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Abstract

In this paper we investigate how certain results related to the Hanani-
Tutte theorem can be lifted to orientable surfaces of higher genus. We
give a new simple, geometric proof that the weak Hanani-Tutte theorem is
true for higher-genus surfaces. We extend the proof to prove that bipartite
generalized thrackles in a surface S can be embedded in S.

We also show that a result of Pach and Tóth that allows the redrawing
of a graph removing intersections on even edges remains true on higher-
genus surfaces. As a consequence, we can conclude that crS(G), the cross-

ing number of the graph G on surface S, is bounded by 2 ocrS(G)2, where
ocr(G)S is the odd crossing number of G on surface S.

Finally, we begin an investigation of optimal crossing configurations
for which ocr ∼= cr.

1 Introduction

We continue the investigation of the Hanani-Tutte theorem and its close rel-
atives begun in “Removing Even Crossings” [10, 11], aiming for analogues on
orientable surfaces of higher genus. The theorem of Hanani and Tutte states
that every drawing in the plane of a non-planar graph contains two non-adjacent
edges which intersect an odd number of times.1 There are several proofs of the
theorem starting with the original papers by Hanani and Tutte [2, 13, 3, 4, 12, 6].
Kleitman’s proof [4] is particularly short and elegant. All of these proofs invoke
Kuratowski’s theorem and then verify the result for subdivisions of K3,3 and K5.
This approach seems hopeless for surfaces of higher genus (the list of excluded

1We make the usual assumptions on drawings of graphs, see [7, page 230].
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minors is not yet known even for the torus). In [10, 11] we used geometric
methods to give a new proof of the Hanani-Tutte theorem in the plane that
does not rely on Kuratowski’s theorem. As a first step, we can extend those
methods to prove a weak version of the Hanani-Tutte theorem for higher-genus
surfaces: a graph of genus g embedded on a surface of genus less than g must
contain two edges that cross an odd number of times. While this result has
previously been shown by Cairns and Nikolayevsky using homology theory [1],
our proof is entirely geometric. We also show how to use our methods to obtain
another result of [1], namely that a bipartite generalized thrackle on a surface
is embeddable on that surface.

As our goal is the strong version of the Hanani-Tutte theorem for higher-
genus surfaces, it is instructive to see where our proof for the plane breaks down.
At the core of that proof is the following result from [10, 11]. An even edge in
a drawing is an edge that intersects every other edge an even number of times
(including the possibility that it does not intersect it at all).

Theorem 1.1 (Pelsmajer, Schaefer, Štefankovič) If D is a drawing of G

in the plane, and E0 is the set of even edges in D, then G can be drawn in the
plane so that no edge in E0 is involved in an intersection and there are no new
pairs of edges that intersect an odd number of times.

This theorem is a strengthening of the following, earlier result of Pach and
Tóth [8, Theorem 1].

Theorem 1.2 (Pach, Tóth) If D is a drawing of G in the plane, and E0 is
the set of even edges in D, then G can be drawn in the plane so that no edge in
E0 is involved in an intersection.

In Section 3 we will see that the result of Pach and Tóth can be lifted to
higher-genus surfaces, whereas Theorem 1.1 cannot even be extended to the
torus. That thwarts our original approach to the Hanani-Tutte theorem. How-
ever, we can still conclude that

crS(G) ≤ 2 ocrS(G)2

is true on arbitrary surface S, where crS(G) is the crossing number of G on S

and ocrS(G) is the odd crossing number of G on S. This generalizes a result by
Pach and Töth who proved cr(G) ≤ 2 ocr(G)2 [8].

In Section 4 we explore another route to understand the relationship between
the odd crossing number of a graph and its crossing number. The goal is to
establish a linear bound of the form cr(G) ≤ c ocr(G). Our approach is to study
possible minimal crossing configurations that can occur. A first such case is
investigated here.
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2 The weak Hanani-Tutte theorem for higher-

genus surfaces

In this section we want to show that the weak Hanani-Tutte theorem is true
for arbitrary orientable surfaces. This result is known, with a short and elegant
proof using homology theory [1, Lemma 3]. In the spirit of our earlier paper we
present an entirely geometric proof of that result.

We do require some background on surfaces. Let S be a compact, connected,
orientable surface without boundary—unless we explicitly say otherwise, this is
what we mean by surface from now on. By the classification theorem for sur-
faces, S is homeomorphic to a sphere with some number g of handles attached,
and g is called the genus of S. A closed curve on S is contractible if it can be
continuously deformed on S to a point. Assume that C is a non-contractible
closed curve on S. Locally near C, since S is orientable, S − C is partitioned
into exactly two sides. So S − C is a surface with two boundary components,
and since each side is in a single component of S − C, S − C has at most two
components. We say that C is S-separating or simply separating if S − C has
two components. Otherwise, S − C is connected, and we call C nonseparating
(remember that we assume that C is non-contractible).

Given a nonseparating curve C, we can lower the genus of S by cutting along
C and then attaching a disk to each boundary component of S−C. This creates
a new surface S′, which we call the C-reduced surface. Euler’s formula can be
applied to show that the genus of S′ is one less than the genus of S.

The following lemma will help us find nonseparating curves.

Lemma 2.1 Suppose that C and C′ are closed curves on a surface S. If C and
C′ intersect an odd number of times, then neither is S-separating; indeed, both
are nonseparating curves.

Proof Suppose that C is separating. Then S − C has two components S1, S2,
each with C as its boundary. If we trace the curve C′, it must switch between
S1 and S2 each time it crosses C, and never otherwise. Hence there must
be an even number of switches, contradicting the assumption that C and C′

intersect oddly. Hence, neither C nor C′ can be separating. Since they cannot
be contractible either (a closed contractible curve intersects another closed curve
an even number of times), they are both nonseparating. �

Of course, we wish to study graphs drawn on surfaces; the next proposition
tells us how to find nonseparating curves in a graph.

Proposition 2.2 Let G be a graph with a single vertex v, drawn on a surface
of genus g > 0, so that all edges are even. Then either G contains an edge e

that is a nonseparating curve, or else we can draw a new nonseparating curve
through v that intersects each edge of G an even number of times.

In the latter case, we can add a new edge e to G and let it be drawn as the
new curve.
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Proof Since g > 0 the surface must contain a nonseparating curve C, and we
may assume that v 6∈ C. If C crosses no edge of G an odd number of times then
we can use the curve C itself: deform a small segment of it (without crossing
any vertices) to approach v between two consecutive edges in the rotation, so
the curve eventually contains v. Otherwise there is a loop e in G that intersects
C an odd number of times. By Lemma 2.1, e is nonseparating. Since every edge
in G is even, we can use the curve e. �

We are now ready to state and prove the weak Hanani-Tutte theorem for
arbitrary (orientable) surfaces. The inductive part of the argument is similar
to the analogous result for the plane; the interesting new aspect in the proof is
the base case.

Theorem 2.3 (Cairns, Nikolayevsky) If G can be drawn on a surface of
genus g so that all its edges are even, then G can be embedded on that surface,
i.e. drawn intersection-free, without changing the rotation system.

Proof We can assume that G is connected. Fix a drawing D of G on a surface
of genus g. The proof will be a double induction over the genus g of the surface
and the number of vertices of G. We need to keep track of the cyclic ordering of
the edges leaving each vertex in D. This ordering is called the rotation at that
vertex. The rotation system of the drawing is the collection of the rotations at
all vertices.

To make the inductive step work, we prove the following slightly stronger
statement:

If D is a drawing of a multigraph G on a surface of genus g so that
any pair of edges intersects an even number of times in D, then
G can be drawn without intersections on a surface of genus g and
without changing the rotation system.

If G has more than a single vertex, D must contain an even non-loop edge
uv. We proceed as in a previous paper [10, Theorem 1.1]: contract the edge uv

by pulling v towards u as shown in Figure 1.

u

v

⇒

u

v

⇒

u = v

Figure 1: Pulling an endpoint (left to middle) and contracting the edge (middle
to right); illustration taken from [10].
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In the new drawing the edges incident to v remain even, since uv was an
even edge. We might have introduced self-intersections by contracting uv, but
these self-intersections are easily eliminated as shown in Figure 2.

⇒

Figure 2: Removing a self-intersection; illustration taken from [10].

Finally, we contract uv to a single vertex u and join the rotations at the
two vertices appropriately (see the right part of Figure 1). Call the new graph
G′. By inductive assumption, there is a drawing of G′ on a surface of genus g

without intersections that respects the rotation system. In such a drawing we
can split the vertex u into vertices u and v and reintroduce the edge between
the two vertices (without any intersections).

This leaves us with the case that G consists of a single vertex u with loops.
If g = 0 we can redraw the loops without any intersections. We can therefore
assume that g > 0. By Proposition 2.2 there is an edge e in G—or one can
be added to G so as to not create any odd intersections—which is drawn as a
nonseparating curve. We will create the e-reduced surface, but first we remove
intersections with e. Since e is even, the intersections with e can be partitioned
into pairs such that each pair involves the same edge (other than e). Now
erase all intersections with e, and for each pair, on each side of e, draw a curve
alongside e to connect the severed ends. (See Figure 3 for an example.)

e e

Figure 3: Eliminating intersections with e.

Note that this procedure does not change the parity of the number of in-
tersections between any pair of edges, although it does lead to “curves” with
multiple components, only one of which contains v; we will deal with these
shortly.
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Since we have removed all intersections from e, we can now contract e to a
single vertex, and split the surface at that vertex. Since e is intersection-free, it
naturally splits the rotation of u into two rotations; we split the vertex u into two
vertices u and v with those rotations. Call the resulting graph G′. Our current
drawing of G′ on the e-reduced surface is not quite proper: some of the edges
are represented by “curves” that have more than one component. However, we
can deform a small segment of a component close to another component of the
same curve, without crossing any vertices; then the local redrawing move shown
in Figure 4 combines the two components. Repeatedly doing this for all curve
components will yield a single curve. (At this point we made use of the fact
that e is nonseparating.)

u u

Figure 4: Reconnecting a closed component to the main curve.

Repeating this for each curve gives us a drawing of G′ on a surface of genus
g − 1 such that every pair of edges intersect an even number of times. By the
inductive assumption G′ has a drawing on a surface of genus g − 1 without
intersections with the rotation system unchanged. We can now attach a handle
to that surface with one end near u, where edges incident to v belong in the
rotation, and the other end near v, where the edges incident to u belong in the
rotation. Then we can move u and v close together along the handle and merge
them, recovering the original rotation of u. Finally we can add back the loop
e around the handle (or not, if it we artificially added the loop to G), without
introducing any intersections. This finishes the proof. �

Cairns and Nikolayevsky used the weak Hanani-Tutte theorem to prove an
interesting result on generalized thrackles. A graph is a thrackle if it can be
drawn such that any pair of edges intersects exactly once, where a common
endpoint of two edges counts as an intersection of these two edges (a convention
we will use only in the remainder of this section while talking about thrackles).
A generalized thrackle is a graph that can be drawn such that any pair of edges
intersects an odd number of times (again counting endpoints).
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Remark Two edges cross (rather than intersect) if they intersect at a point
which is not an endpoint of either edge (we also assume they do not touch).
We can easily see that a graph is a generalized thrackle if and only if it can
be drawn such that any pair of edges crosses (rather than intersects) an odd
number of times: Simply redraw the graph locally at each vertex so every pair
of edges incident to the vertex cross an odd number of times as illustrated in
Figure 5. This suffices since for each intersection of two edges at an endpoint
there is one new crossing, and all other intersections are crossings. The desired
redrawing can always be done: We can assume that, locally, the edges leaving
the vertex look as shown on the left of Figure 5; that is, the edges are straight
lines leaving upwards. We now reverse the rotation at the vertex and reconnect.
(Cairns and Nikolayevsky use an equivalent idea.)

Figure 5: Flipping the parity of crossings at a vertex.

Now suppose G is a generalized thrackle on some surface of genus g. Let
us also assume that G is bipartite, that is, all edges are between some vertex
sets V0 and V1. Draw G so that any pair of edges intersects evenly (counting
endpoints). Apply the parity-flipping operation described in Remark 2 to each
vertex in V1 only. Then two edges cross an even number of times if and only if
they share an endpoint in V0.

Pick a set of edges such that every vertex of V0 is contained in exactly one
edge. One by one, select one of these edges e = uv, with v ∈ V0, u ∈ V1, and
contract v to u along e, merging the rotations appropriately. This can create
edges with both endpoints in V1. For convenience, call this set of edges E1; then
E\E1 are the edges that still go from V0 to V1.

Claim: After each step, every edge in E1 is even and the parity of crossings
between every other pair of edges in E\E1 is unchanged. This can be shown
inductively: At each step, each edge f incident to v other than e is extended
along the old drawing of e, adding an odd number of crossings with the edges
that cross e oddly—which are precisely the edges in E\E1 that are not incident
to v. Since f already had an even number of crossings with each other edge
incident to v and with each edge in E1, the contraction makes f even. Since
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the edges incident to v other than e are the edges that get moved from E\E1

to E1, the claim follows.
Thus we obtain a drawing of a graph on a surface of genus g in which all

edges are even (We might have to remove self-intersections as we did earlier).
By Theorem 2.3 the graph can be embedded on the surface without any inter-
sections, without changing the rotation. Since the rotation did not change, we
can uncontract edges and obtain a planar drawing of the original graph. This
gives an easy geometric proof of the following theorem.

Theorem 2.4 (Cairns, Nikolayevsky) If G is a bipartite, generalized thrackle
on a surface of genus g, then G can be embedded on that surface.

The special case g = 0 of the theorem was first proved by Lovász, Pach, and
Szegedy[5]: if a bipartite graph is a generalized thrackle, then it is planar.

3 Removing even crossings in higher-genus sur-

faces

In Section 2 we gave a new proof of the weak Hanani-Tutte theorem for arbitrary
surfaces (as first proved by Cairns and Nikolayevsky). In the plane we know that
a stronger result is true: Pach and Tóth first showed the following result [8]:

Theorem 3.1 (Pach, Tóth) If D is a drawing of G in the plane, and E0 is
the set of even edges in D, then G can be drawn in the plane so that no edge in
E0 is involved in an intersection.

Pach and Tóth applied their result to show a relationship between two dif-
ferent notions of crossing numbers. The crossing number, cr(G), of a graph G

is the smallest number of intersections in a drawing of G.2 The odd crossing
number, ocr(G), is the smallest number of pairs of edges that intersect oddly
in a drawing of G. By definition ocr(G) ≤ cr(G); however there are graphs for
which the two numbers differ [9]. Pach and Tóth showed that on the other hand
that cr(G) ≤ 2 ocr(G)2.

The redrawing procedure used in the proof of Theorem 3.1 can lead to an
increase of the odd crossing number, and will, therefore, probably not lead to
better bounds of cr(G) in terms of ocr(G) (a linear bound is suspected). In a
previous paper we showed that Theorem 3.1 can be strengthened to avoid an
increase in the odd crossing number:

Theorem 3.2 (Pelsmajer, Schaefer, Štefankovič) If D is a drawing of G

in the plane, and E0 is the set of even edges in D, then G can be drawn in the
plane so that no edge in E0 is involved in an intersection and there are no new
pairs of edges that intersect an odd number of times.

2We make all the standard assumptions on a drawing, such as requiring that not more
than two edges intersect in an intersection point [7, page 230].
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As a consequence, we were able to show that crossing number and odd
crossing number are the same when they are at most 3.

As it turns out the stronger Theorem 3.2 fails for higher-genus surfaces,
indeed, it already fails for the torus, as the following example shows:

Example 3.3 Consider the graph G shown in Figure 6. The graph consists of

g1

g2

f2

f1

e

Figure 6: An example showing that Theorem 3.2 is not true for the torus.

an even loop e and two pairs of loops, one pair with its ends inside of e (f1, f2

in Figure 6) and the other with its ends outside of e (g1 and g2). The two
loops in each pair alternate ends at the vertex, but do not intersect each other.
Each loop with ends inside of e intersects exactly one of the loops with ends
outside of e oddly (and the other loop not at all). We claim that G cannot
be embedded in the torus in such a way that e is free of intersections and the
pairs of edges that intersect oddly do not change, if the rotation at the vertex
is fixed. For a contradiction, assume that G can be embedded thus. Then e

is either contractible or nonseparating (there are no separating curves on the
torus). If e is contractible, then one of the two pairs has to lie entirely within
e, i.e. be embedded in the plane. Consequently, the two loops in that pair must
intersect oddly, which they did not do before. If e is nonseparating, both pairs
of loops are embedded in a region homeomorphic to an annulus (a plane with
two holes), which forces the loops in each pair to intersect each other. Again
this changes which pairs of edges intersect oddly.

This example can be modified to create a simple graph without a fixed
rotation system, for which Theorem 3.2 on the torus would fail. Erase the
drawing in a small ball containing the vertex of G, and draw the wheel W10

there without crossings, such that its interior has ten 3-faces and one vertex of
degree 10. The five edges of G have ten ends, which we can extend to meet
each of the other vertices of W10, without creating any crossings. Let G′ be the
resulting graph drawn on the torus.
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Suppose that there is an ocr-optimal drawing in which the even edges of G′

(namely, e and the edges of W10) are crossing-free. We can apply the previous
argument if W10 is drawn the same way. Otherwise some triangle of W10 does
not bound a face, either because it is nonseparating or because its interior
intersects W10. In both cases, the rest of G must be drawn in a subsurface of
genus 0, and it is easy to see that there must be new odd pairs.

In these particular examples, it is easy to redraw the graphs so that e is
intersection-free and the odd crossing number does not increase, while keeping
the rotation system the same. We do not know whether this is true in general.

However, the original result of Pach and Tóth is true for higher-genus sur-
faces.

Theorem 3.4 If D is a drawing of a connected graph G in some surface S,
and E0 is the set of even edges in D, then G can be drawn in S so that no edge
in E0 is involved in an intersection.

Proof Fix a drawing D of G in S. The proof will be a double induction over
the genus g of the surface S and the number of vertices of G. As usual we keep
track of the rotation system.

For the induction, we prove the following slightly stronger statement:

If D is a drawing of a multigraph G on a surface of genus g with
even edges E0, then G can be drawn in S so that no edge in E0 is
involved in an intersection and the rotation system of the drawing
is the same as that of D.

As we have done before we contract even edges while this is possible, main-
taining the rotation system. In this way we obtain a graph in which all non-loop
edges are odd, i.e. they intersect at least one other edge an odd number of times.
We continue by contracting the odd edges as well. The important observation
is that since all even edges are loops at this point, even edges remain even.

We obtain a graph with a single vertex u and a bouquet of loops, some odd
and some even. If the drawing contains a nonseparating even loop e, we proceed
as in the proof of Theorem 2.3: we remove all intersections with e, contract e

to a single vertex, and split the surface at that vertex, and also split the vertex
into two vertices u and v with the rotations dictated by the surface split. Call
the resulting graph G′. As we did earlier, we reconnect the components of each
curve.

By the inductive assumption we know that G′ can be drawn in a surface of
genus g − 1 so that no edge in E0 is involved in an intersection, while keeping
the rotation system the same. We can then add a handle close to u and v and
identify these vertices, reconstructing the rotation system of G.

If the drawing does not contain a nonseparating even loop, all even loops
are either contractible or surface-separating. Consider the rotation system at
u and an even loop e at u. Since the surface is split by e into two pieces, any
other loop f at u—which must cross e an even number of times—must begin
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and end on the same side of e. Hence the ends of e and f cannot alternate at u.
This means that we can redraw all the even loops in a very small neighborhood
of u, without changing the rotation at u, so that no two of them intersect each
other. The even loops might still intersect odd loops, indeed might intersect
odd loops that they did not intersect before, but by the argument we made,
they will intersect them an even number of times; hence, after the redrawing
none of the edges in E0 intersect each other, and they remain even, so we are
justified in still calling them even. Note that for this process to work, it was
essential that none of the even loops is nonseparating.

At this point even loops only intersect odd loops. Consider an even loop e

at u. If an odd loop f crosses e, we simply remove the segment between the
first and last crossing with e and directly connect the two ends alongside the
boundary of e (we argued earlier that the two ends are not separated by e).
Repeating this finishes the proof. �

Observe that the proof potentially increases the odd crossing number of the
drawing, both when contracting odd edges, as well as in the last step when
reconnecting the ends of odd loops. Nevertheless, it is good enough to extend
the result by Pach and Tóth that cr(G) ≤ 2 ocr(G)2 [8] in the plane to any
(orientable) surface.

Corollary 3.5 For any surface S we have

crS(G) ≤ 2 ocrS(G)2.

Proof Let D be an ocr-optimal drawing of G = (V, E) in surface S, i.e. a draw-
ing realizing ocrS(G). Let E0 be the set of even edges in D. Using Theorem 3.4
we can obtain a drawing of G in which all edges of E0 are free of intersections.
In other words, only the edges not in E0 are involved in intersections, and there
are at most |E − E0| ≤ 2 ocrS(G) of them. Erase all of the edges in E − E0

and redraw them so as to minimize the number of crossings between them. Ob-
viously no pair of these edges needs to intersect more than once, so the new
drawing has crossing number at most

(

2 ocrS(G)

2

)

≤ 2 ocrS(G)2.

�

If the surface S is the plane, then the above proof can be simplified even
further by removing the induction on the genus, giving a really simple proof of
the fact that

cr(G) ≤ 2 ocr(G)2

in the plane.
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4 Odd-crossing Minimal Configurations in Pla-

nar Drawings

Theorem 4.1 Suppose that G = (V, E) has an ocr-optimal D in the plane with
an edge e∗ that intersects each of e1, . . . , ek ∈ E an odd number of times, and
all edges in E − {e∗, e1, . . . , ek} are even. Then ocr(G) = cr(G).

Proof We can assume that G is connected (otherwise we can deal with each
component separately). Let E′ = {e∗, e1, . . . , ek}. Then we can redraw G

using the even crossing lemma [10] so that every even edge in D is free of
intersections in the new drawing D′, and no new odd pairs are created. Since
ocr(D) = ocr(G), no odd pair of D can become even in D′. In particular e∗

crosses each ei in D′, and hence all of E′ lies in a single face of the plane graph
D′ − E′.

Without loss of generality, this face is the outer face. Contract each compo-
nent of D′−E′ within the plane to a vertex, preserving rotations. Any remaining
even edges are loops whose interiors only contain other even loops; we remove
them all. We may now redraw while maintaining rotation, after which the loops
can be added back and edges can be then uncontracted, without adding any
crossings. Note that the set of remaining edges is E′.
Case 0 If there is a single vertex, then the parity of crossings between each pair
of edges is determined by whether their ends alternate or not in the rotation,
so we can easily redraw (as in [10]) to achieve cr = ocr. Hence we may assume
that more than one vertex remains.
Case 1 Assume e∗ is a loop at vertex v, say. By redrawing e∗ near v, we can
ensure that e∗ intersects only edges with one end at v and that lie “between”
the two ends of v in the rotation (if we look at it the right way, clockwise
or counter-clockwise, as appropriate). See Figure 7. The intersections of the
redrawn e∗ must include every edge, since otherwise the redrawing lowers the
number of odd intersections involving e∗. By redrawing e∗ to be drawn on the
other side near v (see Figure 7, we come to the same conclusion, implying that
every edge ei must be a loop at v with ends that alternate with the ends of e∗

in the rotation. But this is Case 0.

Figure 7: Two ways of drawing e∗ near v.

Case 2 e∗ has two different endpoints u 6= v.
Suppose that x is another vertex; x is adjacent to some ei. Consider the

portion of ei from x to the first crossing with e∗. (See Figure 8 on the left.) We
can redraw all edges that cross this segment as shown in the middle of Fig. 8;
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note that this doesn’t affect the parity of any pair’s crossings. Then we can pull
x along the segment until it crosses e∗, as shown on the right of Fig 8. This
last move changes the parity of crossings of e∗ with an edge ej if and only if
ej has exactly one endpoint at x. Since D is ocr-optimal, no odd intersection
with e∗ can be eliminated; thus every edge incident to x is a loop. But then x

and e∗ are in different components, so G was not connected, contradicting our
assumption.

x

e

e

*

i

x

e
i

e* e

e

*

i

x

Figure 8: Make room, then pull x across e∗.

We conclude that u and v are the only vertices (remaining after the contrac-
tions). Redraw e∗ near u by adding an extra twist (see Fig. 9). This changes the
parity of crossings of e∗ with each non-loop ej incident to u, which is impossible
since it would reduce the odd crossing number of the drawing; so there are no
non-loops in E′ incident to u. By the same argument this is true for v as well.
In other words, the only edge that is not a loop is e∗.

e*

Figure 9: Add an extra twist near u.

Each loop at u can be contracted within the sphere S2 − {v} to a small
neighborhood of u (preserving rotation at u), without changing the parity of
any pair’s crossings (since we do not cross v). The same argument holds for v.
See Fig. 10 for an illustration of the resulting drawing. But now we can flip all
loops as shown in the right side of Fig. 10 to free e∗ of all intersections without
changing any other pair’s parity of crossings). This reduces the odd crossing
number contradicting our assumption of starting with an ocr-optimal drawing.

�
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