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Abstract

The odd crossing number of G is the smallest number of pairs of

edges that cross an odd number of times in any drawing of G. We show

that there always is a drawing realizing the odd crossing number of G

whose crossing number is at most 9k+1, where k is the odd crossing

number of G. As a consequence of this and a result of Grohe we can

show that the odd crossing number is fixed-parameter tractable.

1 Introduction

The crossing number, cr(G) of a graph G, is the smallest number of inter-
sections in any drawing of G. There are many variants of this fundamental
notion; in this paper we concentrate on the odd crossing number which counts
pairs of edges that intersect an odd number of times. More formally, ocr(G)
is the smallest number of pairs of edges in any drawing of G that cross an

1



odd number of times. Similarly, we can define the pair crossing number of G,
pcr(G) as the smallest number of pairs of edges that intersect in any drawing
of G. For historical background and summary on different notions of crossing
numbers, see the paper by Pach and Tóth [3].

From the definition we have

ocr(G) ≤ pcr(G) ≤ cr(G).

We also know that cr(G) ≤ 2 ocr(G)2 ([3], for an easier proof, see [5]) and
cr(G) ≤ 2 pcr(G)2/ log pcr(G) [8]. And while we do know that ocr(G) 6=
cr(G) in general [4] it is possible that pcr(G) = cr(G) for all G.

This suggests the question how close we can come to realizing this sus-
pected equality constructively; more precisely: if we are given a pcr-optimal
drawing, say, what can we say about the number of crossings needed to real-
ize it? Maybe surprisingly, the best upper bounds we know are exponential
[6] (see the end of Section 3 for a discussion).

To the extent that we believe that pcr(G) = cr(G) this is a bit of an
embarrassment, since the bound should be the identity. On the other hand,
the pair crossing number does tie in very closely with the string graph prob-
lem, and a proof that pcr(G) = cr(G) would require redrawing techniques
that change which pairs of edges intersect: if we add the requirement that
the pairs of edges that do not intersect remain unchanged, there is an expo-
nential separation between pair-crossing number and crossing number due to
due to Kratochv́ıl and Matoušek [2] (they phrased their example for string
graphs).

The main question we address in this paper is how many crossings are
needed to realize an ocr-optimal drawing. As in the case of pcr and cr
the bound is exponential. It is not inconceivable that the actual gap is
exponential. This would be a very interesting result indeed.

2 ocr-Critical Drawings

In this section we show that a drawing of a graph realizing the odd crossing
number has at most an exponential number of crossings.

Theorem 2.1 For any graph G there is a drawing of G with odd-crossing
number c = ocr(G) and crossing number at most 9c+1.
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The core of the proof is a redrawing idea: consider a drawing of G, and a
particular edge e of G. Imagine that e is drawn as a horizontal line segment,
and consider an arbitrary subsegment I. Consider the intersections of e with
other edges that occur within I. Without changing the odd-crossing number
of the drawing, we can rearrange these intersections within I such that for
each edge f 6= e, the intersections of f and I are consecutive along I: We can
do this by simply pushing intersections to the left or the right. Whenever
an intersection of f with e is pushed past an intersection of f ′ with e, it
yields two new intersections between f and f ′, which does not change the
odd-crossing number of the drawing. Next, we claim that we can redraw
G such that each edge f 6= e has at most 2 intersections with I, without
changing the odd-crossing number of the drawing. Consider every edge f
that intersects I, one at a time. Split f at each intersection with I, creating
a set of curves SI with endpoints in I, except that two of the curves have
one endpoint at an endpoint of f .

Let α and ω be the two curves in SI that have one end at an endpoint of
f . Let Sα be the set of curves in SI that begin and end on the same side of
I where α ends. Let S ′

α be the set of curves in SI that begin and end on the
other side of I, and let S be the set of curves that begin and end at opposite
sides of I.

Our goal is to reconnect the parts of f so that the resulting curve tra-
verses all of the original parts of f except on a small neighborhood of I, and
intersects I at most twice. We proceed as follows: Start by following α from
an endpoint of f to its intersection with I. Continue by following all of the
curves in Sα, one after the other, then the curves of S, then the curves of S ′

α

and end by following ω to the other endpoint of f . Move the endpoints of the
curves at I slightly, and connect consecutive curves in a small neighborhood
of I such that the resulting curve f ′ intersects I as few times as possible.
(For the moment, we ignore self-intersections of f ′.) The only steps at which
intersecting I may be unavoidable occur when going from S to S ′

α and when
going from S ′

α to ω. Thus f ′ redraws f using at most two intersections with
I. Observe that the redrawing f ′ intersects I exactly once if and only if either
1) α and ω approach I from opposite sides and |S| is even, or 2) α and ω
approach I from the same side and |S| is odd. Before redrawing, the number
of intersections between f and I is 1 + 2|Sα| + |S| if α and ω approach I
from opposite sides and 2 + 2|Sα|+ |S| if α and ω approach I from the same
side. Thus, the number of intersections between f and I is odd if and only if
the number of intersections between f ′ and I is now one. Also, the parity of
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intersection of the redrawing f ′ with any other edge is the same as the parity
of f with that edge, since f ′ and f agree except for in a small neighborhood
of I, where f intersects only I.

As we mentioned earlier, the redrawing f ′ might contain self-intersections,
however, these can easily be removed using the move shown in Figure 1.
Repeating this process for each edge that intersects I results in at most 2i
intersections of edges with I, where i is the number of edges f 6= e that
intersected I an odd number of times before the redrawing.

⇒

Figure 1: Removing a self-intersection; illustration taken from [5].

We now apply this idea to bound the number of crossings necessary to
realize a particular odd crossing number.

We begin with a drawing of G achieving ocr(G). Applying Theorem 2.1
from [5] allows us to assume that all even edges are without intersections.
Then there are at most k := 2 ocr(G) edges, e1, . . . , ek, involved in intersec-
tions in the drawing of G under consideration. We will redraw these edges
such that for 1 ≤ i < j ≤ k, the number of intersections between ei and ej is
at most 2(3i−1). We redraw the edges in order, as follows: Begin by applying
the procedure described earlier to e1; then each other edge intersects e1 at
most twice, as desired. We want to keep the intersections along e1 now, so
we should not apply our procedure to subsequent edges. Instead, during the
jth step we split ej into segments at every intersection with some ei with
i < j, and apply the procedure to each of those segments.

By induction, the number of intersections of ej and all ei with i < j is
at most

∑j−1

i=1
2(3i−1), which equals 3j−1 − 1. Hence ej is split up into at

most 3j−1 segments, and after applying the procedure to each segment, each
ei with i > j has at most 2(3j−1) intersections with ej , as desired.
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The total number of crossings is
∑

1≤i<j≤k 2(3i−1), or

k∑

j=1

j−1∑

i=1

2(3i−1) =
k∑

j=1

(3j − 1) ≤ 3k+1.

3 The Parameterized Complexity of ocr

Grohe showed that for a fixed k it can be decided in quadratic time whether
the crossing number of a graph G is at most k [1]. Grohe’s algorithm proceeds
as follows: for some function w(k) only depending on k it tests whether the
tree-width of G is at most w(k); if that is not the case, then either the
crossing number of G is larger than k or we can find a part of G that is
not involved in any crossing in a cr-optimal drawing. If we find that the
crossing number is larger than k, we are done; otherwise we can replace G
with a smaller graph and keep track of its crossing-free part. Repeating this
procedure we will eventually reach a graph of bounded tree-width for which
we can decide whether cr(G) ≤ k using Courcelle’s theorem (details to be
explained below).

This central result of Grohe’s paper is contained in his Corollary 8 [1]
which we reproduce nearly verbatim below. Here, a k-good drawing with
respect to F of G is a drawing of G with crossing number at most k in which
none of the edges of F are involved in a crossing.

Proposition 3.1 (Grohe [1]) There is a quadratic time algorithm that,
given a graph G and an edge set F ⊆ E(G), either recognizes that the cross-
ing number of G is greater than k or computes a graph G′ and an edge set
F ′ ⊆ E(G′) such that the tree-width of G′ is at most w(k) and G has a k-good
drawing with respect to F if and only if G′ has a k-good drawing with respect
to F ′.

We cannot immediately apply Grohe’s result as stated to help us settle the
parameterized complexity of computing the odd crossing number, since it is
not clear how the odd crossing number of G′ (with the planarity restriction on
F ′) relates to the odd crossing number of G (with the planarity restriction on
F ). Fortunately, a closer look at Grohe’s proof shows that a stronger version
of the proposition is true.

For a graph G let a (k, ℓ)-good drawing with respect to F be a drawing
of G with crossing number at most k and odd crossing number at most ℓ in
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which none of the edges of F are involved in any crossings. An inspection of
Grohe’s proof of his Corollary 8 shows that it is true for (k, ℓ)-good drawing
in place of k-good drawings. The reason is that in the core step of the
proof [1, Lemma 5] the redrawing is local and does not increase the odd
crossing number.

Lemma 3.2 There is a quadratic time algorithm that, given a graph G and
an edge set F ⊆ E(G), either recognizes that the crossing number of G is
greater than k or computes a graph G′ and an edge set F ′ ⊆ E(G′) such that
the tree-width of G′ is at most w(k) and G has a (k, ℓ)-good drawing with
respect to F if and only if G′ has a (k, ℓ)-good drawing with respect to F ′.

By Theorem 2.1, G has odd crossing number at most k if and only if G
has a (9k+1, k)-good drawing. We can now proceed as in Grohe’s algorithm
to look for such a (9k+1, k)-good drawing of G (with edge set F = ∅). We
either find that the crossing number of G is larger than 9k+1, which implies
that the odd crossing number is larger than k (actually, much larger by the
quadratic bound between odd crossing number and crossing number due to
Pach and Tóth [3]) or we obtain a graph G′ of tree-width at most w(k) and
an edge set F ′ such that G has odd crossing number at most k if and only if
G′ has a (9k+1, k)-good drawing in which none of the edges of F ′ are involved
in an intersection.

If we can now show that “having a (9k+1, k)-good drawing with respect
to F” can be expressed in the second-order monadic logic of graphs, we
can apply Courcelle’s theorem which states that formulas of second-order
monadic logic can be decided in linear time for graphs of bounded tree-
width (remember that the tree-width w(k) of G′ depends on k only, and
is therefore considered fixed). Consider a (9k+1, k)-good drawing of G if it
exists. Replacing every crossing with a new vertex yields a planar drawing;
adding four more vertices and edges around this vertex we can ensure that a
planar drawing of the resulting graph corresponds to a (9k+1, k)-good drawing
of G. (See Figure 2.)

Using monadic second order logic we can specify a set of at most 2k
edges (not in F ) and subdivide each of those 2k edges 3(9k+1) times. These
subdivided edges can now be used to express that there is a (9k+1, k)-good
drawing of G with respect to F : We can express that the ith intersection
along edge e is also the jth intersection along edge f by identifying the
3i − 1st vertex along the subdivided e with the 3j − 1st vertex along the
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Figure 2: Two crossings, before (left) and after (right).

subdivided f and adding edges between vertices 3i− 2 and 3i on e and f to
build the 4-cycle in the right half of Figure 2 to ensure e and f cross (rather
than just touch) at their intersection point. Using this, we can write down
explicitly a formula describing the order in which edges cross every particular
edge. While this leads to a formula exponentially large in 9k+1, this is not
a problem, since k is fixed. Since we are specifying how the crossings occur
explicitly, we can restrict ourselves to those formulas describing a drawing
with odd crossing number at most k.

Theorem 3.3 For a fixed k we can decide ocr(G) ≤ k in quadratic time.

The theorem is rather unsatisfactory in two respects: first, it does not
lead to an efficient algorithm, a failing shared with Grohe’s original result.
Moreover, the proof of the theorem relies on Grohe’s proof rather than just
his result. It would be a significant improvement if we could exhibit a pa-
rameterized reduction from the odd crossing number problem to the crossing
number problem: an efficient solution to the crossing number problem would
then imply an efficient solution to the odd crossing number problem as well.

The pair-crossing number, pcr(G) of a graph G is the smallest number of
pairs of edges that intersect in a drawing of the graph.

A drawing of a graph can always be redrawn without making two pairs of
edges intersect that did not intersect in the original drawing while reducing
the crossing number of the drawing to at most k2k (where k is the number
of edges involved in crossings) [6].
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If we start with a drawing that realizes the pair-crossing number of the
graph, this shows that we can always assume that a pair-crossing critical
drawing has crossing number at most k2k. With this result we can repeat
the argument we used for odd crossing numbers, allowing us to conclude that
the pair crossing number is fixed-parameter tractable.

Theorem 3.4 For a fixed k we can decide pcr(G) ≤ k in quadratic time.

4 An Open Question

Tutte’s original paper on crossing numbers introduced an interesting variant
of the crossing number that has not been applied widely [7]. The algebraic
crossing number of a graph is defined as follows: we arbitrarily orient the
edges of the graph. Given a drawing of G we can now follow an edge e
from its beginning to its end. An edge f crossing e can now do so in one
of two directions. We assign the value 1 to one direction, and the value −1
to the other direction. The absolute value of the sum of these values, is the
algebraic crossing number of the edges e and f . The sum of all of these
values divided by 2 is called the algebraic crossing number of G, acr(G). It
is obvious that ocr(G) ≤ acr(G) ≤ cr(G) and that already summarizes our
knowledge of acr(G). In particular, we do not have any bounds whatsoever
on the crossing number of G in an acr-optimal drawing of G reflecting how
fragile is our knowledge of crossing numbers.
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[2] Jan Kratochv́ıl and Jǐŕı Matoušek. String graphs requiring exponential
representations. Journal of Combinatorial Theory, Series B, 53:1–4, 1991.
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