
QoS Policy Modeling for Conflict Detection

Taghrid Samak
School of Computer Science, Telecommunication,

and Information Systems
DePaul University

Chicago, Illinois 60604
taghrid@cs.depaul.edu

April 16, 2007

Abstract

Policy-based network management is a necessity in large scale man-
agement environment. It provides means for separating high level sys-
tem requirements from actual implementations. As the network size
increases, the need for automatic tools to perform management in-
creases rapidly. In Differentiated Services (DiffServ), policies can be
used to dynamically reconfigure routers such that the desired Quality
of Service (QoS) goals are achieved as well as to perform admission
control. Despite its potential benefits, policy-based management is far
from being widely adopted. One of the reasons behind this is that it
is difficult to analyze policies in order to guarantee configuration sta-
bility. Policies configured on large domains may have conflicts leading
to unpredictable effects. We propose developing a formalization to
put these policies in canonical form that can then aid in detecting
and solving conflicts in these policies configurations. We also present
a classification of these conflicts with respect to their scope and data
types involved. Moreover, we describe a simple method of analyzing
the severity of the conflict based on tunable user sensitivity.

1

1 Introduction

Network management is almost always specified in user given policies that

are used to set everything in the network behavior; routing maps, allowable

traffic into and out of the network, and traffic/flow quality specifications.

Therefore, policy-based network management is a necessity in large scale

management environment. It provides means for separating high level system

requirements from actual implementations. As the network size increases,

the need for automatic tools to perform management increases rapidly. The

main focus of this work is Quality of Service (QoS) policies. In Differentiated

Services (DiffServ), policies can be used to dynamically reconfigure routers

such that the desired QoS goals are achieved as well as to perform admission

control. Developing and deploying a complete policy-based management sys-

tem for QoS is still an ongoing problem. Guaranteeing configuration stability

and correctness is a major issue. Configuring policies on large domains might

cause conflict between policy parameters within different devices in the do-

main. Those conflict can lead to performance instability, unpredictability

and degradation.

We propose developing a formalization to put these policies in canonical

form that can then aid in detecting and solving conflicts that might occur

in these policies. In order to successfully discover these conflicts, we have to

find a reasonable classification with respect to their scope (i.e., flow, device,

or network wide) and data types involved (i.e., Boolean, ordinal, etc). In

addition, we describe a way to model the policy parameters into a unified

representation to facilitate further analysis and processing. Moreover, we

describe a simple method of analyzing the severity of the conflict based on

tunable user sensitivity.

We will start by classifying and modeling the parameters affecting each

per-hop-behavior (PHB). This classification will help us understand parame-

2

ters interactions and how this will affect actions involving those parameters.

Depending on this classification, the conflicts between actions can be ana-

lyzed. Then, each of the parameters will be encoded into the unified rep-

resentation that will use Binary Decision Diagrams (BDDs). The analysis

will first be discussed on a per-flow basis. Afterwards, we will present how

all flow-class requirements mentioned at all devices in the domain can be

incorporated in a single model to avoid the inevitable processing explosion

that will take place if we implemented the system to analyze one flow at a

time.

In summary, we propose a bottom-up approach to policy representation

and conflict detection and analysis. We first start by defining policy param-

eters that govern action performed on each flow. The parameters aggregated

together form a single per-hop behavior (PHB) associated to that flow. Ag-

gregation of consecutive PHBs for that flow forms the overall per-domain

behavior (PDB) associated to this specific flow.

The main advantage of this work over other QoS conflicts detection tech-

niques is the unified canonical form for representing policies. Also, per-

domain behavior analysis has not been addressed in previous work. Only

policy conflicts within a single Diffserv device (single PHB).

The paper is organized as follows. First we survey techniques used for

QoS DiffServ policy conflicts analysis. We compare and contrast our ap-

proach with those previous techniques. In section 3, we present the proposed

policy modeling procedure. Bottom-up representations are described from

singe parameter flow level to domain level. In sections 4 and 5, conflicts

classification is proposed. The detection and analysis are introduced in sec-

tion 6. Section 7 shows the application of our classifications to standard QoS

policies. We conclude the discussion in section 8

3

2 Related Work

Most of the work done in the area considered policy-based management in

specific domain, and restricted to a certain framework. One of the most

popular frameworks in Europe is the TEQUILA framework, introduced in [3].

Static conflicts are introduced in [2]. A detection mechanism is applied to

the network dimensioning part of the TEQUILA framework. Since static

conflicts are analyzed before applying the actual policy, the administrator is

required to perform changes to resolve conflicts. In [1], analysis of dynamic

conflicts was proposed. This work also introduces domain specific dynamic

conflicts detection and resolution in the context of the TEQUILA framework.

A general classification for conflicts in policy-based distributed system

management was introduced in [5]. This general taxonomy has been used

in different domain to help classify conflicts depending on the functionality

and parameters. QoS policy conflicts classification was introduced in [2]

and [1] considering TEQUILA framework. Those policies focused on per-

device conflicts, conflict residing on a single machine. The classification also

was limited to a set of predefined PHBs. In this work we propose a domain-

wide conflict analysis independent from specific behaviors. This canonical

representation can be extended to other applications.

The representation proposed here is based on the one used in [4] for secu-

rity policy modeling. QoS policies are more general than security policies in

terms of the number of actions allowed and the parameters affecting actions.

3 Policy Modeling and Encoding

We have several levels of abstractions in this model. First, there is the

per-flow PHB. This describes the properties and parameters enforced on a

4

specified flow at a single network node. Second, there is the overall PHB

affecting a specified flow when considered over all nodes of the domain. Fi-

nally, we consider combining all the flows specified in policies at different

nodes, to have a collective view of the domain policy.

The encoding of this information will take place in a Boolean expression

format that will encode all the criteria and policy values in the form of the

expression. This will be implemented in turn in BDDs to facilitate operations

and counter example searching.

3.1 Per-flow PHB Modeling

To be able to analyze policies using this model, each PHB will be represented

as a Boolean function. A PHB consists of many parameters. We will consider

the PHB specification from QoS policy Information Model [6]. Each PHB

has two main categories of actions; actions controlling bandwidth and delay,

and congestion control actions. Bandwidth and delay actions are responsible

for enforcing fairness between different classes. A complete mapping of all

the parameters is discussed in section 7.

The first step towards conflicts analysis in DiffServ environment is to

model each PHB in a way that will simplify and facilitate action representa-

tion and modeling. The following types of parameters inclusively characterize

each PHB:

• Boolean: A boolean parameter is a bit value that will be either TRUE

or FALSE. Conflicts for those parameters can be identified by a simple

equality operator. An example of this type is the fairness field defined

to enforce fairness in the bandwidth or delay assignment.

• Quantitative: A quantitative parameter is a numerical value that de-

scribes a certain value assigned to control the forwarding behavior. A

5

quantitative parameter could be maxDelay, maxJitter, queue size or

maxPacketSize. This value will be encoded using a number of bits

depending on its range of values. In other words the number of bits

B = log(dNe), where N is the maximum value this parameter can have.

The Boolean variables assigned to such a parameter will be included in

the PHB expression in its positive or negative form depending on the

binary encoding of the parameter.

• Range: This type of parameters describes ranges of values allowed for

a certain property of a PHB. A range parameter is defined as minValue

and maxValue. Bandwidth can be classified as a range parameter.

However, storing the exact min and max values is not needed. The

overall range can be encoded by the disjunction of all the values in

the range where each is presented as a single quantitative parameter

as mentioned above. Thus, a single expression over dlog(N)e variables

will hold the minimum and maximum criteria of the parameter.

A PHB action is a combination of all those parameters values.

A Boolean expression representing a single PHB will have the following

number of bits:

L =| VB | +
∑

vi∈VQ

dlog2(max(vi))e+
∑

vi∈VR

dlog2(max(vi))e (1)

where VB is the set of Boolean parameters, and VQ is the set of quantitative

parameters, VR is the set of range parameters, and max(vi) is the maximum

possible value of parameter vi.

A single PHB response to a certain flow is the combination of all param-

eters involved in the policy definition with respect to that flow. For a node

6

i, the PHB corresponding to traffic flow j can be evaluated as:

PHBj
i ≡ PHBj

b1
|PHBj

b2
| . . . |PHBj

bn
|

PHBj
q1
|PHBj

q2
| . . . |PHBj

qm
| (2)

PHBj
r1
|PHBj

r2
| . . . |PHBj

rk

where bi ∈ VB, qi ∈ VQ and ri ∈ VR correspond to all boolean, quantitative

and range parameters respectively. The | operator is the bit concatenation

between all binary representations of PHB parameters.

3.2 Per-flow Overall Modeling

For each parameter type, T , we have an aggregation operator, ./T , that

controls the final action (QoS guarantees) for this parameter type, where

T ∈ {B, Q,R} corresponding to boolean, quantitative and range respectively.

Now, for each flow, j, we calculate the per-domain behavior, PDBj
T , for

parameter, T .

PDBj
T ≡ PHBj

1 ./T PHBj
2 ./T/T PHBj

n (3)

where 1, 2, . . . , n are the nodes on the path of flow j. The operators for each

parameter will be discussed in more detail with conflicts in section 6.

The overall relation for all parameters affecting PDB for a flow, j can be

formulated as:

PDBj ≡ PDBj
b1
|PDBj

b2
| . . . |PDBj

bn
|

PDBj
q1
|PDBj

q2
| . . . |PDBj

qm
| (4)

PDBj
r1
|PDBj

r2
| . . . |PDBj

rk

7

where bi ∈ VB, qi ∈ VQ and ri ∈ VR correspond to all boolean, quantitative

and range parameters respectively. The | operator is the bit concatenation

between all parameters.

To summarize, each flow treatment will be calculated based on the de-

fined policy at each node with respect to this flow. For each parameter the

aggregation is evaluated using the parameter operator. PDBs for each pa-

rameter depends on the individual PHBs for that parameter. The overall

PDB for the flow is formed by combining all parameters behaviors.

3.3 Overall Network Modeling

In this step, the filtering condition applied to each flow is formalized. We

can view this part as the overall policy applied to the domain. The policy

consists of a set of rules. Each rule has a condition and an action. The

condition filters incoming traffic, and triggers the action for matched traffic.

The action over all domain routers corresponds to the per-domain behavior

for the traffic class matching the condition. Each rule is defined as:

Ri := Ci ⇒ PDBi (5)

Each rule, Ri, maps traffic matching condition, Ci, to a specific PDBi.

PDBs can be found from equation 4. Packets arriving are matched in-order

against each rule. The first rule that the packet satisfies its condition is

triggered. The behavior associated to the triggered rule is applied to the

packet.

Assume that the rule triggered when a packet from traffic class j arrives

is Ri. The overall satisfied condition resulting from this matching will be:

Cj = ¬C1 ∧ ¬C2 . . . ∧ ¬Cj−1 ∧ Cj (6)

8

The overall filtering condition that will be applied on all flows can be

written as:

C = C1 ∨ C2 . . . ∨ Cn (7)

where n is the total number of traffic classes.

The overall filtering policy that will be applied to a packet p, can be

formalized as:

QPDBi
= (p ∧ C) ⇒ Ri (8)

where p is a the binary representation of packet header fields. The conditions

are identified by defining values for all or some header fields.

4 Conflict Scopes

Conflicts in QoS policies can appear at several scopes. Following are the

different scopes where such conflicts can occur.

• Intra-PHB Conflicts

These include conflicts that occur within the flow properties at a specific

node.

– Single Parameter Conflict

These are the conflicts that occur due to malformed parameter

conditions. For example, by specifying negative Queue length, or

the minimum of a variable is greater than its maximum range, or

having a percentile parameter greater than a hundred.

– Multi-Parameter Conflict

These conflicts take place between different parameters. They are

more complex to identify, and resolve. For example, if a priority

level is specified by a flow, then the maximum bandwidth should

9

be specified, otherwise starvation for other flows will take place.

• Inter-PHB Conflicts

The hardest conflicts to detect and resolve are those that take place

due to policy definitions across different nodes (even across domains).

Inter-PHB conflicts happen when the same flow meets different behav-

ior from more than one node on its way from source to destination.

PHB policy are set such that a flow meets some quality requirements

as needed by the end user, and this needs that the flow meets equiv-

alent treatment at all hop from end to end along its path. If this

homogeneity is not available, the flow will have its quality reduced as

the worst PHB settings it meets. Checking the conflicts for a certain

flow, requires extracting its PHB along the path, and comparing them

together for conformity. An example of these conflicts can be different

bandwidth allocations at different nodes, or type of forwarding priority

at successive nodes.

• Cross-flow Intra-Node Conflicts

Conflicts between different flows in the same node are orthogonal to

conflicts along the path of the flow. Changes to correct one conflict can

resonate in the other class of conflicts, thus several iterations might be

needed. These conflicts take place when the settings that are assigned

to each flow at a specific node are not feasible to satisfy simultaneously.

For example, assigning a minimum bandwidth for each flow, such that

the sum is more than the link capacity. Such settings are valid if

observed on the flow level, but problems arises when we consider the

inter-flow effect.

• Cross-flow Inter-Node Conflicts

More complex problems arises when the settings of flows can affect each

10

other in more than one node. In most cases, they are incorporated

with routing settings, and device states. These conflicts need further

investigation to classify and analyze. They are out of the scope of this

work, to be studied in future research.

5 Conflict Strength

Conflicts classification according to scopes is one possible way for the classifi-

cation. Another orthogonal classification on conflicts is according to strength.

We can view this as a measure of how a conflict affects network conditions.

If the conflict will prevent normal operation of the network, it is an intoler-

able conflict. Here, we introduce the concept of conflict strength or, degree.

Since most of QoS parameters and properties have fuzzy nature, the net-

work condition may vary depending on the type and degree of the conflict,

or conflicting parameters.

We distinguish here between two types of conflicts; hard conflicts, and

fuzzy conflicts.

5.1 Hard Conflict

This type of conflict corresponds to the assignment of different values to a

single parameter. If the behavior associated with a certain traffic is different

for multiple nodes within the domain then, the policy is in conflict. No

parameter or behavior is allowed to have different values for a certain traffic

class. The policy needs to be reconfigured to resolve this conflict. We call

is Hard since any slight variation in any of policy parameters will trigger a

conflict.

11

5.2 Fuzzy Conflict

Fuzziness in conflicts comes from behaviors that differ between nodes on the

network with respect to the same flow. The values for a specific parameter

might differ, but the service can still be achieved. It will be unacceptable to

reject flows just because the bandwidth limitations on different routers are

not the same. A compensation can be allowed to grant some service given

different nodes’ configurations.

Here we introduce a conflict measure that will be used for all detection

steps in the coming sections. Figure 1 shows a proposed conflict level estima-

tion scheme, CL − chart. For each parameter, or conflicting configuration,

the conflict level can be estimated from different policies. On the x − axis,

a measure on the parameter will be calculated (the deviation of the values

between different nodes). For this value, the corresponding conflict level,

y − axis, represents the strength of this conflict. The conflict level, CL, is a

value in the interval [0, 1]. If CL = 0, then there is no conflict detected. The

conflict level will increase until it reaches the maximum value CL = 1, which

the network cannot tolerate. In between, the slope of the line will depend on

the specific conflict description and the parameter involved.

This graph will represent the relation between conflict and policy con-

figuration parameters in the case of quantitative and range parameters. An

example for this is the queue length. If the queue length assigned to a specific

flow differs over the path the flow will traverse, the overall performance of

this flow will be limited to the minimum length over the path. In this case,

the variation of the lengths will affect the conflict level.

The curve characteristics can be modified according to the parameter. It

can be unified over the same class of parameters or may be determined for

each PHB property. In section 6, we propose measures (x− axis) for quan-

titative and range parameters. The CL value can be determined depending

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Paramaeter Property

C
on

fli
ct

 L
ev

el
 (

C
L)

Figure 1: Conflict Level Chart

on the system.

6 Conflict Analysis and Detection

This section will deal with techniques to discover different kinds/scopes of

conflicts. As discussed in previous sections, we have scope conflicts and

strength conflicts. Each conflict discussed here will be mapped to one of the

previously mentioned types.

6.1 Intra-PHB Conflict

The simplest form of conflicts are those that concern a single flow and a

single PHB policy. As mentioned earlier, they are further classified to single

parameter and cross-parameter conflicts. The first kind is detected at the

parsing stage, when a user-provided policy fails to pass the first checking

phase that leads to encoding. Using the same example mentioned earlier, a

13

negative value for the queue length will raise a flag that it is not possible to

be encoded. Therefore, we claim that all such conflicts will be discovered in

this early phase.

Once parameters are encoded individually, incorporating them into a sin-

gle expression (still for a specific flow at a certain node) will show if any

problems between parameters will take place. Using the power of our repre-

sentation as Boolean expression we can add all kinds of constraints into our

expression. For example, if a condition specifies that parameter p1 cannot

have a false value, when another parameter p2 is greater than or equal 4.

This can be checked as follows: Assume the parameters are assigned variables

x1, and x2x3x4, then by multiplying the resulting expression from the single

parameter encoding phase by ¬x1x4 will result in an overall value of false if

the conflict exists.

6.2 Inter-PHB Conflict

To determine the final treatment of a certain flow within a domain, per-

domain behavior PDB, we need to examine all PHBs along the path. For

each type of parameter, a different operator will control the aggregation of

the PHBs. We assume here that all parameters are mentioned in the policy.

If a high level representation does not provide a parameter value, the default

on the machine will be used.

An inter-PHB conflict occurs when the final aggregation of all PHBs for

each traffic class is not consistent with the required service.

Now, we propose possible operators that can be used to evaluate the

aggregate PHB. A conflict rises when the resulting behavior is different from

the expected one, or the aggregation resulted in an empty behavior.

14

6.2.1 Boolean Parameters Aggregation

For a boolean variable, a simple equivalence of the values for the parameter

at each node will be the final behavior. Since boolean parameters take only

two values TRUE or FALSE, the equivalence will be TRUE if all PHBs

have the same value for the parameter.

For a boolean parameter, the operation ./B will be the logical equivalence

of the values. For this conflict to happen at parameter b, for the traffic class

j, the following condition muse be TRUE:

PHBj
bl
≡ PHBj

bk
∀ l, k (9)

where l, k are routers within the domain.

This conflict is a hard conflict, it either exists or does not.

6.2.2 Quantitative Parameters Aggregation

Most of the quantitative parameters in a single PHB correspond to resource

allocation for a certain flow. Examples of those parameters are queue length,

priority, maxDelay and maxJitter. Since those parameters depend on the

physical capabilities of routers on the domain, the most suitable way to

aggregate them is to take the minimum. In this case, we limit the resources

used to serve this traffic class to the minimum allowed by the domain. BDDs

allow the evaluation of the minimum and maximum using boolean operations

within a fixed time.

Conflicts for quantitative parameters are fuzzy. We can guarantee limited

resources according to network and device conditions. Here, we need to

define the characteristics of the Conflict Level chart, CL− chart, described

in section 5. Depending on all PHBs values for this flow, a measure of

deviation between them can be calculated. This measure is used to locate

15

the point on the CL − chart that characterize the conflict. Queue size for

example might have a value of 5 on one PHB, and 50 on another PHB for

the same traffic. The value returned by the aggregation along the path will

be 5, which may not acceptable for some PHBs. This should raise a conflict

in the policy.

To be more specific, we need to evaluate how far the resulting aggregate

PHB for this parameter is from the majority of the requests. For the queue

length example, if the device majority has queue length close to the minimum

value, 5, then this should not be a conflict. On the other hand, the majority

might have a big value gap from the minimum, resulting in a conflict.

So, for quantitative parameters, the x − axis of the CL − chart should

correspond to the deviation of the parameter values. Assume we have n

nodes, and the value of the parameter is xi at each node. First, we need to

calculate the statistical mode of the values (the value that has the maximum

probability). In our case, it will be the resource allocation value that is

present at the majority of the nodes. The deviation can then be calculated

as:

dev(x) =

{
mode(x)−min(x)

mode(x)
p(x = mode(x)) > 0.5

max(x)−min(x)
max(x)

o.w.
(10)

The first part is when there is a dominating common value of x. In this

case, the deviation should be relative to this common value, since most of the

devices can afford it. The latter case is when there is no majority value. In

this case, the deviation between the maximum and minimum values is the one

to consider. As the value of dev(x) increases, the conflict level CL increases.

It reaches the maximum 1 when the minimum is zero. The minimum value

of conflict, CL = 0, is achieved when min(x) = max(x). This corresponds to

the fact that all devices have the same parameter value, hence no conflicts.

16

6.2.3 Range Parameters Aggregation

Representing ranges as binary numbers simplifies the aggregation process of

such parameters. Aggregation across different PHBs can be performed by

taking the intersections of the available ranges. A logical AND operator

will be able to capture this intersection interval. If the conjunction results in

FALSE, then there is no possible sub-range to be assigned to this parameter.

This will constitute the definite conflict, CL = 1.

This type of conflict belongs also to the fuzzy classification. We need

to identify the x − axis values on the CL − chart, to be able to asses the

degree of the conflict. The following expression calculates the deviation of

the values using logical conjunction and disjunction operations.

dev(x) = 1− |∧i=1..n xi|
|∨i=1..n xi| (11)

where xi refers to the boolean expression resulting after mapping each

parameter value. The numerator is the number of satisfying assignments

representing the common range. The denominator corresponds to the total

number of satisfying assignment for the union of all values. In other words, we

want the conflict level to reflect the relative area of the intersection (common

sub-range) over the area of the union (the widest range). Using BDD en-

coding of variables provide the capability of counting satisfying assignments

efficiently.

7 Representation Completeness

In this section, we show how the proposed classification maps all PHB pa-

rameters defined in QoS policies. We also show that any new actions or

conditions can be easily represented using the proposed approach.

17

Class Property Parameter Type Representation
PHB Max Packet size Quantitative Value

Bandwidth

Forwarding priority Quantitative Value
Bandwidth units Boolean Multi-bits
Min Bandwidth Quantitative Range
Max Bandwidth Quantitative Range
Max Delay Quantitative Value
Max Jitter Quantitative Value
Fairness Boolean Single bit

Congestion Control

Queue size units Boolean Multi-bits
Queue size Quantitative Value
Drop method Boolean Multi-bits
Drop Threshold units Boolean Multi-bits
Drop Threshold method Boolean Multi-bits
Min Threshold value Quantitative Range
Max Threshold value Quantitative Range

Table 1: QPIM PHB properties mapping

We present action parameters as specified in the Policy QoS Informa-

tion Model, [6]. PHB properties are divided into three classes in this model;

QoSPolicyPHBAction, QoSPolicyBandwidthAction and QoSPolicyConges-

tionControlAction. Each class has a set of properties. We aim here to map

all those properties to the specific parameter type that can accommodate

the property. We show here that all class properties can be handled by our

representation. In table 1 each class along with its properties are mapped

to parameter type (boolean, quantitative or range). Parameter type entry

corresponds to the initial classification of the parameter. The last column

shows the actual representation that will be stored in the BDD. Some boolean

types have multiple bits corresponding to different options. For example,

bandwidth unit could be a percentage, or an absolute value. The property

is mapped to two bits in the final BDD.

18

8 Conclusion and Future Directions

In this work, we proposed a novel representation of QoS policy parameters for

DiffServ networks. The representation is based on Binary Decision Diagrams.

This canonical form simplifies conflict detection and analysis by performing

only binary operations on the specified policies. We followed a bottom-

up approach, considering traffic classes/flows. First, possible parameters

controlling a policy PHB are classified and clustered into three main types

(Boolean, Quantitative and Ranges). A flow-specific PHB is then formed

using policy parameters. The aggregation of PHBs affecting a specific flow

through the domain is then calculated. At each step/scope, conflicts can

be analyzed. We also introduced the notion of conflict level. Depending

on different parameter values on different PHBs affecting a certain flow, a

conflict level CL can be used to asses the severity of the mis-configuration.

The detection of per-domain behavior conflicts is proposed based on the CL

values. We then showed that the parameters classification proposed here can

accommodate all possible PHB properties.

As future directions, we will explore the applicability of our approach to

other QoS policy parameters, not only PHBs. Marking, shaping and policing

properties can also be encoded in the same manner.

The integration with a high level policy representation will be investigated

to facilitate the testing procedure.

Some conflicts cannot be addressed unless explicitly states. Such conflicts

include the dependencies between parameters (Intra-PHB, Multi-parameter

conflict). A generalization for these dependencies need to be studied.

Cross-flow conflicts need to be investigated as well, since it lies within the

PHB of the node. We considered here only policy applied to a single flow,

over the domain.

19

References

[1] Marinos Charalambides, Paris Flegkas, George Pavlou, Arosha Bandara,

Naranker Dulay, Emil Lupu, Javier Rubio-Loyola, Alessandra Russo, and

Morris Sloman. Dynamic Policy Analysis and Conflict Resolution for Diff-

Serv Quality of Service Management. In IFIP/IEEE Network Operations

and Management Symposium (NOMS 2006), April 2006.

[2] Marinos Charalambides, Paris Flegkas, George Pavlou, Arosha Ban-

dara, Emil Lupu, Alessandra Russo, Naranker Dulay, Morris Sloman,

and Javier Rubio-Loyola. Policy Conflict Analysis for Quality of Service

Management (2005). In 6th IEEE Workshop on Policies for Distributed

Systems and Networks (Policy 2005), June 2005.

[3] P. Flegkas, P. Trimintzios, and G. Pavlou. IEEE Netwrok.

[4] Hazem Hamed, Ehab Al-Shaer, and Will Marrero. Modeling and verifi-

cation of ipsec and vpn security policies. In ICNP ’05: Proceedings of the

13TH IEEE International Conference on Network Protocols (ICNP’05),

pages 259–278, Washington, DC, USA, 2005. IEEE Computer Society.

[5] Emil C. Lupu and Morris Sloman. Conflicts in policy-based distributed

systems management. IEEE Transactions on Software Engineering,

25(6):852–869, November/December 1999.

[6] Y. Snir, Y. Ramberg, J. Strassner, R. Cohen, and B. Moore. Policy Qual-

ity of Service (QoS) Information Model. RFC 3644 (Proposed Standard),

November 2003.

20

