An Automated Framework for Validating Firewall
Policy Enforcement

Adel El-Atawy*, Taghrid Samak Zein Wali‘, Ehab Al-Shaet,Sheng Li
*School of Computer Science, Telecommunication, and Inddion Systems
DePaul University
Chicago, lllinois 60604
Email: {aelatawy, taghrid, zwali, eh&@cs.depaul.edu
fCisco
San Jose, California 95134
Email: {fclin, chpham, she}i@cisco.com

Abstract

The implementation of network security devices such as filewand IDSs are constantly being improved to
accommodate higher security and performance standardsy tidiable and yet practical techniques for testing the
functionality of firewall devices particularly after newtéifing implementation or optimization becomes necessary
to assure proven security. Generating random traffic totkesfunctionality of firewall matching is inefficient and
inaccurate as it requires an exponential number of testsdasea reasonable coverage. In addition, in most cases
the policies used during testing are limited and manuallyegated representing fixed policy profiles.

In this paper, we present a framework for automatic testirth@firewall policy enforcement or implementation
using efficient random traffic and policy generation techieig; Our framework is a two-stage architecture that
provides a satisfying coverage of the firewall operatiotates. A large variety of policies are randomly generated
according to custom profiles and also based on the grammdreo&dcess control list. Testing packets are then
generated intelligently and proportional to the criticagjions of the generated policies to validate the firewall
enforcement for such policies. We describe our implemantadf the framework based on Cisco I0S, which
includes the policy generation, test cases generationiugag and analyzing firewall output, and creating detailed
test reports. Our evaluation results show that the autalregeurity testing is not only achievable but it also offers
a dramatically higher degree of confidence than random owualaesting.

. INTRODUCTION

Firewalls work as filtering devices at the boundary of difetr (sub)networks based on policies or access control
lists (ACL). They are important security devices as theygubthe internal network from attacks and unauthorized
traffic. Due to the persistent effort to enhance and optinfimavall protection and performance respectively,
firewalls undergo continuous modification to their interdakign and implementation to deploy new optimized
filtering algorithms, or adding new features into the ACL asviiall policies evolves syntactically and semantically.
This increases the chance of software bugs that might taiglithe filtering decision, thereby causing security
violations. Therefore, firewalls devices with new softwegteases require thorough validation to uncover errors in
the implementation or malfunctioning components.

The problem of testing a firewall has two stages:

« Generating random policies €., ACLs) with different configurations such as rule complgxitile interaction,

filtering criteria, etc, and

« generating packets to test the implementation of the dawicker test (DUT) using these policies.

Both problems must be addressed to claim that every aspéu difewall enforcement is validated. Our framework
handles both problems using intelligent policy generatiod policy segmentation techniques.

The problem of policy generation has two sides of its own. fitst one, is to generate rules that conform with
the syntax specification of the firewall. The other side of piheblem is to generate rules that use different field
values, different complexities.€., number of optional parameters/fields used) and coveringda vange of rule
inter-relations i(e., overlapping, super/subsets, etc). The former problemliged by specifying the syntax using a
tailored form of augmented context-free grammar. Thedastaddressed by generating the rules based on a neutral

representationi.g., a finite state automaton accepting the grammar), thus a@pgrthe policy generation logic
from the specifics of the language. Using this approach, bspects of the problem are targeted simultaneously
and policies with a customizable nature can be generatémholy any user-specified ACL syntax.

Testing the firewall by exhaustively injecting all possilpiackets into the firewall will be enough. It is a simple
operation to enumerate all possible values in the packetdndeelds, but it is not feasible due to the number of
packets needed (even if we restricted these packets to gamitfe relevant addresses and ports). Restricting the
domain even further (by confining packets to realistic valaed tuning the encoding) will only reduce the required
testing time from about x 102 years for the complete address space, to 4.5 years (usingilioe packets per
second). As seen in the Table I, the savings can be huge bue#gded time is still prohibitive. Random sampling
can be used but its one-sided error probabilitg.,(probability of faulty firewall passes the test, or havingaisé-
negative) is impractically high. Therefore, we introdube toncept of policy segmentation in order to achieve a
smart criteria for packet selection.

Span method Number of valueg Time on a 1G packet/sec
system. (years)
Entire traffic space 1.26762103° 4.0169210%3
Only relevant traffic 7.555210%2 2.394210°
(using class C network)
Using some optimizations 1.4421017 4.566
TABLE |

REQUIRED TIME TO EXHAUSTIVELY TEST DIFFERENT ADDRESS SPACES

In the next section, an overview of related work is provid8dction Il discusses the system framework and its
different modules. The policy generation is discussed ti@e V. The test data generator will be discussed in
section V. The reporting capabilities of the framework vi# shown in section VI. In section VIl the system will
be evaluated, followed by conclusion and future work.

Il. RELATED WORK

Product testing is considered not only the most importah&so the most expensive and time consuming phase
in any production line. Testing techniques are categoriatad black-box “functional” and white-box “structural”
testing. In black-box testing, the knowledge of the intéisteucture/implementation of the component under test
is not used or in most cases it is hot even known to the testéidolen by the component owner. This test can
be done exhaustively but in most cases the samples needexiftonp the test is impractically large. Therefore,
only a subset of the input data is selected. The data sateistidone from the input domain boundaries and within
each domain the sample data is selected statistically §}],Ifi white-box testing, the internal structure or the
implementation must be known because the whole test is b@aséis knowledge where the samples are selected
to test all possible cases or states in the implementatipri4R

Mostly, network devices (like switches, routers, netwogdamcers and firewalls) are tested using the black-box
"functional” testing concept. Usually, this test is divilénto sub-tests: auditing, build verification, availatyili
manageability and security tests [8].

The firewall, as a network device, follows the previous testprocedure but due to its nature it has a little
different testing approach. Firewall errors can be caiegdrinto four error types: security, implementation, pypli
and capability errors [11]. Each error type has its own d&ted¢echniques. Generally, we can categorize the firewall
testing techniques into two approaches, theoretical agmes [7], [10], [12] and practical approaches [11], [3],
[6].

In the theoretical approach, the testing is based on a fonmoalel of the firewall and the surrounding network.
Vigna proposes in [10] a firewall testing methodology basedadormal model of networks that allows the test
engineer to model the network environment of the firewallisTdilows to formally prove that the topology of the
network provides the needed protection against attackso,Alurjens et al in [7] used a CASE tool to model

Firewall
Grammar |

Segment

{} Analyzer
| Firewall

Policy .
Generator FW Policy
Segmentation Test Test Packet

| Module Segments generator
Manual FW Policy

Test
Packets

indino m4

Post-Test

Reports { Testresults Analysis

Fig. 1. System framework: A high level view

the firewall and the surrounding network then test cases emergted to test the firewall against a list of security
vulnerabilities. Others, in the same camp, like Wool [12faduced a tool capable of analyzing configuration
parameters from real environments. This firewall analyzas Wwased on the work of Mayer, Wool and Ziskind [1].

The analyzer is fed with the firewall configuration files and tliewall routing table then it uses this information

to simulate the firewall behavior. The simulation is donaltgtoff-line without sending any packets.

In the practical approach: most of the previous work provigghodologies to perform penetration testing against
the firewall. Ranum [9] identifies two kinds of testing methodhecklist and design-oriented testing. Checklist
testing is equivalent to penetration testing in runningsé dif vulnerability scanners against the firewall. Design-
oriented testing is quite different; we ask who implemerttedfirewall “why do they think the firewall will protect
the network (or not)” and based on their answers a set of testscare designed to check their claims. In [3] the
authors present a methodology to test the firewall securitgerability using two tests one is automated using a
security analysis tool called SATAN while the other test iarmal which is based on interacting with the firewall.
Haeni in [6] describes a methodology to perform firewall geaten testing. The test was structured in four steps,
indirect information collection, direct information cetition, attack from the outside and attack from the inside. |
ICSA labs, a firewall is being tested against a pre-definedfsttewall violations (.e., firewall logging capability,
firewall security vulnerability, firewall policy, etc.) wtih are described by Walsh in [11] and the one that passes
their test get certified.

Most of the previously mentioned efforts tried to address ginoblem from different points of view but no work
was published about testing whether the firewall implemémspolicy correctly or not. Also, none of the above
mentioned tools and models generate real policies that eadifferent environments for the firewall to operate
under.

Il. SYSTEM FRAMEWORK

An external view of the system shows three components: TiginEnthe Spy, and the User Interface. The Engine
is the core and it is where most of the processing takes pEue.Spy resides behind the firewall to report back
to the Engine how the firewall handled the traffic, and the Ustarface is a light weight front end to the engine.

From a design point of view, the architecture of our systemswis of the following main modules: Policy
generator, Segmentation/analysis module, Test packedrgiem, post-test analysis module. Other helper modules
include the BNF parser, traffic injection module, policy quter, and the spy process (see Fig 1).

A typical test cycle starts with specifying all parametess folicy (e.g, grammar, policy size, etc) and traffic
generation €.g, number of packet, injection rate, etc), and system cordiipm €.g, firewall type and address).
Then, when the test is initiated, the testing engine willegate a policy, analyze the policy for traffic selection and
load it into the firewall. The digested policy (in the form adggnents, will be discussed in detail in section V-B)
will be used to generate packets that will be in turn injediedhe firewall. The outcome of the firewall will be

BNF

) . BNF
Conflgitlléatlon BNF Parser Translation Administration
‘ Graph Information
(BNFGraph)
Poli '
Test Scenario Policy olicy Polic
' y Checker/ i

Generation Generator Compiler FW Admin

Options H

I

I

Manually y !

' < Entered Policy > . Iniection
Weight Segmentation ajwaits
,ngtlyzer - success of

ptions Weight configuration
Analyzer I
I
I
Test Case Test Packet | __ N
Generation "1 Generator
Options
Y Injection
Repeating *
Block
Spy <+— FIREWALL
Reporting Analysis P

Fig. 2. Detailed System Architecture

monitored by the Spy process. Afterwards, the resultingkgtscwill be analyzed and a report will be generated.
The cycle of policy generation and traffic injection can bpeated as the administrator wishes. A more detailed
diagram showing the exact implementation of the systemasvahin Fig 2. The following is a description of each
component:

« BNF Parser (Policy Grammar Parser): This core module reads the grammar specification of the [Bevic
Under Test (DUT), and builds the Finite State Automaton (F8#at accepts this grammar. The grammar is
provided in an augmented BNF format. All relations and restms on field values and among fields are
incorporated into this specification.

« Policy Generation Module This module is responsible for generating different pekcaccording to a set
of parameters (including the grammar specification) asideal by the user. These policies would be used
to configure the firewall for the test. Optionally, the usen ¢@ad policies manually overriding this module
functionality. The output of this module is a policy in plaiext that follows the firewall specific syntax.

« Policy Parsing, Checking and Compiling This module parses a policy, and compiles it into an internal
representation of constraints on packet header field bits.

« Segmentation ModuleThe segmentation algorithm builds a list of segments thagjisvalent to the compiled
policy. Using the rule-rule intersections and overlap8edent areas are identified, and the segments are formed.
See section V-B for details.

« Segment Weight AnalyzerThe segments are analyzed and each is assigned a weightdrasedumber of
factors such as the number of rules intersecting in the segamel the size of the segment address space. The
segment weight is a measure of the criticality of the segment

« Test Packet GeneratorThis module generates test packets distributed in prapotti the segment weight. For
example, segments that involve many interacting rules patentially receive more test packets than others.

A\~ Thread <€) Socket pair

Pipe w—=pp Packets

Fig. 3. The internal design of the Spy module. Its interactidth the firewall and Engine is illustrated

Each test packet carries test case information that insladeacket sequence number, the test session ID, and
a signature to avoid confusion with other cross-traffic sk

« Spy: firewall monitoring tool The Spy is a stand alone program that resides behind the firdteniffs all
outgoing packets, and collects them based on the Engingleese. When a test starts, the spy is informed by
the test session ID. All packets are tested for this valud,ififound they are marked in a bitmap. When the
test is over, the Spy will compare the expected with the adivgavall behavior and errors if any will be sent
back to the engine for analysis. The bitmap that represaetgxpected behavior (sent from the Engine to the
Spy prior to the test), and the bitmap of the discrepanciest(om the Spy to the Engine after the test) are
both compressed to save communication overhead.

The Spy is built to manage several tests simultaneouslyy ean be coming from a different Engine. Thus,

it has to be designed to support such a high traffic voluméjowit dropping packets due to overload (design
shown in Fig 3). It is split into three processes; (1) Captprecess: reads all packets from the media,
and forwards packets that has the framework signature imonext process, (2) DeMux process: takes all
test packets that were captured, and demultiplexes themtlieir corresponding threads, and (3) The Main
Process: that communicates with the Engine, receives #tedquests, creates a thread for each test, creates
the appropriate pipes/queues for these threads, and isftrenDeMux process about the new test ID’s.

« Post-Test AnalyzerThe collected information (by the spy) are then returnechtoEngine where analysis is
performed and a report is generated that shows the erroasyjf Several hints are extracted showing where
and why the errors might have occurred. This is provided ¢ouber as a distribution of errors and their types
over different segments, rules, and fields.

IV. PoLicYy GENERATION

In this section, we present the design details of the modegigonsible for the first phase of the testing cycle;
namely, Policy Generation. The modules involved are the Bjdmmar parser, the policy checker/compiler, and
the policy generation module.

A. Policy Grammar

Describing a general grammar that can accommodate all ljessccess-control list syntaxes is not as simple
as it seems. Specifying only the syntax can be a headache swaightforward task. However, specifying the
semantics of the different clauses in the grammay, (how each of these tokens and clauses interact to form the
final ACE constraint that correspond to its actual effect iteffing traffic) is another problem. Extra embedded
annotations are needed to describe these semantics todimengr parser and the policy generator afterwards.

Among the annotations needed: which field is this clauseftatonfiguring? If this is a literal, does it have a
special meaninge(g, “accept”, “permit”, “any”)? Can this value be representada literal, can we use lookup

S := "access-list" Policy-Nunber action SrcAddr [opt1]

Pol i cy- Nunmber\ Fi el dl D(100) : = \nunber (1, 99)
action\FieldID(0) := "permt"\V(1l) | "deny"\V(0)
SrcAddr\FieldlD(2) := |IPany | |Ppair

I Pany := "any"\Trans("IP","op", "any")

I Ppair := \IPvalue\Trans("IP", "op", "I Psubnet") [OptMsk]
Opt Mask : = \ | Pnask\ Trans("I1P", "op", "I Pmask")

opt1\Fieldl D(80) := "log"\V(1)

Fig. 4. A simple access-control list syntax

files for this task €.g, protocol and port names)? Is this token applicable for edtqrols €.g, ICMP qualifiers
are only valid with ICMP specified as the protocol, the samesgimr TCP extra control bits)?

From a theoretical point of view, adding all of the annotasiacneeded for the above mentioned tweaks will not
result in a more powerful grammar. It will still be a CFG (cexit free grammar). This observation is necessary in
order to guarantee that a simple PDA (PushDown Automatamy@zognize this grammar successfullg (accepts
any policy that follows this grammar). Simply, this is deaith a graph (represents the finite state automaton) and
the ordinary stack of recursive calls for the accompanyiagksrequired to convert the FSA to a PDA.

An example of a simple access-list syntax that supportstaints only for the source address can be written
as follows:

The grammar has two sets of symbols; terminal and non-tainsiymbols. Some special terms are included in
the grammar to express the semantics and field relationsurlimmplementation, some of the general properties of
the grammar are:

« Literal terminal symbols are enclosed with double quoted @ an exact string that will appear in the rule
definition.

« Non-terminal symbols are defined by following lines in thargmar.

« Each line defines a non-terminal.

« Square brackets]]” enclose optional fields.

« Each symbol followed by a\" represents an operation on the field that will be performgdhe parser.

« Round brackets()” are used to hold parameters for operations.

« Symbols starting by a\" are special fields that are predefined in the parser.

Special keywords/operations in the grammar are:

« \FieldID(n) Indicates the field numberJ to be used in inter-field dependency reference. Those nisare

predefined and will be used to retrieve the physical positibthe field in later stages.

\numf,n2) An integer range from to n.

\V(z) The value of the current token is For example, “tcp{V(6) means the word “tcp” has the value of 6.

IPvalue Special handling for IPs, in parsing and generation.

« IPmaskSpecial handling for subnet masks, in parsing and generatio

« Trans This is required to specify non-simple handling of data ie tlule. For example, conditions with
inequalities over port values, and the subnet mask effetP @ddresses.

The parser deals with the symbols associated withTta@soperator according to its following parameters. For
each such symbol, the context must be defined. The way therpslisuld deal with the symbol should be given
as well. The parser has a set of predefined methods that wilsee to perform the operation over the field. Three
parameters must be provided to thensoperator. The first parameter refers to the context of thebsyiftP, port,
protocol). The second parameter corresponds to the typeedfast parameter which is the action to apply.

In the same sense a more complex grammar is defined in Fig % @blb to accommodate the “extended access
list” features, some extra keywords have been added. Fongea\ Lookup, and\Cond are needed to specify
extra options. The former is used in cases where a list oftaatsshas no special handling but their value, so they
are retrieved from a file. Typical use can be for port and moitmames (instead of listing them using thev”
keyword). The latter is used for these clauses that only applen another field has been given a certain value.
This takes places more often when clauses depend on thecpretmue. It is associated with a non-terminal, and

S = "access-list" Policy-Nunber action protocol SrcAddr RT [Loggi ng]
RT := RT1 | RT2

RT1 := [SrcPort] DestAddr L3Extra RL4

RT2 : = Dest Addr L3Extra RT2b

RT2b := RL4 | Fragnents

L3Extra = [Prec] [Tos]

RL4 ;= [DestPort] [FIN [PSH [SYN] [URG [AckRstEst] [ignpquals] [icnpqual s]

AckRstEst := [ACK] [RST] | [Established]

Pol i cy- Nunmber\ Fi el dl D(100) := \numnber (100, 199)

action\ Fi el dl D(0) c= "permit"\V(1l) | "deny"\V(0)

protocol \ Fi el dl D(1) ;= \'nunber (0, 255) | \Lookup("nunber","protocols.txt")

SrcAddr\Fieldl D(2) := |Paddr

Dest Addr\ Fi el dl D 3) := | Paddr

SrcPort\ Fiel dl D(4) = Port

Dest Port\ Fi el dl D(5) := Port

| Paddr := IPany | 1Phost | IPpai r

| Pany = "any"\ Transl ate(" ,"operator","any")

| Phost = "host" \ I Pval ue\ Tr ansl ate("1P","operator", "I Phost")

| Ppair = \IPvalue\Transl ate("IP","operator”, "l Psubnet") \IPmask\ Transl ate("IP","operator","| Pmask")
Port \ Cond(1, 17) 1= Port Opl| Port Op2| Port Op3| Port Op4| Port Op5

Port \ Cond(1, 6) ;= Port Opl| Port Op2| Port Op3| Port Op4| Port Op5

Port Opl = "eq" Y\ Transl ate("port", "operator"”,"eq")

Port Op2 ="It" YW Translate("port", "operator","It")

Por t Op3 = "range" Y\Transl ate("port","operator”,"ge") Y\Transl ate("port", "operator”,"le")
Por t Op4 = "gt" Y\ Translate("port", "operator"”,"gt")

Por t Op5 = "neq" YW\ Translate("port", "operator", "ne")

Y \ Cond(1, 17) = \ nunber (0, 65535) | \Lookup("number", "udpports.txt")

Y \ Cond(1, 6) = \ nunber (0, 65535) | \Lookup("nunber","tcpports.txt")

i cpqual s\ Fi el dl D(6)\ Cond(1,1) := \nunber(0,255) \numnber (0, 255) | \Lookup("nunber","icnpquals.txt")

i gmpqual s\ Fi el dl D(19)\ Cond(1, 2) := \nunber(0,15) | Lookup("nunber","ignpqual s.txt")

Prec\Fi el dl D(7) ;= "precedence" \nunber (0, 7)
Tos\ Fi el dl I 8) ;= "tos" \nunber (0, 15)

Loggi ng\ Fi el dI D(80) = "log"\V(1)

Est abl i shed\ Cond(1, 6)\ Fi el dl I 9) ;= "established"
ACK\ Fi el dI D(11)\Oond(1 6) = "ack\ V(1)

FI' N\ Fi el dl D(12)\ Cond(1, 6) = "fin"\\V(1)

PSH\ Fi el dI D(13)\ Cond(1, 6) = "psh"\ V(1)

RST\ Fi el dl D(14)\ Cond(1, 6) = "rst"\V(1)

SYN\ Fi el dl D(15) \ Cond(1, 6) = "syn"\ V(1)

URG Fi el dI D(16)\ Cond(1, 6) = "urg"\'V(1)

Fragment s\ Fi el dl D(10)
\\ EndRul es

"fragments"\ V(1)

Fig. 5. A more complex access-control list syntax

given in the form ofCond(I1D,v). This translates to: this grammar line is only defined if fiéld was assigned
the valuev.

B. BNF Graph

The BNF graph is a directed graph corresponding to the FSA@fgrammar. The graph has a starting state,
which has no incoming edges, and a final state, which has rgoimgt edges. The final state is the only accepting
state in the graph. In between those nodes, the graph isaedeaccording to the given grammar syntax. The
graph is used for parsing, checking and compiling inputgiedi to the system. It is also used in the process of
policy generation. In this section the structure of the prappresented. The following section explain how this
graph is used for policy generation.

Each node represents a field in the grammar (or a symbol).cbwgtgedges from a graph node control the
transition between nodes, according to values allowedhercorresponding field. The links also store information

-Statistics
-FieldID = srcIP

“any”

[Literal
-No effect

Subnet IP value

K _IPW
-domain Value

IP value

“host"—-@—
[P data
-exact Value

-Literal

-+’ -Translated to “no-restriction”

Subnet Mask value

. | -IP data
"1 -mask domain
Value

Fig. 6. A subsection of the BNF graph showing the IP sectioodéNtype is described beside each one.

tring literal (access-list)

umber Field =

100

IPvalue Field = 2 Translate: 'IP','operator’, IPsubnet’

string literal (any) Field = 2 Translate: 'IP', operator’, any’

IPmask Field = 2 Translate: 'IP', 'operator’, TPmask’

string literal (logging) Field = 80 Value= 1

tring literal (log) Field = 80 Value= 1

Fig. 7. A graph representing the basic grammar example.

about field IDs, dependency conditions between fields, ahdrannotations provided in the grammar.

Rules of a given policy are parsed using this graph. For ealeh) the symbols are separated by blank spaces.
The process begins at the start state, then each encousterdubl is matched against outgoing edges/links from
the current node. Reaching the final state successfullytsesuaccepting the rule.

Following is a summary of the data stored at each edge/link:

« String The string to be matched.
Value Value (or range of values) of the given string.
« Field The field affected by the current link.
Condition Dependencies between fields. This includes the controfiglg ID, and the value that this field
should have for the link to be active.
« Probability A transition probability. This part is used only for policemeration.
Figure 6 shows the portion of the graph corresponding to Bhélso, Fig. 7 shows the whole graph for the simple
grammar example.

C. The Generation Process

A complete policy consists of an ordered set of rules. Theasyof each rule is defined by a given BNF grammar.
The corresponding graph is generated from the grammar. Apldentraversal of the graph from the start state to
the final accepting state, is equivalent to a single rule. gragh is traversed according to the probabilities specified
at each link. For each generated policy, the following pat&ms control the configuration of the policy:

« Policy sizeThe average number of rules that will be generated for eatbypo

« Average rule complexityhis parameter holds a percentaije — 100% that maps to the probability to use an
optional field. The higher the value the more complex the wilebe.

« Probability of accepfThe probability of choosing the action of the rule to be pérmi

Another set of parameters are used to control the rangesdidldl values. For example, the generation should
be able to favor the lower range of port values. Also, exhiagst set of values for a specific field is possible.

V. SMART TRAFFIC GENERATION

In this section we will consider the method used for genegatesting traffic for the firewall. The main goal is
to generate the least amount of traffic that is needed toliegpassible decision paths for the given firewall policy.
In order to have this span over the firewall/policy behaVicases, we will have to define the whole space over
which the policy could be tested.

Definition 1:

Traffic Address Space The space whose elements are all feeedif tuples that identify traffic in a network environ-
ment, especially from the firewall point of view. Normallyighs composed ok protocol, source address, source
port, destination address, destination port

Our test has to be guided into the traffic space in a way to gteeantelligent selection of samples.

A. Firewall Rules Representation

Rules and traffic address subspaces are represented usitgpaBe@xpressions. All Packets belonging to a certain
rule must satisfy its boolean expression. Such representatill make the operations mentioned in following
sections more clear and efficient. The expression is crdateassigning a variable to each bit of the rule fields.
Bit can have one of three possibilities; one, zero or donfedas in the case of wild cards in source/destination
address). Accordingly, either the variable, its complen@mneither (being omitted) is used in the expression
respectively.

For example, consider this rule: Ruleprotocol, source IP, source port, dest IP, destpart<any, *.*.*.*, any,
15.32.*.*, 80> the corresponding representation will be

Protocol Source IP Source Port
Zo..I3 L4..235 I36.-I51
d...d d...d d...d
Destination IP Destination Port
T52..283 X84..299
00001111.00100000.d...d.d...d | 0000000001010000

Boolean Expressiorp only uses variables froms, up toz7s plusxzgs to xg9. Therefore® = xf, A kg Axky A
Ty A Tsg A Tsg A .o A Thy ATy A hg....

As we see, 100 variables were reduced to 40 variables. Thdersmon, where rules in policies are normally
aggregates, and a smaller percentage of them use specifiesviar all of its fields. Later, the above mentioned
mapping from the firewall rule into the Boolean expressiott be used as;

¢ = AS(R;),

where¢ is the Boolean expression representing the address speegted by Rulé. Or equivalently, it can written
as.¢ = AS (proto, src address, src port, dest address, dest port).

B. Traffic Address Space Segmentation

In order to investigate the behavior as thoroughly as ptessithile keeping the traffic size at a minimum, it
is needed to identify the different possible interactiom$ween rules of the firewall policy in order to generate
a small set of packets>= 1) for each different interaction. This can be achieved bersecting all the traffic
address spaces matching the rules of the policy.

Definition 2: A Segmens a subset of the total Traffic Address Space. In a Segmeatt,afdhe member elements
(i.e., packets, or header tuples) conforms to exactly the samef gtlicy rules, and no non-member element can
conform to this exact set of rules.

In other words, packets belong to the same segment are ddefriom the point of view of all the rules in the
policy.

Each segment is identified by the following information feeld

« AS (Address Space)fhe Boolean expression representing the address space.

o R;, (Rules inside)Ordered list of rules applying to this space.

o R, (Rules outside)Ordered list of rules not applying to this spac¢e.(complement ofR;,; P — R;,).

o R.rr (Rules effective)Ordered list of rules that contributed to the final expressibthe segment.

« OR (Owner rule): The first rule in this list will be taken as the owner of the segin

o ACT (Action): Firewall action to be taken for this space. This is taken asdttion of the first rule in the

Rin list.

Algorithm 1 procedure DoSegmentation (R, defAct, InitDomain)
1. SEGLIST «— A
2: AddSegment (InitDomain, ,A , defAct)
3: for all rules:i =1 ton do
4. for segmentsj = SEGLIST.Count downto1 do
5: S = SEGLIST;
6: IncSeg — S.AS N AS(R;) {Included part of the segment
7
8
9

ExcSeg — S.AS ~ AS(R;) {Excluded part of the segment
if IncSeg # Seg.AS then {Segment not contained in the Rule’s AS
: if IncSeg # ® then
10: AddSegmentincSeg, S-Rin U{R;}, S.Rout, S-Refs U{R;})

11 AddSegmentExzcSeg, S-Rin, S-Rout U{R;}, S-Refs U{R;})

12: else{there is no intersection between the rule and the segment
13: AddSegmentExzcSeg, S-Rin, S-Rout U{R;}, S-Refs U{R;})

14: end if

15: else{Segment is inside the Rule’s AS

16: AddSegmentincSeg, S-Rin U {R;}, S.Rout, S-Refy)

17: end if

18: SEGLIST.Delete (Segment {)delete the original segment

19: end for

20: end for

21: return SEGLIST

The segmentation algorithm constructs a list of segmentSEGLIST)- according to the rules interaction.
Whenever a segment is identified, it calls the AddSegmentostibe to add it. AddSegment takes the policy
rules (R;), the default action of the firewall (hamed defAct), and thitial domain (named InitDomain) which is
the total traffic address space under consideratiof®;|fis an empty list, the action (ACT) of the segment is set
to the default (defAct), otherwise it takes the action usedhe first rule (assuming rule priorities are their order
in the policy). Similarly, if theR;,, is non-empty, the first rule is taken as the owner rule (OR).

In Segmentation algorithm(V-B), the first initial segmestinitialized, and added to SEGLIST at lines 1 and
2. Then we loop over the rules to impose their effect on all ¢Risting segments. We loop in reversed order

over the segments to prevent the newly added segment frong gbcessed in the current iteration. We use
three variables just for the sake of readability of the dtpor (i.e., S, IncSeg, ExcSeg). Respectively, they are
the currently processed segment, the Included address $pdween the segment by the Rule, and the excluded
space with respect to the rule. Having three cases betweesetiment and the rule’s address space, we either split
the segment into included area and excluded area, leaveegiment space intact as an excluded segment (if the
rule doesn't intersect at all this rule), or leave the segmpace unmodified as an included space (if the rule is a
superset of the segment).

The conditional adding or modification of segments are resmgsto prevent the creation of empty segments.
Omitting these two lines guarantees exponential run timéhénumber of policy rules because there will be a
deterministic growth of the number of segments by doublmgriumber of segments after processing each of the
n rules, resulting in a list o™ segments.

1) Choosing the Initial Domain::Until this point we have assumed that the initial domainéspwill be the
entire possible traffic address spate.(corresponding to: the boolean expressibnue). This is an easy option to
start with, but might not be always a practical choice. Mdfieient choices can be made based on our knowledge
(or the amount we would like to involve) of the network. Alsbcan differ on wether a robustness test of the
firewall is needed as weli.€., invalid packets are correctly rejected).

Option 1: Using the complete spaceThis is the simplest space to start with, but it includes p&ckhat we
might not be interested in. For example, packets with equaice and destination, or packets having the destination
address equals the firewall's incoming interface addrels®, Ahis set makes it possible to select packets that might
be invalid with respect to the used protocol. For example C& packet with all control flag bits set, or having
source and destination addresses both equal to zero in ahpatket, etc. But on the plus side, this options yields
a lower number of segments due to the simplicity of the oabdomain. In general, this option should not be used
except for completeness of all testing scenarios.

Option 2: Using the complete network space, with valid packis only: Just adding the protocol constraints
to the space before applying segmentations decreasesthefshe space several orders of magnitude (fedf
down to2'2%). The packets that result from segments built over this spae guaranteed to be valid, and acceptable
by any network device. This is a recommended starting pengéneral firewall testing.

Option 3: Restriction to network address spaceWe can start with the traffic address space corresponding to
<any, *.*** any, "my network range”, any. Starting with this initial segment, is intuitive as it isgected there
will be no packets reaching this firewall except those havhg firewall protected network’s address range (the
routers upstream towards the global network will not forvar the firewall except those relevant to my network).
However, at least the address spaces of the multicast tratist be added. We achieve this extension by ORing
the AS of the network’s range mentioned above, with thé equivalent to:<UDP, *.*.*.* any, 224.*.* */4, any>
for multicast traffic.

Option 4: Restriction to a range of source and destination adresses:A logical extension is to test using
only packets with a specific range of source and destinatdmregzses. Of course this is typically to be used
(along with the previous option) for firewalls that are atteanstalled in a network and need to be tested without
disconnecting/reconnecting to the network.

C. Analysis and complexity:

Although the algorithm shown is quite simple, it can yieldoerential running time in the general case.(
where the Boolean functions are not representing firewddisruout general expressions). In the case of firewall
rules, we have multiple restrictions amongst the Booleaialbes involved. For example:

« We cannot specify thé” bit of the source address to be equal to some value, withdagfike values of the

(1 — 1) previous bits.
« The variables representing the ports are either all meation the Boolean expression of the rule or all taken
to be "don't care” values. Same applies for the protocol field
The exponential number of segments occurs in the case wherg rile intersects with - at least - a constant ratio
of the segments existing from the previous rules. This isse ¢hat is not to be found in a practical firewall policy.

D. Measuring the importance of segments:

It is essential to have a measure for the relevance of eaaghesdggas this leads us to decide how dense the
testing should be within a segment. Measuring the impoeariche segmeni.g., the probability that any element
will be matched incorrectly by the firewall) can depend ond(aot limited to) the following factors:

1)

2)

3)

4)

5)

Number of rules in the segment (overlapping rule&% the number of rules intersecting at the segment
increases, so will the importance of the traffic addressdisisnsegment. The region that is common to many
rules can be thought of critical, as handling more overlaos loe harder to the firewall to process.

Number of rules affecting the segment shape (effectivattaoy rules):When a rule intersects non-trivially
with a segment splitting it into two non-empty segmentss thile becomes a member of the set of effective
rules with respect to this segment. As the number of ruleshis list increase, the matching will have a
tendency to have more decisions to make for packets witlérséigment.

The owner rule’s (OR) importancéss the first rule of a segment (owner rule) is considered mmigortant,

the whole segment can be judged as having higher tendenasig s important as well, as packets in this
segment were designed by the administrator to hit the owrler r

Cumulative weights of all contributing rule&ach rule will be having a weight (depending on factors shown
below). Also, not all rule weights contribute with the sameigit, as we are concerned with the top rules in
each segment more than the lower ones. So, there will be &idgestf for each rule that depends on its order
in the segment. As a rule become more complex, it can affecfiltering algorithm in its decision process.
Area of the segmen#s the areai(e., number of traffic address space elements the segment fovenesases,

its selectivity (and so its criticalness) decreases, asd alir ability to test it exhaustively decreases as well.
This means as the area increases the portion of the addrass &p be tested decreases, consequently its
weight. The area can be obtained by checking the number ddblas in the expression representing the
address space, or the count of different satisfying assigisn

The total testing density of a segment ought to become aimof all of the above shown factors.

p(S) = wi|S.Rin| + wa|S.Ress| +
waweight(S.OR) +
wyrer,, c(order(r)).weight(r) +
wsloga(||S.AS|) ™!

Some of these effects can be combined together to simpléyekpression:
The third term (summation of rules’ weights) is already aowgthe first two terms, as it sums over all the weights
of the rules. So, we can increase @) to take care of the second term. Also, by incrementingctibeefficients
in the third term, we can compensate for the first term. Thetlfioand fifth can be combined as well. Moreover,
depending on the suspected implementation that is to bedteistcan be possible to see that taking the logarithm
of the address space in another base makes more sense. Uliegesxpression would be:

p(S) = w1X,es.R,, c(order(r)).weight(r)

E. Rule Weight:

The segment weight is directly affected by the weights oftidbating rules as shown above. Giving each rule
in the policy a weight will be easier than that of the segmehi®vn above. The factors affecting the weight of a
rule are (and not limited to) the following:

1) The area the rule cover#s the rule gets more general, its weight decreases. The spafic the rule the

more it is critical to the system and easier to test exhaeigtiv

2) Number of fields useddlore options make packet matching harder. Consequentkinmarrors more possible.

This can also be reasoned as follows; every rule is a decigenwith many levels depending on the number
of criteria in the rule. Each node in the tree has a chance iimgbevaluated in error. Therefore, to reach a
leaf in such (skewed) tree, the algorithm will face more gmeserrors as the number of criteria increase.

3) The number of rules superseding this rule in the policy ddpany graph:As another parameter to the
importance of the rule, we take the number of subset rulesdqmelated rules as well) that come before it
in the policy. The order of a rule in the policy is not the catrealue to be taken, as it is not the real order
of the rule (as we can move it higher as long as no intersectilegis encountered).

Weight(R;) = a.||R;.AS|| + B.8(Higherrules)
VI. REPORTING
In this section we present the reporting levels of the testilte. Two parameters are provided to control the
reporting level; Analysis level and Verbose level. The mefpeatures are controlled according to the required levels
of verbosity and analysis respectively. Figure 8 shows épent features according to the different combination of
values for the 2 levels. Note that levels are treated increafly, (e.g, a verbose level of 3 includes all the features
for levels 1 and 2).

Verbose Level

1 2 3
§ Detailed scenario data according to the analysis level
= ; Listing
S Analysis level
S| Basi (of
iy asic repor .
5 . P1 (for scenario) packets
§. with only 1 P) 3 with
total 11 X .
otals over a . o Field Correlation | detected
scenarios Basic Statistics related L.
’ statistics overall action
scenario to rules and
o rules and errors
statistics segments
segments

Fig. 8. Report Features

The following results are available from a report with vesbdevel and analysis level of at least 2.

« Report summary:Contains the basic report statistics over all the scenamiaded in the run. This includes
total number of packets, different errors, and their avesagith respect to the number of scenarios
« Scenario section: This section is similar to the report summary but is basedhenscenario level. Also, it
includes the averages and standard deviation of packetditiacknt errors with respect to segment and rules
within the scenario
« Segments subsectiorContains the summary statistics per each segment in thasaen
« Rules subsectionsContains the summary statistics per each rule in the seenari
« Fields subsections:Contains correlation figures between errors and the useatfifspfields in rules. If the
rules with a specific filtering field tends to have matchingesr the strength of this tendency will be shown
here.
Higher verbose and analysis levels provide more detailémirmation into specific errors and failure patterns
over rules, segments, and fields. With the knowledge of thieerying filtering algorithm, the product testing cycle
can be much more optimized resulting in shorter time to naak@ng with lower development/testing costs.

VIlI. EVALUATION AND RESULTS

In order to evaluate the system, we had to investigate thectefif the variation in the main inputs in the
performance of the proposed system. The evaluation, asyitens design, can be seen in two parts. First one is
to evaluate the generation of the policies, to investightbdy cover a wide range of settings, and complexities.
The second part is evaluating the packet selection, and bgment-based selection will perform against the basic
random packet selection.

4000

3500 4

3000 4

of Segments
[N N
(4 o o
o [=] o
o o o

<+

1000 >

500 -

0 200 400 600 800 1000 1200
Policy Size (# of Rules)

Fig. 9. Number of resulting segments versus the size of ipgliosed. Settings used

A. Policy Generation Evaluation

To evaluate a random generator, the basic factor is how raradw unpredictable the output is. However, in our
case the output size is not large enough for such metric tdf been Besides, for policies generated to be of more
practical use we have to make them more redundant and ledsmamhus, we will focus our evaluation on how
the generated policies follow the required guidelines aruperties provided by the test administraterg policy
size, rule complexity, etc.), and how well the generatedcjs cover different field values and rule structures)(
distinct port values, average rule complexity, use of dpeclauses, etc.).

1) Segmentation moduleAnother point that has to be analyzed is the segmentatignistéhe testing cycle.
As obvious from the definition of segments, they are more imioer than the number of rules in the policy. The
qguestion is how high can their number be relative to the nunolbeules. We used a set of generated policies,
and performed segmentation on them, and kept the count aluthe and segments. In Fig 9, we can see that the
number of segments grows with the number of rules in a policg more or less linear fashion. Finding an exact
relation between both involves many other factors, likengraar structure, features, and complexity. Also, policy
generation options affect the policies in nature. Thus, a write down a very simple formula that governs the
relation to be| Segments(P) |=c. | P |, wherel < ¢ < 5 and its exact values depends on the above mentioned
inputs. For the, more than 250, policies involved in the gtiichever surpassed this bound. The subset of policies
used in Fig 9 were generated from a grammar that forced rudesonhave any special filtering clausesd, tos
value, ICMP qualifiers, ACK or SYN flags, etc.). This causeel tiverlapping between rules to be highly probable,
and this is the reason we can not find any policies witfegments(P) |~| P | (i.e., high proportion of distinct
rules). If complex grammars are to be used, the number of segnwill drop even further and the values ©of
might approach unity.

B. Packet Selection Evaluation

Comparison will be, mainly, against the random sampleimgshechanism. The operation of the random sampler
is as follows: Given an available testing time, calculat tlumber of possible test packets to be sent, spread these
packets uniformly over the whole traffic address space ofitkestigated firewall. In contrast to the random
technique, the proposed technique chooses where to coateetite samples, and where to allow them to be more
sparse; based on the result of the space segmentation. @&pbsgshow the effect of some of the parameters of
the system; the effectiveness of the segment weight fumatigredicting the error rate, the policy stylieg(, , the
interrelation between the rules within the policy), and dffect of the segment size skewness.

The first (second) graph shows the absolute (relative toarmngampler) effect of the effectiveness of the weight
function in predicting the probability of error within a segnt. As a measure of this effectiveness the correlation
between the two vectors (the weight function, and the adtrak probability) is taken. It can be seen that any non
negative correlation gives a gain over the random samgletilll gives better results even with zero correlation,
this can be attributed to the following; sampling within Baegment guarantees a better distribution and ensures
that the segments with higher probabilities can not be &dpas in the case of random sampling where whole
segments might be skipped. Take into consideration thateése two graphs as well as the second one, we tried

Effect of segment weight formula accuracy (correlation) on the technique Effect of segment formula accuracy (correlation) on the technique
effectiveness effectiveness

— e
womon #

£ so00%

70.00% T—]-Cor L0vs RAND

60.00%

50.00%

ge over RANDOM Sampli

3 wom
H
g
£ s000m
§
g
3 o

1000%

000%
1608 1E08 1£07 1806 1610 16409 16408 1607 1606
Average fault density over all segments (Total Samples = 10°7 packets) Failure RatioAverage fault ratio

(a) Effect of fault probability predic{b) Effect of fault probability prediction
tion accuracy on overall performance (adscuracy on overall performance (relative)
solute)

Effect of policy style on performance Effect of Segment Size Distribution
(seqment izes normaiized)

S000% 10000%

000%

To0m
£ wom
3000% s000%

H000%

Gain (%) over Rand:

] s000%

1000% 2000%

1000%

Disinct1 Distctz Owrapl Overlap2 Corel 1 Corel2 o o o

Policy Style Skewness

(c) Effect of policy style on the overalld) Effect of segment size distribution on
performance the overall performance

to be as conservative as we can; all tiny segments were rafrtovemoothen the effect of high density sampled
segments.

It is worth mentioning that this evaluation does not take iobnsideration the nature of common implementation
errors; they mostly cause errors in whole regions rather tieve them randomly dispersed in a segment or more.
In other words, if there exist an error in the implementatibis highly probable that whole segments (or rules)
will be mishandled by the firewall. Thus a single packet pgnsent will be able to capture the error. In contrast
with random sampling that might not even assign a sample Boal erroneous segment. By a simple calculation
we can find that the probability the random sampler will mig8riyg an erroneous segment is close to 100% even
after using millions of packets (See Table Il). We can writevd the probability that the random sampler will miss
the segment as follows?(miss) = (1 — 25~°)", wheres and S are the sizes of the segment and total space in
bits, andN is the number of packets to use.

Secondly, the policy style is investigated in the third drapfter removing very high weighted segments, as
well as tiny segments (those below a threshold are testedustikiely, thus causing our technique to be superior
over the random sampler and hiding the effect of the coroglastyle and any other parameters), all styles behave
quite well. Of course there is a general tendency that tho$ieigs with high interaction and/or many very specific
rules (e.g., where all tuples are specified) would give bgttgformance for our technique rather than the naive

Total Space Error Segment Prob of hitting Prob of missing

(Bits) (bits) w’ one Pkt all faults
Using 10° Packets
104 0 4.9303 E-32 1
104 32 2.1175 E-22 1
104 64 9.0949 E-13 0.999990
58 0 3.4694 E-18 1
58 32 1.4901 E-08 0.985209
58 40 3.8146 E-06 0.022044
Using 10° Packets
104 0 4.9303 E-32 1
104 32 2.1175 E-22 1
104 64 9.0949 E-13 0.99909
104 96 0.0039 0
58 0 3.4694 E-18 1
58 24 5.8207 E-11 0.94345
58 28 9.31323E-10 0.39403
58 32 1.4901 E-08 3.3768 E-07
TABLE 1l

PROBABILITY THE RANDOM SAMPLER WILL MISS A SEGMENT. THE SIZE OF THE TOTAL SPACE IS GIVEN BY THE NUMBER OF FREE BITS
IN ITS BOOLEAN EXPRESSION(i.€., LOG(SPACE SIZB). SIMILARLY , THE ERRONEOUS SEGMENTS SIZE IS GIVEN

random sampling counterparts.

Thirdly, to include the effect of small segments, the fougtaph shows how including small segments and those
with very high weight can render the segmentation-basegagna superior technique in investigating the firewall
performance in ratio to the random sample. Gain higher tHe# @as attained in some of the tested policies. As
a conclusion, the segmentation based technique givessoodenagnitude of better results over random sampling
when utilized to use all the features in the tested firewalidy (e.g., exhaustive testing of very small segments,
high sampling for high weight/moderate weight segments, ..

VIIl. CONCLUSION AND FUTURE WORK

In this paper, we present an automated framework for tegtiegfiltering implementation of firewalls. Our
technigue avoids the exhaustive testing via exploitingitieraction of the rules within the firewall policy. Using
this information, a carefully selective generation of itggtpackets is achieved that will result in a small prob#bili
of missing all fault locations. Also, a random policy gerterawas developed to generate customized policy
configuration to be enforced by the firewall device under. tébe evaluation results show that the correlation
between the assumed and the actual probability of error aay while maintaining better results than random
sampling. Higher success probabilities have been achievedany cases; 40-60% is a common gain over the
sample policies studied. Also, several policy styles hasenbtested, and the new approach proved to be superior
in all cases. The policy generator was shown to generateigslivith a wide range of customizable properties
accurately.

Currently, research is in progress to enhance the policgrgdor to incorporate more options, and capabilities to
generate human like policies. Also, taking into considerathat policies should be as orthogonal in their relation
with the filtering algorithm as possible, renders the s@ecodf random policies a really hard problem. Studying
the segmentation behavior for several policy styles needbdr investigation. Also, there are several well known
families of filtering techniques; tweaking the system andgiefunctions in order to target each one of these
families is also under investigation.

ACKNOWLEDGEMENT

This work was funded by Cisco as part of INSPEC project.

REFERENCES

[1] A. Wool A. Mayer and E. Ziskind. Fang: A Firewall AnalysiBngine. InProceedings of the 2000 IEEE Symposium on Security and
Privacy (S&P’2000) pages 85-97, August 2000.

(2]
(3]
(4]
(5]
(6]
(7]
(8]
(9]
[10]
[11]

[12]

W. Richards Adrion, Martha A. Branstad, and John C. Claasky. Validation, Verification, and Testing of Computesft8/are. ACM
Computer Surveyl4(2):159-192, 1982.

K. Al-Tawil and I. Al-Kaltham. Evaluation and Testing dfiternet FirewallsInternational Journal of Network Manageme®i(3):135—
149, 1999.

B. Beizer. Software testing techniques (2nd ed/an Nostrand Reinhold Co., New York, NY, USA, 1990.

B. Beizer. Black-Box Testing Techniques for Functional Testing ofv&oe and SystemdWiley-VCH, 1995.

R. Haeni. Firewall penetration testing. Technical repdhe George Washington University Cyberspace Policyitlite, 2033 K St,
Suite 340N, Washington, DC, 20006, US, January 1997.

J. Jurjens and G. Wimmel. Specification-Based Testingit@walls. InProceedings of the 4th International Conference on Perbpes
of System Informatics (PSI'02pages 308-316, 2001.

Microsoft. Network devices testing guidance. Micrasdfechnet, March 2005. http://www.microsoft.com/teclitstlutions/
wssra/raguide/NetworkDevices/ignddgmspx.

M .Ranum. On the topic of firewall testing.

G. Vigna. A formal model for firewall testing.

J. Walsh. Firewall testing: An in depth analysis. ICSalls Techncial report, June 2004. www.icsalabs.com/iosa/dtml/communities/
firewalls/pdf/fwwhitepaper.pdf.

A. Wool. Architecting the Lumeta Firewall Analyzer. Proceedings of the 10th USENIX Security Symposiiagust 2001.

