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Abstract. Adaptive web sites may offer automated recommendations generated through any number of well-studied techniques including collaborative, content-based and knowledge-based recommendation. Each of these techniques has its own strengths and weaknesses. In search of better performance, researchers have combined recommendation techniques to build hybrid recommender systems. This chapter surveys the space of two-part hybrid recommender systems, comparing four different recommendation techniques and seven different hybridization strategies. Implementations of 53 hybrids including some novel combinations are examined and experimentally evaluated. The study finds that cascade and augmented hybrids work well, especially when the two components have differing strengths.
1
Introduction

Recommender systems are personalized information agents that provide recommendations: suggestions for items likely to be of use to a user [18, 41, 42]. In an e-commerce context, these might be items to purchase; in a digital library context, they might be texts or other media relevant to the user's interests.
 A recommender system can be distinguished from an information retrieval system by the semantics of its user interaction. A result from a recommender system is understood as a recommendation, an option worthy of consideration; a result from an information retrieval system is interpreted as a match to the user's query. Recommender systems are also distinguished in terms of personalization and agency. A recommender system customizes its responses to a particular user. Rather than simply responding to queries, a recommender system is intended to serve as an information agent.

A variety of techniques have been proposed as the basis for recommender systems: collaborative, content-based, knowledge-based, and demographic techniques are surveyed below. Each of these techniques has known shortcomings, such as the well-known cold-start problem for collaborative and content-based systems (what to do with new users with few ratings) and the knowledge engineering bottleneck in knowledge-based approaches. A hybrid recommender system is one that combines multiple techniques together to achieve some synergy between them. For example, a collaborative system and a knowledge-based system might be combined so that the knowledge-based component can compensate for the cold-start problem, providing recommendations to new users whose profiles are too small to give the collaborative technique any traction, and the collaborative component can work its statistical magic by finding peer users who share unexpected niches in the preference space that no knowledge engineer could have predicted. This chapter examines the landscape of possible recommender system hybrids, investigating a range of possible hybridization methods, and demonstrating quantitative results by which they can be compared. 

1.1
Recommendation Techniques
Recommendation techniques can be distinguished on the basis of their knowledge sources: where does the knowledge needed to make recommendations come from? In some systems, this knowledge is the knowledge of other users' preferences. In others, it is ontological or inferential knowledge about the domain, added by a human knowledge engineer. 
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Previous work [10] distinguished four different classes of recommendation techniques based on knowledge source
, as shown in Figure 10:

· Collaborative: The system generates recommendations using only information about rating profiles for different users. Collaborative systems locate peer users with a rating history similar to the current user and generate recommendations using this neighborhood. Examples include [17, 21, 41, 46]. 
· Content-based: The system generates recommendations from two sources: the features associated with products and the ratings that a user has given them. Content-based recommenders treat recommendation as a user-specific classification problem and learn a classifier for the user's likes and dislikes based on product features [14, 22, 25, 38].
· Demographic: A demographic recommender provides recommendations based on a demographic profile of the user. Recommended products can be produced for different demographic niches, by combining the ratings of users in those niches [24, 36]
· Knowledge-based: A knowledge-based recommender suggests products based on inferences about a user’s needs and preferences. This knowledge will sometimes contain explicit functional knowledge about how certain product features meet user needs. [8, 9, 44].
Each of these recommendation techniques has been the subject of active exploration since the mid-1990's, when the first recommender systems were pioneered, and their capabilities and limitations are fairly well known. 

All of the learning-based techniques (collaborative, content-based and demographic) suffer from the cold-start problem in one form or another. This is the well-known problem of handling new items or new users. In a collaborative system, for example, new items cannot be recommended to any user until they have been rated by some one.. Recommendations for items that are new to the catalog are therefore considerably weaker than more widely rated products, and there is a similar failing for users who are new to the system.

The converse of this problem is the stability vs. plasticity problem. Once a user’s profile has been established in the system, it is difficult to change one’s preferences. A steak-eater who becomes a vegetarian will continue to get steakhouse recommendations from a content-based or collaborative recommender for some time, until newer ratings have the chance to tip the scales. Many adaptive systems include some sort of temporal discount to cause older ratings to have less influence [4, 45], but they do so at the risk of losing information about interests that are long-term but sporadically exercised. For example, a user might like to read about major earthquakes when they happen, but such occurrences are sufficiently rare that the ratings associated with last year’s earthquake might no longer be considered by the time the next big one hits. Knowledge-based recommenders respond to the user’s immediate need and do not need any kind of retraining when preferences change.

Researchers have found that collaborative and demographic techniques have the unique capacity to identify cross-genre niches and can entice users to jump outside of the familiar. Knowledge-based techniques can do the same but only if such associations have been identified ahead of time by the knowledge engineer. However, the cold-start problem has the side-effect of excluding casual users from receiving the full benefits of collaborative and content-based recommendation. It is possible to do simple market-basket recommendation with minimal user input: Amazon.com’s “people who bought X also bought Y” but this mechanism has few of the advantages commonly associated with the collaborative filtering concept. The learning-based technologies work best for dedicated users who are willing to invest some time making their preferences known to the system. Knowledge-based systems have fewer problems in this regard because they do not rely on having historical data about a user’s preferences. 

Hybrid recommender systems are those that combine two or more of the techniques described above to improve recommendation performance, usually to deal with the cold-start problem.
 This chapter will examine seven different hybridization techniques in detail and evaluate their performance. From a large body of successful research in the area, we know that hybrid recommenders can be quite successful. The question of interest is to understand what types of hybrids are likely to be successful in general or failing such a general result, to determine under what domain and data characteristics we might expect different hybrids to work well. While this chapter does by necessity fall short of providing a definitive answer to such questions, the experiments described below do point the way towards answering this important question for recommender system design.

2
Strategies for Hybrid Recommendation

The term hybrid recommender system is used here to describe any recommender system that combines multiple recommendation techniques together to produce its output. There is no reason why several different techniques of the same type could not be hybridized, for example, two different content-based recommenders could work together, and a number of projects have investigated this type of hybrid: NewsDude, which uses both naive Bayes and kNN classifiers in its news recommendations is just one example [4]. However, we are particularly focused on recommenders that combine information across different sources, since these are the most commonly implemented ones and those that hold the most promise for resolving the cold-start problem.

An earlier survey of hybrids [10] identified seven different types:

· Weighted: The score of different recommendation components are combined numerically.

· Switching: The system chooses among recommendation components and applies the selected one.

· Mixed: Recommendations from different recommenders are presented together.

· Feature Combination: Features derived from different knowledge sources are combined together and given to a single recommendation algorithm.

· [image: image1]Feature Augmentation: One recommendation technique is used to compute a feature or set of features, which is then part of the input to the next technique.

· Cascade: Recommenders are given strict priority, with the lower priority ones breaking ties in the scoring of the higher ones.

· Meta-level: One recommendation technique is applied and produces some sort of model, which is then the input used by the next technique.

The previous study showed that the combination of the five recommendation approaches and the seven hybridization techniques yields 53 possible two-part hybrids, as shown in Table 1. This number is greater than 5x7=35 because some of the techniques are order-sensitive. For example, a content-based/collaborative feature augmentation hybrid is different from one that applies the collaborative part first and uses its features in a content-based recommender. The complexity of the taxonomy is increased by the fact that some hybrids are not logically distinguishable from others and other combinations are infeasible. See [10] for details.

The remainder of this section will consider each of the hybrid types in detail before we turn our attention to the question of evaluation.

2.1
Weighted

The movie recommender system in [32] has two components: one, using collaborative techniques, identifies similarities between rating profiles and makes predictions based on this information. The second component uses simple semantic knowledge about the features of movies, compressed dimensionally via latent semantic analysis, and recommends movies that are semantically similar to those the user likes. The output of the two components is combined using a linear weighting scheme. 

Perhaps the simplest design for a hybrid system is a weighted one. Each component of the hybrid scores a given item and the scores are combined using a linear formula. Examples of weighted hybrid recommenders include [15] as well as the example above. This type of hybrid combines evidence from both recommenders in a static manner, and would therefore seem to be appropriate when the component recommenders have consistent relative power or accuracy across the product space..

We can think of a weighted algorithm as operating in the manner shown in Figure 2. There is a training phase in which each individual recommender processes the training data. Some recommendation techniques may not need this step, such as a knowledge-based component. (This phase is the same in most hybrid scenarios and will be omitted in subsequent diagrams.) Then when a prediction is being generated for a test user, the recommenders jointly propose candidates. Some recommendation techniques, such as content-based classification algorithms, are able to make predictions on any item in the database, but others are limited in what ratings they can estimate. For example, a collaborative recommender cannot make predictions about the ratings of a product if there are no peer users who have rated it. So, the candidate generation phase is necessary to identify those items that will be considered for recommendation. 

The sets of candidates must then be rated jointly. Hybrids differ in how candidate sets are handled. Typically, either the intersection or the union of the sets is used. If an intersection is performed, there is the possibility that only a small number of candidates will be shared between the candidate sets. When union is performed, the system must decide how to handle cases in which it is not possible for a recommender to rate a given candidate. One possibility is to give such a candidate a neutral (neither liked nor disliked) score. Each candidate is then rated by the two recommendation components and a linear combination of the two scores computed, which becomes the item's predicted rating. Candidates are then sorted by the combined score and the top items shown to the user.

Usually empirical means are used to determine the best weights for each component. For example, Mobasher and his colleagues found that weighting 60/40 semantic/collaborative produced the greatest accuracy in their system [32]. Note that there is an implicit assumption that each recommendation component will have uniform performance across the product and user space. Each component makes a fixed contribution to the score, but it is possible that recommenders will have different strengths in different parts of the product space. This suggests the application of the next type of hybrid, one in which the hybrid switches between its components depending on the context.


[image: image2]Fig. 2. Weighted hybrid
2.2
Mixed

PTV recommends television shows [48]. It has both content-based and collaborative components, but because of the sparsity of the ratings and the content space, it is difficult to get both recommenders to produce a rating for any given show. Instead the components each produce their own set of recommendations that are combined before being shown to the user.

A mixed hybrid presents recommendations of its different components side-by-side in a combined list. There is no attempt to combine evidence between recommenders. The challenge in this type of recommender is one of presentation: if lists are to be combined, how are rankings to be integrated? Typical techniques include merging based on predicted rating or on recommender confidence. Figure 3 shows the mixed hybrid design.

It is difficult to evaluate a mixed recommender using retrospective data. With other types of hybrids, we can use user's actual ratings to determine if the right items are being ranked highly. With a mixed strategy, especially one that presents results side-by-side, it is difficult to say how the hybrid improves over its constituent components without doing an on-line user study, as was performed for PTV. The mixed hybrid is therefore omitted from the experiments described below, which use exclusively retrospective data.

Fig. 3. Mixed hybrid (Training phase omitted, same as Weighted Hybrid)
2.3
Switching

NewsDude [4] recommends news stories. It has three recom​mend​ation components: a content-based nearest-neighbor recommender, a collaborative recommender and a second content-based algorithm using a naive Bayes classifier. The recommenders are ordered. The nearest neighbor technique is used first. If it cannot produce a recommendation with high confidence, then the collaborative recommender is tried, and so on, with the naive Bayes recommender at the end of line.

A switching hybrid is one that selects a single recommender from among its constituents based on the recommendation situation. For a different profile, a different recommender might be chosen. This approach takes into account the problem that components may not have consistent performance for all types of users. However, it assumes that some reliable criterion is available on which to base the switching decision. The choice of this switching criterion is important. Some researchers have used confidence values inherent in the recommendation components themselves as was the case with NewsDude; others have used external criteria [33]. The question of how to determine an appropriate confidence value for a recommendation is an area of active research. See [12, 13] for recent work on the assessing the confidence of a case-based recommender system.

[image: image5.wmf] 

As shown in Figure 4 the switching hybrid begins the recommendation process by selecting one of its components as appropriate in the current situation, based on its switching criteria. Once that choice is made, the component that is not chosen has no role in the remaining recommendation process. 

A switching recommender requires a reliable switching criteria, either a measure of the algorithm's individual confidence levels (that can be compared) or some alternative measure and the criterion must be well-tuned to the strengths of the individual components. 

2.4
Feature Combination

Basu, Hirsh and Cohen [3] used the inductive rule learner Ripper [16] to learn content-based rules about user's likes and dislikes. They were able to improve the system's performance by adding collaborative features, thereby treating a fact like "User1 and User2 liked Movie X" in the same way that the algorithm treated features like "Actor1 and Actor2 starred in Movie X".
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The idea of feature combination is to inject features of one source (such as collaborative recommendation) into an algorithm designed to process data with a different source (such a content-based recommendation). This idea is shown schematically in Figure 5. Here we see that in addition to a component that actually makes the recommendation, there is also a virtual "contributing recommender". The features which would ordinarily be processed by this recommender are instead used as part of the input to the actual recommender. This is a way to expand the capabilities of a well-understood and well-tuned system, by adding new kinds of features into the mix [3, 34]. 
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The feature combination hybrid is not a hybrid in the sense that we have seen before, that of combining components, because there is only one recommendation component. What makes it a hybrid is the knowledge sources involved: a feature combination hybrid borrows the recommendation logic from another technique rather employing a separate component that implements it. In the example above from Basu, Hirsh and Cohen, the content-based recommender works in the typical way by building a learned model for each user, but user rating data is combined with the product features. The system has only one recommendation component and it works in a content-based way, but the content draws from a knowledge source associated with collaborative recommendation. A similar line of work in case-based recommendation [35, 49] uses association rule mining over the collaborative data to derive new content features for content-based recommendation.

2.5
 Feature Augmentation

Melville, Mooney and Nagarajan [30] coin the term "content-boosted collaborative filtering." This algorithm learns a content-based model over the training data and then uses this model to generate ratings for unrated items. This makes for a set of profiles that is denser and more useful to the collaborative stage of recommendation that does the actual recommending.
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Feature augmentation is a strategy for hybrid recommendation that is similar in some ways to feature combination. In the collaborative / content-based feature combination hybrid described above, raw features from the collaborative domain (user ratings) are treated as content features for the purposes of using a content-based algorithm. Feature augmentation is a slightly more sophisticated twist on this idea. Instead of using features drawn from the contributing recommender's domain, a feature augmentation hybrid generates a new feature for each item by using the recommendation logic of the contributing domain.

This difference can be seen in the schematic diagram (Figure 6). At each step, the contributing recommender intercepts the data headed for the actual recommender and augments it with its own contribution, not raw features as in the case of feature combination, but the result of some computation. A feature augmentation recommender would be employed when there is a well-developed strong primary recommendation component, and a desire to add additional knowledge sources. As a practical matter, the augmentation can usually be done off-line, making this approach attractive, as in the case of feature combination, when trying to strengthen an existing recommendation algorithm by adjusting its input. 

There are a number of reasons why a feature augmentation hybrid might be preferred to a feature combination one. As we shall see, it is not always easy or even possible to create a feature combination hybrid for all possible hybrid combinations: the feature augmentation approach is more flexible. Also, the primary recommender in a feature combination hybrid must confront the added dimensionality of the larger training data, particularly in the case of collaborative ratings data. An augmentation hybrid adds a smaller number of features to the primary recommender's input. 

Still, it is not always immediately obvious how to create a feature augmentation recommender for any two recommendation components. A recommendation component, after all, is intended to produce a ranking of items, not a feature for consumption by another process. What is required, as in feature combination, is attention to the knowledge sources and recommendation logic. In the example above, a content-based recommender uses the features of the items in a profile to induce a classifier that fits a particular user. The classifier can then be used to rate additional items on the user's behalf, making for a denser and more fleshed-out set of ratings, which then become input for a collaborative algorithm – we can more precisely describe this as a content-based / collaborative feature augmentation hybrid.

2.6
Cascade

The knowledge-based Entree restaurant recommender [10] was found to return too many equally-scored items, which could not be ranked relative to each other. Rather than additional labor-intensive knowledge engineering (to produce finer discriminations), the hybrid EntreeC was created by adding a collaborative re-ranking of only those items with equal scores.

The idea of a cascade hybrid is to create a strictly hierarchical hybrid, one in which a weak recommender cannot overturn decisions made by a stronger one, but can merely refine them. In its order-dependence, it is similar to the feature augmentation hybrid, but it is an approach that retains the function of the recommendation component as providing predicted ratings. A cascade recommender uses a secondary recommender only to break ties in the scoring of the primary one. Figure 7 shows a schematic depiction of this style of hybrid.

Many recommendation techniques have real-valued outputs and so the probability of actual numeric ties is small. This would give the secondary recommender in a cascade little to do. In fact, the literature did not reveal any other instances of the cascade type at the time that the original hybrid recommendation survey was completed in 2002. In the case of EntreeC, the knowledge-based / collaborative cascade hybrid described above, the knowledge-based component was already producing an integer-valued score, and ties were observed in every retrieval set, so the cascade design was a natural one.
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The cascade hybrid raises the question of the uncertainty that should be associated with the real-valued outputs of a recommendation algorithm. It is certainly not the case that our confidence in the algorithms should extend to the full 32 bit precision of double floating point values. And, if the scoring of our algorithms is somewhat less precise, then there may be ties in ranks to which the cascade design can be applied. As we shall see below, recommenders operating at reduced numeric precision do not suffer greatly in accuracy and so the cascade hybrid is a reasonable option. McSherry [29] uses a similar idea in creating regions of similarity in which scores vary no more than a given ε to satisfy the goal of increasing recommendation diversity. 
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2.7
Meta-level

Pazzani [36]  used the term "collaboration through content" to refer to his restaurant recommender that used the naive Bayes technique to build models of user preferences in a content-based way. With each user so represented, a collaborative step was then be performed in which the vectors were compared and peer users identified.

A meta-level hybrid is one that uses a model learned by one recommender as input for another. Another classic example is [1]. Figure 8 shows the general schematic for this type of recommender. Note that this type is similar to the feature augmentation hybrid in that the contributing recommender is providing input to the actual recommender, but the difference is that in a meta-level hybrid, the contributing recommender completely replaces the original knowledge source with a learned model that the actual recommender uses in its computation. The actual recommender does not work with any raw profile data. We can think of this as a kind of "change of basis" in the recommendation space. 

It is not always straightforward (or necessarily feasible) to derive a meta-level hybrid from any given pair of recommenders. The contributing recommender has to produce some kind of model that can be used as input by the actual recommender and not all recommendation logics can do so.

3
Comparing Hybrids

There have been a few studies that compared different hybrids using the same data. Pazzani's study is notable for comparing both a meta-level and a weighted scheme for hybrid recommenders using content, collaborative and demographic data. He found a significant improvement in precision for both hybrid techniques. Good and colleagues [18] examined an assortment of hybrids involving collaborative, content-based and very simple knowledge-based techniques in the movie recommendation domain. This study examined weighted, feature augmentation and meta-level hybrids using, in some cases, 23 recommenders of mixed types. The study did find that a hybridized recommender system was better than any single algorithm and that multi-part hybrids could be successful. 

To compare the full scope of the hybrid design space from Table 1 would require recommendation components of each of the four types: collaborative, content-based, knowledge-based and demographic. Given appropriate rating and product data, collaborative and content-based components can easily be constructed and most studies of hybrid recommendation have looked at just these components. Constructing a demographic recommendation component requires access to users' personal demographic data. The commonly-used ratings data sets used for evaluating recommender systems, such as EachMovie and MovieLens have scant if any demographic data
, and in general, demographic data is not generally available in web-based recommendation. So demographic recommenders are particularly rare. Constructing a knowledge-based recommendation component is a matter of knowledge engineering, and while there are a number of extant examples, there is only one that is associated with publicly-available user profile data, namely the Entree restaurant recommender system [8, 9].

For our comparative study, we use the data set and knowledge-based recommendation component from the Entree system
. The benefit of this choice is that it allows us to examine some of the particularly under-explored portions of the hybrid design space – those with knowledge-based components. The tradeoff is that this data set has some peculiarities (discussed in detail below), which may limit the applicability of the results. However, the experiments do allow us to examine some of the interactions between recommendation approaches and hybridization techniques, and hopefully to provide some guidance to researchers and implementers seeking to build hybrid systems.

3.1
The Entree Restaurant Recommender

To understand the evaluation methodology employed in this study and the operation of the knowledge-based recommendation component, we will need to examine the characteristics of the Entree restaurant recommender and the Entree data set. Entree is a restaurant recommendation system that uses case-based reasoning [23] techniques to select and rank restaurants. It was implemented to serve as a guide to attendees of the 1996 Democratic National Convention in Chicago and operated as a web utility for approximately three years. The system is interactive, using a critiquing dialog [11, 47] in which users' preferences are elicited through their reactions to examples that they are shown. Recent user studies [39] have shown this technique to be an effective one for product catalog navigation, and the refinement of this model is an area of active research. See, for example, [28, 40].

Consider a user who starts browsing by entering a query in the form of a known restaurant, Wolfgang Puck’s “Chinois on Main” in Los Angeles. As shown in Figure 9, the system finds a similar Chicago restaurant that combines Asian and French influences, “Yoshi’s Cafe,” as well as other similar restaurants that are ranked by their similarity. Note that the connection between “Pacific New Wave” cuisine and its Asian and French culinary components is part of the system’s knowledge base of cuisines. The user, however, is interested in a cheaper meal and selects the “Less $$” button. The result shown in Figure 10 is a creative Asian restaurant in a cheaper price bracket: “Lulu’s.” However, the French influence is lost — one consequence of the move to a lower price. Note that the critiques are not “narrowing” the search in the sense of adding constraints, but rather changing the focus to a different point in the feature space. The user can continue browsing and critiquing until an acceptable restaurant has been located.
3.2
The Entree Data Set
[image: image11.emf]Feature augmentation hybrids
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The consequences of this interaction style for the Entree data set are as follows. Each user session consists of an entry point, which may be a restaurant or a query, a series of critiques, and finally an end point. For example, if the user stopped after examining “Lulu’s”, the session would consist of three action (<"Chinois on Main", entry>, <"Yoshi's", too expensive>, <"Lulu's", end>). If instead the user uses a feature-based query (Asian, inexpensive), there is no entry point. To turn this action sequence into a rating profile, we make the simplifying assumption that the entry and ending points are "positive" ratings and the critiques are "negative" ones. (Earlier research showed that a more nuanced interpretation of the critiques was not helpful [10].) If we look at a session consisting of ten interactions, we would have eight or nine negative ratings and one or two positive ratings. This is quite different than the typical recommender system that has a more even mix of ratings and usually more positive than negative ratings [45]. The Entree data set is also much smaller than some other data sets used for collaborative filtering research, containing about 50,000 sessions/users and a total of just under 280,000 ratings. The small number of ratings per user (average 5.6) means that collaborative and especially content-based algorithms cannot achieve the same level of performance as is possible when there is more training data. Indeed, many recommender systems would not even attempt to make recommendations on the basis of such short profiles.

Another way to look at the data set however is that it foregrounds the most vexing problems for recommender systems, the twin "cold start" problems of new users (short profiles) and new items (sparse ratings). Since the major motivation for using recommendation hybrids is to improve performance in these cold start cases, the Entree data set is a good trial for the effectiveness of hybrids in precisely these conditions. It is also the case that users are often reluctant to allow lengthy personal profiles to be maintained by e-commerce sites, so good performance with single session profiles is important.
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The assumption that the end point is a positive rating is a rather strong assumption. Effectively, this assumption amounts to the proposition that most users are satisfied with the recommendations that they receive. It is of course possible that users are abandoning their searches in frustration because of poor results. To examine the validity of the "positive end point" assumption, we experimented with a subset of the data that contains entry point ratings. (Recall that some sessions start with a feature-based query instead.) Entry points can be confidently labeled as implicit positive ratings – users would not ask for restaurants similar to those they did not like. For this subset (about 10% of the data), a set of training and test data was produced (see more details below) in which only the entry points were labeled as positive, and the exit points were given a neutral rating. This set was compared to the full data set over the basic recommendation algorithms. Because this subset is much smaller, its results are not as good as using the full data set, however the experiments found extremely strong correlation (0.92) between the two conditions. This demonstrates that the behavior of the algorithms does not differ markedly when exit points are treated as positive ratings. Therefore, in the experiments below, we will use the full data set and assume that both entry and exit points are positive ratings, with the understanding that there is some noise associated with this assumption. 

3.3
Evaluation

[20] is a recent survey that compares a variety of evaluation techniques for collaborative filtering systems, and although this article looks at a larger class of recommendation systems, these results are still informative. Herlocker and colleagues identify three basic classes of evaluation measures: discriminability measures (such as ROC-derived measures), precision measures (such as mean absolute error) and holistic measures (ones that work best when all user ratings and system predictions are pooled and evaluated as a group). In each of these groups, a wide variety of different metrics were found to be highly correlated, effectively measuring the same property. For the restaurant recommendation task, we are interested in a precision-type measure, and these results tell us that we need not be extremely picky about how such a measure is calculated. Any measure that aims to capture the precision of results is likely to be correlated with any other.

With short sessions and a dearth of positive ratings, there are some obvious constraints on how the Entree sessions can be employed and recommendations evaluated. An evaluation technique that requires making many predictions for a given user will not be applicable, because if many ratings are held out for testing, there would not be enough of a profile left on which a recommender could base its prediction. This rules out such standard metrics as precision/recall and mean absolute error. So, a new precision-type metric is needed. Ultimately, in order to find good recommendations, the system must be able to prefer an item that the user rated highly. How well the system can do this is a good indicator of its success in prediction, so our evaluation should concentrate on the interactions interpreted as positive ratings, and we would like to measure how well each system is able to give this item as a recommendation. So, one method used here is to record the rank of a positively-rated test item in the recommendation set returned by a given recommender. Averaging over many trials we can compute the "average rank of the correct recommendation" or ARC. The ARC measure provides a single value for comparing the performance of the hybrids, focusing on how well each can discriminate an item known to be liked by the user from the others. Because ARC is a rank measure, the significance of ARC results is computed with paired ANOVA analysis using the Bonferroni t test for rank with ( = 0.01.

The methodology used is outlined in Figure 11. The set of sessions is divided randomly into training and test parts of approximately equal size. This partition was performed five times and results from each test/training split averaged. Each algorithm is given the training part of the data as its input – each algorithm will handle this data in its own way, and in some cases, such as with the knowledge-based recommender, it is ignored. Evaluation is performed on each session of the test data, From the session, a single item with a positive rating is chosen to be held back.
 This item will be the test item on which the recommender's performance will be evaluated. All of the other ratings are considered part of the test profile. 

The recommendation algorithm is then given the test profile without the positively-rated item, and must make its recommendations. The result of the recommendation process is a ranked subset of the product database containing those items possibly of interest to the user. From this set, we record the rank of the positively-rated test item. Ideally, that rank would be a low as possible – the closer to the front the preferred item is placed, the more precisely the recommender is reflecting the user's preferences.

The ARC measure provides a precision-type measure of the relative quality of the different hybrids, but it gives only a crude picture of algorithm performance. If algorithms A and B have an ARC value of 50, it may be that algorithm A generally ranks the correct answer around 50 and that algorithm B has many totally successful retrievals (rank = 1) but a few miscues (rank = 400), which average out around 50. We can use a different measure to examine algorithm performance in a fine-grained way, evaluating how a recommender distributes its recommendations in the result set. To obtain this kind of distribution information, we examine the accuracy of retrieval at different size retrieval sets, measured as a fraction of the candidate set. The retrieval set fraction ranges from 0 to 1.0. At 0, we examine the top item only (technically this is the fraction 0.0014). The accuracy is measured by counting the proportion of the retrieval sets of each size that contain the correct item in any position. These graphs give a nuanced picture of the relative performance of the different algorithms.

3.4
Sessions and Profiles

The Entree data contains approximately 50,000 sessions of widely differing lengths. Some sessions consist of only an entry and exit point, others contain dozens of critiques. To examine differences in recommender performance due to profile size, we fix the session size for each evaluation test set, discarding sessions shorter than this size and randomly discarding negative ratings from longer sessions. This manipulation is performed only on the test data, not on the training data. 

Longer profiles are available if we examine user behavior over multiple visits. Many recommendation designs are based on the idea that users' interests will be stable over long periods of time and that accumulating a profile over time will be valuable, and for some domains (such as recommending news articles), this is no doubt appropriate. It is not clear whether users will be equally consistent regarding restaurants, because the dining occasion may be as important as individual preferences. With Entree, we can examine single session profiles and multi-visit profiles by joining together visits over extended periods. 
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There are approximately 20,000 multi-session profiles. These longer multiple-visit profiles are somewhat less reliable as user profiles because they are collated using IP address alone [31]. However, the Entree system's peak period of use was early in the history of the public web. Some of the problems that come with using IP address as an identifier, namely firewalls and NAT gateways, were not as much in evidence at that time as they are today. These multi-session profiles are used with the understanding that they will be noisier than the ones derived from single visits.

The evaluation examines six different session sizes: three from single visits and three from multi-visit profiles. We use 5, 10 and 15 rating sessions from single visits; and 10, 20 and 30 rating sessions from multi-visit profiles. In the figures below, the single-visit profiles will be marked with a capital "S" and the multi-visit profiles with a capital "M". In the case of 5-rating sessions, we use a 50% sample of the data for testing due to the large number of profiles of this size.

3.5
Baseline Algorithms

Four basic algorithms were used in this study.

Collaborative Pearson – CFP. This algorithm recommends restaurants based on a collaborative filtering algorithm using Pearson's correlation coefficient to compute the similarity between users [18]. A threshold is used to select similar users and the top 50 are retained as the user's peer group. The restaurants rated by this peer group and not rated by the user are considered the candidate set. These candidates are scored using the average rating from the peer group.

Collaborative Heuristic – CFH. This recommender uses a collaborative variant that computes the similarity between users, taking into account the semantics of the Entree ratings. This algorithm is described more fully in [9]. Rather than treating all of the critiques in each user session as negative ratings (as is done in the CFP algorithm), the heuristic algorithm has a distance matrix for comparing critiques directly. For example, a "nicer" critique and a "cheaper" critique are considered dissimilar, while a "nicer" and "quieter" critique are considered similar. Earlier experiments suggested that this variant was more effective than methods that treat the ratings as binary-valued. As in the CFP algorithm, the average rating of the top 50 users is used, candidates are items rated by peers but not by the user, and ratings are computed by averaging across peers.

Content-based – CN. This technique uses the naive Bayes algorithm to compute the probability that a restaurant will be liked by the user. The training data is used to compute prior probabilities and the test session data is used to build a user-specific profile. In most recommender systems, the profile is then used to classify products into liked and disliked categories and the liked category becomes the candidate set, with the classification score becoming the rating. Because of the skewed distribution of ratings, however, this approach was not found to be effective – too few restaurants are rated as "liked". In these experiments, I instituted a candidate generation phase that retrieves all those restaurants with some features in common with the "liked" vector of the naive Bayes profile. Some of these restaurants would not be rated as "liked", but restaurants that do not have at least one such feature cannot be assigned to the "liked" category. The ranking of candidates is then determined by the prediction of the "liked" classifier.

Knowledge-based (KB). The knowledge-based recommender recommends restaurants using Entree's knowledge-based retrieval. Entree has a set of metrics for knowledge-based comparison of restaurants. It knows, for example, that Thai and Vietnamese food are more similar to each other than Thai and German food would be. Other knowledge enables it to reason about price, atmosphere and other characteristics of restaurants. In order to evaluate this component from historical user sessions, the system reissues the last query or critique present in the session and returns the candidate set and its scores. Because longer sessions are truncated, the query will rarely correspond to the one immediately prior to the exit point (which may or may not be the test item) but it will be the available rating chronologically closest to the exit point.

3.6
Baseline Evaluation

A starting point for analysis of the hybrids is the evaluation of the four basic algorithms, and for a baseline, we can also examine the performance of the "average" recommender, which recommends restaurants based on their average rating from all users, and does not take individual user profiles into account. 

Table 2 shows the average rank of the correct recommendation (ARC) for each of the basic algorithms over the six different session size conditions. Figure 12 shows the same data in graphical form. (Brackets above the bars indicate places where differences between algorithm performance are not significant.) There are several points to make about these results. First, we should note that this recommendation task is, as expected, rather difficult. The best any of these basic algorithms can manage is average rank of 80 for the correct answer. The primary reason is the paucity of data. With only a small number of ratings to work from, collaborative algorithms cannot narrow their matching neighborhoods to precise niches, and the content-based algorithm has fewer patterns from which to learn. It is not surprising, then that the results are not exactly inspiring in an e-commerce context where the user might be expected only to look at the first dozen results or so. The top result for single-visit profiles is obtained by the heuristic collaborative algorithm. However, when we look at multiple visit profiles, the standard collaborative algorithm is preferred. In three of the six cases, however, the differences are not significant. 
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These trends are shown more clearly in plots of accuracy vs. set size for the algorithms in question. Figure 13 shows that the heuristic method dominates in small profiles except at the smallest retrieval sets. For the larger single-session profiles shown in Figure 14, the gap is narrowed. Figures 15 and 16 show the multi-session profiles, and here the correlation-based method is superior for smaller retrieval sets. These plots also show that the "Average" algorithm is essentially linear, indicating that there is not a pronounced general preference shared by all users for certain restaurants.

This data also demonstrates something of the task-focused nature of the Entree data, a characteristic that it shares with other consumer-focused recommendation domains. Users coming to the Entree system are planning for a particular dining occasion and their preferences undoubtedly reflect many factors in addition to their own particular tastes. (Since restaurant meals are often taken in groups, the task is effectively one of group recommendation [27].) These extra-individual factors may change radically from session to session and therefore add to the difficulty of extracting a consistent multi-session profile. We can see this in the performance of the naive Bayes (CN) recommender across the different session sizes in Figure 13-16. In Figure 13, the profile is probably too small for the learner to acquire much meaningful information about the user. In the larger sessions, it improves somewhat, but as we step up to the multi-session profile of size of 30, we see that the performance of this recommender actually goes down, here only slightly better than the simple average. Also, the performance of the knowledge-based recommender is weaker in the multi-session profiles, due most likely to the same lack of user consistency across visits: the constraints that the recommender can use to find restaurants in one session may not be valid in a later one.
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There are two conclusions to be drawn from the performance of the basic algorithms. One is that the techniques vary widely in their performance on the Entree data. The content-based technique is generally weak. The knowledge-based technique is much better on single-session profiles than on multi-session ones. The heuristic collaborative technique may have a relative advantage over the correlation-based one for short profiles but does not have it for multi-visit ones. The second point is that there is much room for improvement in the results shown by these algorithms acting alone. This is particularly the case for the multi-session profiles.

3.7
Scope of the Comparative Study
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Using these basic recommenders, we can compare 41 different types of hybrid recommenders including 12 designs with no previous extant examples. Table 2 shows the space of hybrids considered in this study. Note that "Mixed" hybrids are missing, since it is not possible to evaluate retrospectively the effectiveness of a mixed hybrid from usage logs. There is no demographic data in the Entree data set, and so no demographic components were examined. The different recommendation combinations are listed along the side of the table. This study did not examine hybrids combining recommenders of the same type, hence there are no CFP/CFH hybrids. Some designs that are theoretically possible were not implemented due to constraints of the existing algorithms and knowledge-bases. In the interest of a level playing field, no enhancements were added that would specifically benefit only certain hybrid types. The section that follows shows the results of the comparative study.
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4
Results

4.1
Weighted

To implement a weighted hybrid, we need only set the appropriate weight for each component. This was done empirically, examining all possible weightings (in 0.1 steps) and determine which weighting yielded the best ARC value over the training data.

The results were rather surprising. Figure 17 shows the average rank results. In only 10 of the 30 conditions (marked by asterisks) was the performance of the combined recommenders better than the best component working alone. We can describe these 10 results as showing "synergy", in that the performance of the hybrid is better than either of its components taken separately. The CN/CFP hybrid does show consistent synergy (5 of 6 conditions), as [36] also found.
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There are several reasons why this result might occur. One is that the recommendation components are not sufficiently independent for their combination to be different that any one alone. However, we know this is not the case since the measures use very different knowledge sources and as we will see below, other types of hybrids using these components are successful. More likely, the problem is that the recommenders, especially KB and CFH, do not have uniform performance across the product and user space and the underlying assumption behind the linear weighting scheme is at fault. This suggests the application of the next type of hybrid, one in which the hybrid switches between its components depending on the context.

4.2
Switching

A switching hybrid is one that selects a single recommender from among its constituents and uses it exclusively for a given recommendation situation. For a different profile, a different recommender might be chosen. This approach takes into account the problem that components may not have consistent performance for all types of users. However, it assumes that some reliable criterion is available on which to base the switching decision.

We can think of this value as a "confidence" value.
 Ideally, we would survey the confidence values computed by each algorithm and choose the most confident. However, this would assume some sort of comparability between confidence values computed in different ways, and experiments showed this was not a valid assumption. An alternative is to select one component of the hybrid as the primary recommender and let it determine the confidence in its own prediction. If the primary recommender has confidence above some threshold, its recommendation will be used; otherwise, the secondary recommender takes over.
 This distinction between primary and secondary recommenders makes the switching hybrid an order-sensitive system and therefore it becomes important to test all combinations. Like the weighted hybrid, all possible switching thresholds are tried (in 0.1 units) and the threshold that maximizes ARC performance on the training set is used.

Each of the recommenders in the experimental set required a different confidence calculation. For the collaborative algorithms, the confidence value is computed when the user's "peers" are identified, those users with similar ratings who will be used to make predictions. The inverse of the average distance between these peers and the user is a reasonable metric of confidence since the closer the peers to the user, the more likely it should be that they are good predictors. For the naive Bayes algorithm, the choice of confidence metric is fairly straightforward – the value returned by the naive Bayes classifier is supposed to represent the probability that the classified object is a member of the given class. Since liked and disliked are the two classes, we use the absolute value as the confidence. For the knowledge-based algorithm, the confidence is computed by finding the overlap in features between the top recommendation and the query. The intuition here is that if the knowledge-based system did not have to go far afield (and thereby making many inferences) to make its retrieval, then the results returned will be more confident. 

To be a good primary recommender in the switching paradigm, an algorithm must have a good assessment of its own accuracy. Otherwise, it will turn over control to the secondary recommender when its own results might be more correct, and make recommendations when the secondary one might be better. In some cases, the system determined that a threshold of 1.0 was the optimal confidence required for the primary algorithm, meaning that the recommender would have to compute a confidence greater than one in order for its recommendations to be used. This is an impossibility, and in such a case, the recommender falls back to being a non-hybrid made up only of the secondary component.

Figure 18 shows the results for this hybrid. In this graph and those below (except where noted), only synergistic results are shown: those results that represent an improvement over either component of the hybrid acting alone. For the switching hybrid, the non-synergistic cases are the degenerate ones in which the switching threshold was set to 1. As before, non-significant differences are represented by brackets. The correlation-based collaborative recommender CFP and the content-based one (CN) do not make an appearance as the primary recommender, indicating that the confidence measure for these components was not sufficiently reliable to be used as a switching criterion. 
Accuracy / retrieval set size results are shown in Figure 19. The best performing recommenders have been singled out for closer examination (the ones with CFH and KB primary), and the basic CFH and KB recommenders in each condition have been included for comparison. (Note that all conditions are averaged here, even those omitted from Figure 18.) The two sets of recommenders show different patterns. Neither of the heuristic-primary hybrids are an overall improvement on the basic algorithm, but both of the knowledge-based hybrids are, including KB/CFP version, which is the best switching hybrid studied.
4.3
Feature Combination

Feature combination requires that we alter the input of a recommendation component to use data from another knowledge source. Such an arrangement will, by necessity, be different for each pair of techniques being combined. The content-based recommender with a contributing collaborative part (CF/CN) was built by augmenting the representation of each restaurant with new features corresponding to the reaction of each profile in the training data to that restaurant. For example, if profiles A and B had negative ratings for restaurant X and profile C had a positive rating, the representation of restaurant X would be augmented with three new features, which can be thought of as A-, B- and C+. Now an ordinary content-based algorithm can be employed using the test user's profile to learn a model of user interests, but this model will now take into account similarities between restaurants that have a collaborative origin.

The naive Bayes implementation performed poorly with this augmented model, including as it does over 5,000 new collaborative features in addition to the 256 content ones. So, for this hybrid only, I examined the Winnow algorithm [26], another classification learning algorithm that does much better with large numbers of features.

A collaborative recommender with a contributing content-based component turns this process around and creates artificial profiles corresponding to particular content features; these are sometimes called "pseudo-users" [43] or "genreBots" (Good et al. 1999). For example, all of the restaurants with Tex-Mex cuisine would be brought together and a profile created in which the pseudo-user likes all of the Tex-Mex restaurants in the database. Similar profiles are generated for all the other content features.

Other possibilities for feature combination hybrids turn out to be either illogical or infeasible. The features that the knowledge-based recommender uses are the same as those used by the content-based recommender; they are just used in a different way. A feature combination hybrid with a knowledge-based contributing part would therefore be no different from the content-using one described above. A knowledge-based hybrid with a collaborative contributing recommender would be theoretically possible: a knowledge engineer could write rules that make inferences about the preferences of the users in our test set, but such an enterprise would be wholly impractical in any fielded application and would run counter to the "level-playing field" constraint, that as little as possible extra work be done on the base recommenders in order to implement each hybrid.

Figure 20 shows the ARC results for the three feature combination recommenders studied. Comparison with Figure 12 reveals that the CN/CFH and CN/CFP data is nearly identical to the CFH and CFP results. This is more or less what one might expect given that the pseudo-users add only about 1% more data to the training set. To evaluate this effect, the size of the training set was shrunk by 10% sampling. In this configuration, the pseudo-users consist of 10% of the profile data, but still only have minimal effect. See Figure 21. Interestingly, this figure also shows that heuristic collaborative technique maintains its accuracy with a reduced data set, but the correlation-based recommender does not. Figure 22 shows the Winnow-based CF/CN feature combination hybrid compared to the unhybridized naive Bayes algorithm using accuracy vs retrieval set size. Here we see a modest improvement in accuracy throughout the range. 
4.4
Feature Augmentation

In feature augmentation, we seek to have the contributing recommender produce some feature or features that augment the knowledge source used by the primary recommender. To preserve the recommendation logic of our recommenders in this study required some ingenuity to create the eight hybrids used here. Several different methods are used as described in detail below. In each, the goal was to preserve the comparative nature of this study, to avoid adding new recommendation logic to the hybrid – where it was unavoidable, the simplest possible technique was employed, which in some cases was unsupervised clustering.

Content-based contributing / collaborative actual – CN/CF. A content-based recommender uses the features of the items in a profile to induce a classifier that fits a particular user. The features that such a classifier can produce are classifications of items into liked / disliked categories. This capability is used as follows:

1. The content-based algorithm is trained on the user profile.

1. The collaborative algorithm retrieves candidate restaurants from users with similar profiles.

2. These candidates are rated by the content-based classifier and those ratings are used to augment the profile thus filling it out with more ratings.

3. Then the collaborative recommendation process is performed again with a new augmented profile. This is Melville's "content-boosted collaborative filtering" [30].
Collaborative contributing – CF/CN and CF/KB. A collaborative recommender deals with similarities between users. The other recommenders are interested in comparing restaurants, so the problem for a collaborative recommender contributing to a knowledge-based or content-based hybrid is how to turn user data into features associated with restaurants. One way to do this is to use clustering. The collaborative data can be thought of as a sparse matrix of users as rows and restaurants as columns, an entry at a (row, column) position being the rating given by a particular user to a particular restaurant. If we transpose such a matrix, we get a matrix of restaurants with users as columns. This data can be used to cluster restaurants into groups. The cluster to which a given restaurant belongs can be considered a new feature that augments the restaurant representation. For the recommenders described here, k-means clustering was performed using a k of 75.
 To incorporate these new features into the knowledge-based recommendation, the recommender's domain knowledge was augmented with a simple metric that prefers restaurants that share the same cluster id.

Knowledge-based contributing – KB/CF and KB/CN. A knowledge-based recommender can be used like the content-based one to classify restaurants into liked / disliked categories by assuming that the restaurants retrieved by the recommender are in the "liked" category and all others are disliked. The algorithm given above for the CN/CF hybrid can then be employed. 

This is not an adequate solution for a KB / CN feature augmentation hybrid where the knowledge-based recommender needs to augment the representation of restaurants rather than user profiles. In this case, however, we treat the knowledge-based system as a source of "profiles". For each restaurant, we retrieve a set of similar restaurants known to the system. Each such set is treated like a user profile, and this profile matrix can be transposed and clustered as in the collaborative case.

Results. The feature augmentation hybrids show the best performance seen so far, particularly where the content-oriented recommenders are contributing to the collaborative ones. See Figure 23, which provides the average rank data. The KB and CN recommenders did not make good primary components, as might be expected from the performance of the basic algorithms and none of these hybrids showed synergy and are therefore not shown. Both strong components were greatly enhanced by the addition of content-derived features. Performance is particularly good for the multi-session profiles for which none of the previous hybrids were adequate. Most impressive for these systems is their overall average performance as shown in Figure 24. These results bear out the choice of simple clustering for feature augmentation.

4.5
Cascade

Our recommendation components all produce real-valued outputs, making them unsuitable at first glance for the use of the cascade, which uses a secondary recommender to break ties. To investigate the true precision of the outputs of these recommenders, we built reduced-precision versions of these systems in which predicted ratings were limited to two decimal digits. Figure 25 shows the accuracy/result set graph for the CFP, CFH, and CN recommenders with full 32-bit precision and with reduced precision. We see that in the collaborative case the differences are vanishingly small and consistent across the recommendation range. The content-based recommender suffers more, but still not greatly from the decrease in numeric precision.

With this result in mind, we can turn to the 10 available cascade recommenders. The cascade hybrid was designed for a strong recommender to get a boost from a weaker one. It assumes that the primary recommender is the more reliable of its components. By its nature, therefore, it will be a poor performer if the primary recommender is weak, and the experiments bear this out. The six combinations with CN or KB as the primary recommender are not at all competitive with the collaborative-primary hybrids. These four, especially the CFP/KB and CFP/CN hybrids, show great improvement over the other hybrids seen so far (except for feature augmentation) and over the basic recommenders. See Figure 26 for the average rank results for these. These hybrids also do well on the multi-profile sessions as demonstrated in the accuracy curves in Figure 27. This shows the four top cascade performers on the largest multi-session data set. All four demonstrate improvement over the basic algorithm, but the CFP hybrids show very good performance, reaching 100% accuracy right down to retrieval sets of size 20%. 

4.6
Meta-level

Like feature augmentation, the construction of meta-level hybrids is highly dependent on the characteristics of the recommendation components being combined. It is not always feasible to derive a meta-level hybrid from any given pair of recommenders. In particular, the heuristic algorithm needs input in the form of semantic ratings, which are not readily derivable from a learned model of the type that a content-based learner might produce. For this study, we examine six meta-level hybrids, each with its own particular characteristics and genesis. Because none of the basic recommenders are particularly good on their own, we might expect low reliability in any learned model they might produce. This expectation is borne out by experiment.
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Fig. 27. Retrieval set size vs accuracy for the strongest cascade recommenders. Multi-session profiles of size 30. Basic collaborative recommendation included for comparison
Content-based contributing, collaborative actual – CN/CF. This is the "collaboration through content" [36] type of hybrid, probably the most commonly attempted type of meta-level hybrid, a natural way to combine the strengths of different recommendation algorithms. The idea is to substitute, instead of raw user preferences, a profile derived by learning the user's preferences in a content-based way. So, instead of comparing users on the basis of their sequence of ratings of restaurants, the system builds a classifier and uses the most significant features in that classifier as the basis for comparing users. To make a recommendation, the system first learns a profile of the test user. Then, the standard collaborative step is performed in which a neighborhood of similar users is computed based on the learned profiles. Finally, these nearby users' profiles are used to make predictions. 
Content-based contributing, knowledge-based actual – CN/KB. For the CN/KB hybrid, the content-based component is used as it normally would be, but at the point of recommendation, instead of using the learned profile to classify restaurants, the profile is treated as a source of features for querying the knowledge-based recommendation component. In other words, the learner discovers which features are liked and disliked by the user and then uses those features in querying the knowledge-based recommender.
Collaborative contributing, knowledge-based actual – CF/KB. A collaborative recommender does not deal directly with product features, so the trick of turning a profile into a query is not feasible here. However, the system can make use of the exemplar-based retrieval capability of the knowledge-based component. The collaborative component is used to generate a top recommendation and this recommendation is used as a query to the knowledge-based component.
Collaborative contributing, content-based actual – CF/CN. This hybrid is an unusual one. To change the basis for the content-based recommender, we generate new training sessions in which, instead of restaurants, each profile is expressed in terms of restaurant clusters – the clusters having been derived using the collaborative information, as in the feature augmentation hybrids discussed above. The content-based component then learns over the features associated with these clusters. 
Knowledge-based contributing, content-based actual – KB/CN. We can perform the same technique used in the feature augmentation hybrids to derive cluster information from the knowledge-based component and use these clusters to support content-based retrieval as in the CF/CN hybrid above. 

Results. The meta-level hybrids were not found to be effective: none achieved synergy in any condition. One problem is the well-established weakness of the KB and CN algorithms in this data set. A meta-level hybrid depends completely on the output of the contributing recommender – it is the data that the actual recommender must work with. Only in the CF/KB and CF/CN cases do we have a strong contributing recommender, and in both of these cases, the final recommendation is made by one of the weaker algorithms. It is evident that to build a working meta-level hybrid, both recommendation components must be strong individual performers.

5
Discussion

Given this survey of 41 different hybrid recommenders, we can return to our initial purpose in this survey, to determine the best hybrids for the Entree data and to determine if any lessons can be learned that apply to the construction of hybrids in the more general case.

It is quite clear, as others have also shown, that there is an unqualified benefit to hybrid recommendation, particularly in the case of sparse data. Figure 28 shows the retrieval set/accuracy curves for the best 3 hybrids and those for the best basic algorithms, over all the experimental conditions, and clearly shows the dominance of the hybrids. Nowhere was this effect more striking than in the noisy multi-session profiles, which proved so much more difficult for even the stronger basic algorithms. Where the best results obtained on the 30-rating sessions by a basic algorithm was only an ARC of 227, the top three hybrids all have ARC scores under 40. Note that this synergy is found under the twin difficulties of smaller profile size and sparse recommendation density, showing that hybridization does help conquer the cold start problem.

Of course, not all hybrid designs were successful, leading to a second question: What is the best hybrid type? This answer can be found by examining the relative performance over all the hybrids on the different conditions. If we rank the hybrids by their ARC performance and look at the top hybrids in each condition, feature augmentation and cascade recommenders dominate. None of the other hybrid types achieve a rank higher than 9th best for any condition, and the only non-FA or cascade hybrids that appears twice in the top ten are two switching recommenders: CFH/KB and KB/CFP. Table 4 shows the top ten hybrids ranked by their average ARC over all conditions. Beyond the top four (two feature-augmentation and two cascade), performance drops off markedly. 

In retrospect, given the performance of the basic algorithms, the performance of the cascade recommenders is fairly predictable. The KB and CN algorithms are relatively weak, but do take into account different knowledge sources than the collaborative algorithms. A cascade design allows these recommenders to have a positive impact on the recommendation process with little risk of negative impact – since they are only fine-tuning the judgments made by stronger recommenders. What is particularly interesting is that this performance was achieved by explicitly sacrificing numeric precision in the scoring of the primary recommender. The other top performing hybrids were the feature augmentation hybrids. Again, we see that the feature augmentation design allows a contributing recommender to make a modest positive impact without the danger of interfering with the performance of the better algorithm. 
Generalizing from these results is by necessity speculative, since all we have are results in a particular product domain with a somewhat sparse and unorthodox data set. These experiments show that standard recommenders with widely varying performance can be combined to achieve strong synergies on a fairly difficult recommendation task with limited data. In particular, it is clear that even recommendation algorithms with weak knowledge sources can have a strong positive impact on performance if they are combined in an appropriate hybrid. 

No hybrids were tested in which both components could be considered strong, and while it seems likely that the feature augmentation and cascade designs would work well in this best case strong-strong scenario, it is seems likely that other techniques such as the meta-level hybrid would also succeed. Clearly, other researchers have had success with meta-level designs [1, 36, 45].

We see significant differences between the hybridization techniques, particularly their sensitivity to the relative strength and consistency of each component part. Some hybrids can make the most of a weak-strong combination; others cannot. Some hybrids work under the assumption that their components have uniform performance across the recommendation space (weighted, augmentation, meta-level); others are effective even if this is not true. In choosing a hybrid recommendation approach, therefore it seems particularly important to examine the design goals for a hybridized system (overall accuracy, cold-start performance, etc.) and evaluate the relative performance of each component of the hybrid under those conditions. For example, consider an implementer interested in improving collaborative recommendation results for cold-start users by building a hybrid that adds a content-based technique. We know that new users would have small usage profiles and the content-based recommender would be weak in these cases. This situation would suggest a cascade or feature augmentation approach. 

Another consideration in the choice of hybridization techniques for recommendation is efficiency, particularly run-time efficiency, since recommendations are typically made on the fly to users expecting a quick interactive response. Of the basic algorithms, the collaborative algorithms are the slowest since they must compare the user's profile against the database of other users. A number of approaches have been developed to improve the efficiency of collaborative algorithms, for example clustering and indexing [31] and these would be of interest in any hybrid scheme as well. Of the hybrid designs, the weighted approach is the least efficient since it requires that both recommenders process every request; depending on the implementation, a meta-level hybrid may have the same drawback. Among the strong performers, the cascade hybrid also requires computation from both recommenders, but since the secondary recommender is only breaking ties, it is not required to retrieve any candidates and need only rate those items that need to be further discriminated. This can be done on demand as the user requests portions of the retrieval set. On the other hand, the other top performing hybrid, the feature augmentation hybrid, the contributing recommender operates by adding features to the underlying representation. This step can be performed entirely off-line. So, the feature augmentation hybrid offers accuracy on par with the cascade hybrid with virtually no additional on-line computation.
6
Conclusion

Table 5 shows again the table of 53 possible hybrid recommender systems. The present study has more fully characterized each type of hybrid and attempted to compare the performance of a subset of the design space. This broad cross-system evaluation is intended as an initial foray into the comparative study of hybridization techniques. The experiments detailed in this paper cover the space of possible hybrid recommender systems available with four basic recommendation algorithms: content-based, standard collaborative, heuristic collaborative and knowledge-based. Six types of combinations were explored: weighted, switching, feature combination, feature augmentation, cascade and meta-level, for a total of 41 different systems. Due to data and methodological limitations, demographic recommendation and mixed hybrids were not explored. Because two different collaborative algorithms were explored, the 41 systems evaluated in this survey (shown here with the vertical bars) represent 24 of the 53 spaces in this table, including (with grid pattern) 12 recommenders with no previous known examples. The top four hybrids are indicated with their overall rank.

Of course, any such study is by its nature limited by the peculiarities of the data and the recommendation domain. The Entree data set is relatively small (just over ¼ million ratings), the profiles are short and the ratings are implicit and heavily skewed to the negative. It would be valuable to repeat this study in a different recommendation domain with different products and a set of user profiles with different characteristics. In particular, it is unfortunate that the circumstances of this study allow only very limited findings with respect to meta-level recommendation.

Three general results, however, can be seen. First, the utility of a knowledge-based recommendation engine is not limited strictly to its ability to retrieve appropriate products in response to user queries. Such a component can be combined in numerous ways to build hybrids and in fact, some of the best performing recommenders seen in these experiments were created by using the knowledge-based component as a secondary or contributing component rather than as the main retrieval component. Second, cascade recommendation, although rare in the hybrid recommendation literature, turns out to be a very effective means of combining recommenders of differing strengths. Adopting this approach requires treating the scores from a primary recommender as rough approximations, and allowing a secondary recommender to fine-tune the results. None of the weak/strong cascade hybrids that were explored ranked less than eighth in any condition, and in the average results, they rank in four of the top seven positions. This is despite the fact that the primary recommender was operating in a state of reduced precision. Finally, the six hybridization techniques examined have very different performance characteristics. An implementer should evaluate the relative accuracy and consistency of each component of the hybrid to determine its best role in a hybrid system.
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Fig. 1. Recommendation techniques and their knowledge sources





Table 1. The space of possible hybrid recommender systems �(adapted from [10])
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Fig. 10. Results of a critique issued to the Entree restaurant recommender
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Fig. 9. Results of a query to the Entree restaurant recommender
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Fig. 19. Retrieval set size vs accuracy for switching hybrids
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Fig. 4. Switching hybrid
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Fig. 5. Feature combination hybrid





Fig. 6. Feature augmentation hybrid








Training phase





Candidate generation





Feature Augmentation Hybrid





Training data





Contributing


Recommender





Actual


Recommender





Scoring





Feature Augmentation Hybrid





Contributing


Recommender





Actual


Recommender





candidates





Candidates





Feature Augmentation Hybrid





Candidate





Actual


Recommender





score





Overall


score





Test profile





Contributing


Recommender





augmented


training data





augmented


profile





augmented


candidate


representation





Training phase





Candidate generation





Cascade Hybrid





Training data





Primary Recommender





Secondary Recommender





Scoring





Cascade Hybrid





Primary Recommender





Secondary Recommender





candidates





Candidates





Cascade Hybrid





Candidate





Secondary Recommender





score





score





Combined score





Test profile





Primary Recommender





Fig. 7. Cascade recommender
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Fig. 8. Meta-level hybrid
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�Fig. 11. Evaluation methodology








Table 2. Average rank of correct recommendation (ARC) for� basic recommendation algorithms at each session size
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Fig. 12. Average rank of correct answer, basic algorithms. �Non-significant differences between results are indicated with brackets








Table 3. Recommendation hybrids included in the comparative study.


( indicates a hybrid used.


R indicates a redundant combination.


 N indicates a hybrid that could not be constructed because limitations of algorithm input or output.
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Fig. 17. Average rank results for weighted hybrids. �Brackets show non-significant differences. �* marks results showing synergy between hybrid components
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Fig. 18. Average rank results for switching hybrids.�(Results not showing synergy omitted)





Fig. 20. Average rank results for feature combination hybrids





Fig. 21. Comparing feature combination recommenders �with sampled data. All results shown





Fig. 26. Average rank of correct answer for cascade hybrids





Table 4. Top ten hybrids by ARC
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Table 5. The space of possible hybrid recommenders
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Fig. 22. Retrieval set size vs accuracy for feature combination and basic content-based recommenders, average over all session sizes
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Fig. 24. Retrieval set size vs accuracy for top feature augmentation hybrids
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Fig. 23. Average rank of correct answer for feature augmentation hybrids
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Fig. 25. Comparing full precision and reduced precision for �CN and CF basic recommenders
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Fig. 28. Retrieval set size vs accuracy for top recommenders: basic vs hybrid
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Fig. 13. Retrieval set size vs accuracy for 5 item single session profiles, �basic recommendation algorithms
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Fig. 14. Retrieval set size vs accuracy for 15 item single session profiles, �basic recommendation algorithms
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Fig. 15. Retrieval set size vs accuracy for 10 item multi-session profiles, �basic recommendation algorithms
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Fig. 16. Retrieval set size vs accuracy for 30 item multi-session profiles, �basic recommendation algorithms








� In this chapter, I use the e-commerce term "products" to refer to the items being recommended, with the understanding that other information-seeking contexts are also pertinent.


� Techniques such as relevance feedback enable an information retrieval engine to refine its representation of the user’s query, and therefore can be seen as a simple form of recommendation. The next-generation search engine Google (http://www.google.com) blurs this distinction further, using “authoritativeness” criteria in addition to strict matching [6].


� It should be noted that there is another knowledge source: context, which has not yet become widely used in web-based recommendation, but promises to become important particularly for mobile applications. See, for example, [7].


� Some hybrids combine different implementations of the same class of technique – for example, switching between two different content-based recommenders. The present study only examines hybrids that combine different types of recommenders.


� The EachMovie data set is available at http://research.compaq.com/SRC/eachmovie/. The MovieLens data sets are at http://www.cs.umn.edu/research/GroupLens/index.html.





� The Entree data set is available from the UC Irvine KDD archive at http://kdd.ics.uci.edu/databases/entree/entree.html





� The significance calculations were performed in SAS 8.0 using the Generalized Linear Model procedure. (http://www.sas.com/)


� If there are no positive ratings, the session is discarded. We cannot evaluate a recommendation if we have no information about what the user prefers.


� Weighting user's rating by the proximity to the test user as some authors suggest [5] was not found to be effective.


� An alternative is to have a third metric outside of the hybrids as the switching criterion. Mobasher and Nakagawa (2003) describe a system in which a metric of site connectivity is used to determine which of two usage mining techniques to employ [33].


� Some other possibilities for implementing a switching hybrid were investigated, including using the ratio of confidence values and their difference.


� Winnow was found to be inferior to naive Bayes for the other content-based recommendation tasks in this study.


� MatLab's Statistical Toolbox was used for clustering (http://www.mathworks.com/). Clustering was not performed with the heuristic version of the profiles due to the increased size and sparsity of the rating matrix.
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