. By Lemma 2.1, this forces the presence of a copy of Cℓ as
an induced subgraph.

4

Note that any induced subgraph of a ∆k-confluent graph is also ∆k-confluent
(using the induced drawing). Consequently, Theorem 2.2 implies that the ∆k-
confluent graphs are all (k+1)-chordal, that is, any cycle of length at least k+1
has a chord. In the next section we will see that the ∆k-confluent graphs are a
subset of the (k + 1)-chordal graphs.

2.1 Recognizing ∆k-Confluent Graphs

In this section we give an elimination ordering characterization of the ∆k-
confluent graphs.

u v

u v

Figure 6: Drawings of: A vertex u such that there is another vertex v with
N(u) = N(v) 6= ∅ (left). A subgraph P − {v}, where P is a path of length at
most k − 2 between vertices u and v, N(u) − P = N(v) − P , and all interior
vertices of P have degree two (right).

Theorem 2.3. A graph is ∆k-confluent if and only if repeatedly removing

(i) vertices of degree 1, and

(ii) vertices u such that there is another vertex v with N(u) = N(v) 6= ∅, and

(iii) P − {v}, where P is a path of length ℓ ≤ k − 2 between vertices u and v
and N(u)−P = N(v)−P , all interior vertices of P have degree two, and
u and v are not adjacent if ℓ > 1,

leads to a graph with a single vertex.

Proof. If G less a vertex of type (i) or (ii) or a subgraph of type (iii) is ∆k-
confluent, then we modify its drawing to get a ∆k-confluent drawing of G: For
(i) we simply draw the removed vertex attached to its original neighbor. For (ii)
and (iii), we first modify the ∆k-confluent drawing near v so that the incoming
curves merge via simple switches before reaching v along a single branch.

Then we make v into a port of a new ∆ℓ-junction, such that ℓ = 2 in case
(ii) (with v at the head) and ℓ−2 is the length of P in case (iii). Then we add a
new vertex at the head of each of the other ports. This completes a drawing of
G when there is a subgraph of type (i), (ii), or (iii). Finally, a graph containing
only a single vertex is trivially ∆k-confluent.

5

v v

Figure 7: Reducing the number of branches entering a vertex.

To prove the other direction, consider a ∆k-confluent drawing of G, a graph
with more than one vertex. It suffices to show that there exists a reduction of
type (i), (ii), or (iii) which produces a (smaller) ∆k-confluent drawing, since
then we can apply induction.

If there is a vertex of degree 1, there is a unique maximal branch to it in the
drawing, which must end in a vertex or in a tail of a simple switch. Remove
the vertex and the branch from the drawing; this suffices. Thus we may assume
that there is no vertex of degree 1.

Consider the tree associated with the drawing; it must have internal vertices.
Designate one of its vertices of G to be the root and choose a junction which is
farthest from the root in the underlying tree. Given our choice of junction, only
the port (p) leading to the root can lead towards another junction, and each of
the remaining ports of the junction must lead to a single vertex. If the junction
is ∆ℓ with ℓ ≥ 3, then these ℓ − 1 vertices form a path P that satisfies (iii); its
endpoints are in the port-set of the ports before and after p. This gives us a
subgraph P − {v} of type (iii). Replace the junction with a single vertex at p
to represent v; this is a ∆k-confluent graph for G − (P − {v}), so we are done.
If the junction is not ∆ℓ with ℓ ≥ 3, the junction is ∆2, and as there are no
vertices of degree 1, it is oriented such that we have vertices u, v of type (ii).
Remove u and the curve from the ∆2-junction to u; this suffices.

Remark 2.4. It is easy to quickly detect a substructure of type (i), (ii), or
(iii) in a graph, which gives us a polynomial time algorithm for recognizing
∆k-confluent graphs. The ∆k-confluent graph recognition algorithm also serves
to recognize ∆∞-confluent graphs by simply running it with k = |G|.

3 Ok-Confluent Graphs

One way to generalize ∆-confluent drawings would be to take a drawing of
tree and replace some vertices v by a “k-overpass junction” with k = degT (v):
this has k ports as before, and legal curves can go between every two ports.
However, this is uninteresting because it’s equivalent to ∆-confluency: each k-
overpass junction can be replaced by the usual confluent drawing of Kk, which
only uses ∆3-junctions. We will study a different generalization of ∆-confluency

6

in this section.
We begin by demonstrating that cycles with chords but no crossing chords

are not ∆∞-confluent with the exception of K4 − e. Note that cycles with no
pairs of crossing chords are precisely the 2-connected outerplanar graphs.

Theorem 3.1. Any 2-connected outerplanar graph that is ∆∞-confluent must
be a cycle or K4 − e.

A K4 − e is indeed ∆3-confluent, as it has a drawing with one ∆3-junction
and one ∆2-junction.

Proof. Fix a k-vertex, 2-connected outerplanar graph. The theorem is vacuously
true for k = 3, 4 since K4 is not outerplanar, so we can assume that k ≥ 5.

A tree-confluent graph is bipartite and distance hereditary, which means
that its only induced cycles have length 4, and there is no “domino” (an induced
graph consisting of two 4-cycles that share one edge) [1]. Since a 2-connected
outerplanar graph with at least one chord will have two faces that share exactly
one edge, a bipartite 2-connected outerplanar graph will either have a domino
or an induced even cycle of length greater than 4. Hence our graph is not
tree-confluent, and there must be a ∆ℓ-junction with 3 ≤ ℓ, in a ∆∞-confluent
drawing of it. Since ℓ ≥ k violates Lemma 2.1, it must be that ℓ < k.

Let J be a ∆ℓ-junction with 3 ≤ ℓ < k. Suppose that a port p of J contains
just one vertex v in its port-set. Since the graph is 2-connected, v is not a cut-
vertex. Therefore the part of the drawing that is closer to p than to J contains
only one vertex of G; thus it consists of a single branch to v. Then, by the
pigeonhole principle, J has a port p with at least two vertices u, v in its port-
set. Let q, r be the neighboring ports in J , and let s, t be vertices in the port-set
of q, r, respectively. Note that us, sv, vt, tu are all edges, and that there is an
s, t-path with ℓ− 3 internal vertices that does not contain u or v. If ℓ ≥ 4 then
we have a subdivision of K2,3, contradicting outerplanarity. So ℓ = 3. We get
a K2,3-subgraph if either port-set for q or r contains a second vertex, or if the
port-set for p contains a third vertex, again contradicting outerplanarity. Now
suppose that the graph has a vertex x 6= u, v, s, t. Since the port-sets for q, r
only contain a single vertex, any curve from x to the junction passes through
p. Then any path from x to s, t passes through u or v. By 2-connectivity
there must be internally disjoint paths from x to s, t. Then one must contain u,
and the other, v, and together they yield a u, v-path through x that does not
intersect s or t. However, this gives a subdivision of K2,3, so there are only four
vertices in the graph. Observe that the drawing yields the graph K4 − e.

A natural extension of the ∆k-junction that captures the example above is
to allow non-crossing chords within the interior of the junction. Towards that
end, we define an Ok-junction with k ≥ 3 to consist of k switches, S0, . . . , Sk−1

arranged in a cycle with one tail of Sj leading to a tail of S(j−1) mod k, and
a second tail leading to a tail of S(j+1) mod k and all the heads of the switches
within the outside region of the junction. Furthermore, we allow tails of switches
to connect within the junction (without using additional switches), forming

7

chords, as long as no two of those chords intersect. We define an O2-junction to
be a simple switch. A port of an Ok-junction is the head of any of its switches.
We talk of a port leading to another element of the drawing if there is a legal
curve between the port and that other element not passing through the junction
that the port belongs to. The set of all vertices a port leads to is again called
the port-set.

Figure 8: An O5-junction with two chords.

An Ok-confluent drawing is one that is obtained from a tree by replacing
some of the vertices of the tree with Oℓ-junctions, with 2 ≤ ℓ ≤ k, where we
require that the number of ports equals the degree of the vertex. The Ok-
confluent graphs are those that admit an Ok-confluent drawing. A graph is
O∞-confluent if it is Ok-confluent for some k.

Clearly, the ∆∞-confluent graphs are a subset of the O∞-confluent graphs,
and inclusion is proper by the example above. Moreover, all outerplanar graphs
are O∞-confluent, and 2-connected outerplanar graphs can be drawn using but a
single junction. Lastly, all port-sets in an O∞-confluent drawing are nonempty.

3.1 Recognizing Ok-Confluent Graphs

u v

u v

Figure 9: A vertex u such that there is another vertex v with N(u) = N(v) 6= ∅
(left). A subgraph J − v fulfilling the conditions of the theorem (right).

In this section we give an elimination ordering for recognizing Ok-confluency.
It is based on finding sets that separate a junction from the remainder of the
graph. We say that a set X ⊆ V (G) separates two sets A, B ⊆ V (G) if any path

8

from A to B contains a vertex from X . Note that this definition allows X to
overlap with A and B and A and B to be empty.

Theorem 3.2. A graph is Ok-confluent if and only if repeatedly removing

(i) vertices of degree 1, and

(ii) vertices u such that there is another vertex v with N(u) = N(v) 6= ∅, and

(iii) subgraphs J − v, v ∈ V (J), with at most k − 2 vertices such that

– N(v) − J separates the vertices in J from the vertices in G − J ,

– for any two x, y ∈ N(v) − J we have N(x) ∩ J = N(y) ∩ J ,

– V (J) ∪ {x} induces a 2-connected outerplanar graph, where x ∈
N(v) − J ,

leads to a graph with a single vertex.

Proof. If is Ok-confluent after removing a vertex of type (i) or (ii) or J − v as
in (iii), then we modify its drawing to get a Ok-confluent drawing of G: For (i)
we simply draw the removed vertex attached to its original neighbor. For (ii)
and (iii) we first modify the Ok-confluent drawing near v so that the incoming
curves merge via simple switches before reaching v along a single branch. In
case (ii), we make v into the head port of a new O2-junction and draw u and
v at its tails. In case (iii) we consider the graph F induced by V (J) ∪ {x}; by
assumption, F is a 2-connected outerplanar graph with at most (k − 2) + 2 = k
vertices. Hence, F can be drawn using a single Oℓ-junction with ℓ ≤ k, such
that each port-set contains exactly one vertex of F ; in particular, one port-set
will contain x and one will contain a point labeled v (there is also a point labeled
v in the drawing of G − (J − v)). Now take the drawing of G less J − v as in
(iii) and extend its branch leading to v until it smoothly joins the branch to
x in the drawing of F , and remove the labels v and x from those points. This
completes an Ok-confluent drawing of G when there is a subgraph of type (i),
(ii), or (iii). Finally, note that a single vertex graph is Ok-confluent.

To prove the other direction, consider an Ok-confluent drawing of G, a graph
with more than one vertex. It suffices to show that there exists a reduction of
type (i), (ii), or (iii) which produces a smaller Ok-confluent drawing. As in the
proof of Theorem 2.3, we may assume that there are no vertices of degree 1,
and we assign a root to the associated tree of the drawing and fix a junction
furthest from the root, and we deal with the case when it is just a simple switch
(an O2-junction). Thus we may assume that it is an Oℓ-junction with ℓ ≥ 3. As
before there is a unique port p to the root and each other port leads to exactly
one vertex; let VJ be the set of these ℓ − 1 vertices and let J be the graph
induced by VJ . Note that any path from a vertex in J to a vertex in G− J has
to pass through a vertex of N(v) − VJ .

The vertices in N(v)−VJ all have the same set of neighbors within J because
all legal curves to J go through p. If we remove all heads of the junction and
label each port q 6= p with the vertex in its port-set, and label p with x, then we

9

obtain an outerplane drawing of the graph induced by VJ∪{x}, that satisfies case
(iii). Replacing the junction by a single vertex at the root port that represents
v produces the desired Ok-confluent drawing of G − (J − {v}).

Remark 3.3. As in the case of ∆k-confluency, the elimination ordering leads
to a polynomial-time algorithm for recognizing Ok-confluency. The interesting
case here is part (iii); the main idea is that it can be phrased as a search for two
vertices u and v, as follows: Since V (J)∪{x} is supposed to induce a 2-connected
outerplanar graph, we must have that (1) x has a neighbor u 6= v in J , (2)
|N(u)∩N(v)∩J | ≤ 1 (since x, u, v, and two vertices in N(u)∩N(v)∩J would
give a K2,3-subgraph, contradicting outerplanarity), and (3) J is connected.
The first and second parts of (iii) imply N(u)− J ⊆ N(v)− J and N(u)− J ⊇
N(v) − J respectively, which yields N(u) − J = N(v) − J = N(u) ∩ N(v) − J .
Thus we may search for two vertices u and v and test X = N(u) ∩ N(v) and
X = N(u)∩N(v)− z for each z ∈ N(u) ∩N(z) to see whether a component of
G−X contains u and v, has size at most k− 1, and (as J) satisfies the last two
properties of (iii). This can be checked in polynomial time.

As earlier, O∞-confluent graphs can be recognized by running the Ok algo-
rithm with k = |G|.

Some initial test-runs with an implementation of the O∞-confluency recog-
nition algorithm suggest that very dense graphs have a high probability of be-
ing O∞-confluent, while sparser graphs tend to be not O∞-confluent. O∞-
confluency holds promise of being a useful tool to exhibit the structure of dense
graphs visually.

4 Complexity-Theoretic Aspects of ∆k and Ok-

Confluent Graphs

The maximum ∆-confluent subgraph problem is defined in [4] and shown to be
NP-complete using the Induced Subgraph With Property Π Problem

from [5]. This problem is NP-complete for any property Π that can be deter-
mined in polynomial time, holds for arbitrarily large graphs, does not hold for all
graphs, and is hereditary. By extending each of the properties ∆k-confluency,
∆∞-confluency, Ok-confluency, and O∞-confluency to be closed under taking
disjoint unions of graphs, each then fulfills property Π. Therefore their corre-
sponding maximum subgraph decision problems are also all NP-complete.

Next, we turn our attention to complete subgraphs and demonstrate that
finding cliques within ∆∞-confluent graphs is in P.

Lemma 4.1. A ∆∞-confluent drawing of Kn consists of n vertices each con-
nected via a branch to a unique port of one of n−2 ∆3-junctions, such that any
two ∆3 junctions have ports such that there is a legal curve connecting those
two ports.

Proof. Consider a ∆∞ drawing of Kn. There can be no ∆ℓ junctions for ℓ = 2
or ℓ > 3 since then there would be two nonadjacent vertices. So the drawing

10

is a tree T with n leaves where internal vertices are replaced by ∆3-junctions.
Letting k be the number of junctions, the degree-sum formula yields (3k+n)/2 =
|E(T)| = |V (T)| − 1 = k + n − 1, which gives k = n − 2.

Theorem 4.2. Finding all maximal cliques within ∆∞-confluent graphs is in
P.

Proof. Fix a ∆∞-confluent drawing. Consider a maximal set J of ∆3-junctions
such that any two junctions are reachable from one another via a legal curve, and
a set of vertices, U , with every port of a junction in J connected either to another
junction in J or to exactly one vertex in U via a legal curve. It is easy to see
that any set of vertices with such a corresponding set of junctions is a maximal
clique and, by the lemma, the set of vertices involved in a maximal clique has a
corresponding set of junctions. Then, to find all maximal cliques requires only
to find all maximal sets of ∆3-junctions which are pairwise connected by legal
curves. This can be done as follows.

Let T be the corresponding tree to a ∆∞-confluent drawing of G, and, if there
is one, fix a ∆k-junction with k 6= 3. For each port p of the junction, consider
the graph drawing beyond p’s port with p as a temporary vertex. Recursively
find all maximal cliques of that graph, and let Sp be the set of maximal cliques
that do not contain p, and let S′

p be the set of maximal cliques that do contain
p. For each pair of adjacent ports p, q in the junction, let S{p,q} = {s ∪ t : s ∈
Sp, t ∈ Sq}. Then the set of maximal cliques in G is the union of all Sp (where
p is a port in the junction) and all S{p,q} (where p, q are adjacent ports in the
junction). In the base case, the drawing consists of ∆3-junctions only and is a
clique itself.

Corollary 4.3. The CLIQUE problem for ∆∞-confluent graphs is in P.

References

[1] Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph classes:
a survey. SIAM Monographs on Discrete Mathematics and Applications.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
1999.

[2] Matthew T. Dickerson, David Eppstein, Michael T. Goodrich, and
Jeremy Yu Meng. Confluent drawings: Visualizing nonplanar diagrams in
a planar way. In Proc. 11th Int. Symp. Graph Drawing (GD 2003), Lecture
Notes in Computer Science. Springer-Verlag, 2003.

[3] David Eppstein. Delta-confluent drawings. Slides of a talk given at GD’05.
http://www.ics.uci.edu/∼eppstein/pubs/EppGooMen-GD-05.pdf (ac-
cessed May 29th, 2007).

[4] David Eppstein, Michael T. Goodrich, and Jeremy Yu Meng. Delta-confluent
drawings. In Proc. 13th Int. Symp. Graph Drawing (GD 2005), Lecture
Notes in Computer Science. Springer-Verlag, 2006.

11

[5] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1979.

[6] Peter Hui, Michael J. Pelsmajer, Marcus Schaefer, and Daniel Štefankovič.
Train tracks and confluent drawings. Algorithmica, 47(4):465–479, 2007.

12

