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Abstract

Significant vulnerabilities have been identified in collaborative recommender systems. The
open nature of collaborative filtering allows attackers to inject biased profile data and force
the system to “adapt” in a manner advantageous to them. Previous work has shown both
user-based and item-based recommender systems are vulnerable to the segment attack model.
In this paper we focus on two techniques that may be used to reduce the impact of the segment
attack and also examine their robustness against traditional attack models. One technique is
a model-based algorithm based on probabilistic latent semantic analysis that offers significant
improvements in stability and robustness against all identified attack profiles. Second, we
analyze the effectiveness of a supervised classification approach to detection we have intro-
duced for protecting systems against traditional attacks.

1 Introduction

Recent research has begun to examine the vulnerability of collaborative filtering recom-
mender systems to “shilling” attacks [1, 2, 3, 4]. The more descriptive phrase “profile injec-
tion attacks” is also used, and better conveys the tactics of an attacker. In a profile injection
attack, an attacker interacts with a collaborative recommender system to build a number
of profiles associated with fictitious identities. The aim is to bias the system’s output in
the attacker’s favor. User-adaptive systems, such as collaborative filtering, are vulnerable to
such attacks precisely because they rely on user interaction to generate recommendations.

In user-based collaborative filtering, the algorithm collects profiles representing each user’s
preferences. A recommendation is then produced for an active user by combining the pref-
erences of peers with similar profiles. Biased data in the profile database may be mistaken
for genuine users and compromise the accuracy of recommendations [3, 4]. Thus, It is easy
to see why collaborative filtering is susceptible to profile injection attacks.

Lam et al. [3] show that item-based collaborative filtering offers an advantage over the user-
based approach. In item-based collaborative filtering, a recommendation consists of items
that have similar rating profiles to items the active user has already rated highly. By adding
biased user profiles, an attacker only alters a portion of the rating profile for any given item.
In [1], we introduced the segment attack to specifically target item-based recommendation.
The segment attack targets individual segments of users that are predisposed to specific,
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predictable items.
To overcome this, we have examined model-based approaches to collaborative filtering

to provide improved robustness against all profile injection attacks, including the segment
attack. Since models create an abstraction of the detailed user profiles, the influence of
an attack is reduced because attack profiles are not directly used in recommendation. We
have focused on Probabilistic Latent Semantic Analysis (PLSA) to infer hidden relationships
among groups of users. Each cluster of similar users represents an aggregate profile that is
used for recommendation, rather than the original user data. PLSA is a “fuzzy” approach,
in that each user has a degree of association with every user cluster. This allows particularly
authoritative users to exercise greater influence on recommendation.

In addition to choosing a robust recommendation algorithm, a system can insulate itself
from attack through detecting and discounting known attack profiles. Our approach is based
on supervised classification of attack profiles and genuine user profiles. The principle behind
this approach is that an attacker must generate profiles that are more realistic and contain
less bias to avoid detection. By doing this, the profiles are likely to be less effective at
influencing recommendation behavior, and more profiles would be needed for effect. How-
ever, large attacks are conspicuous. In this way, we hope to render profile injection attacks
relatively harmless.

2 Profile Injection Attacks

A profile injection attack against a collaborative recommender system consists of a number
of attack profiles added to the database of real user profiles. The goal of a push attack is to
increase the system’s predicted rating on a target item for a given user (or group of users).
An attack model is an approach to constructing attack profiles, based on knowledge about
the recommender system, its rating database, its products, and/or its users.

2.1 An Example

Consider, as an example, a recommender system that identifies books that users might like
to read using a user-based collaborative algorithm [5]. In general, an user builds up a profile
(in the scale of 1-5 with 1 being the lowest) on various books and returns to the system for
new recommendations. Figure 1 shows Alice’s profile along with that of seven genuine users.
An attacker, Eve, has inserted attack profiles (Attack1-3) into the system, all of which give
high ratings to her book labeled Item6. Eve’s attack profiles may closely match the profiles
of one or more of the existing users based on the ratings given across the attack profiles.

Without the attack profiles, a standard user-based collaborative filtering system, which
uses correlation-based similarity, will find User6 as the most similar to Alice and the predicted
ratings for Alice on Item6 will be 2, essentially stating that Item6 is likely to be disliked
by Alice. After the attack, however, the Attack1 profile is the most similar one to Alice,
and would yield a predicted rating of 5 for Item6, the opposite of what would have been
predicted without the attack. In this example, the attack is successful, and Alice will get
Item6 as a recommendation, regardless of whether this is really the best suggestion for her.
She may find the suggestion inappropriate, or worse, she may take the system’s advice, buy
the book, and then be disappointed by the delivered product.



Item1 Item2 Item3 Item4 Item5 Item6

Correlation

with Alice

Alice 5 2 3 3 ?

User1 2 4 4 1 -1.00

User2 3 1 3 1 2 0.76

User3 4 2 3 1 1 0.72

User4 3 3 2 1 3 1 0.21

User5 3 1 2 -1.00

User6 4 3 3 3 2 0.94

User7 5 1 5 1 -1.00

Attack1 5 3 2 5 1.00

Attack2 5 1 4 2 5 0.89

Attack3 5 2 2 2 5 0.93

Figure 1: An example of a push attack favoring the target item Item6.

2.2 Attack Models

The generic form of an attack profile is depicted in Figure 2. Specific attack models define
the method for assigning ratings to the set of filler items and the target item. The set of
filler items represent a group of randomly selected items in the database that are assigned
ratings within the attack profile. In certain attack models, a subset of filler items may
be pre-selected for a precise impact. The target item in a push attack is generally given
the maximum allowed rating. Prior work on recommender system stability has examined
primarily two types of attack models:

• Random Attack [3], where user profiles are generated randomly based on the overall
distribution of user ratings in the database;

• Average attack [3], where the rating for each item is computed based on its average
rating for all users.

In practice, an average attack is much more effective than a random attack. However, it
requires greater knowledge about the system’s rating distribution. This knowledge cost is
minimized by the fact that an average attack can be quite successful with a small filler item
set, whereas a random attack usually must have a rating for every item in the database in
order to be effective.

An extension of the random attack, the bandwagon attack [1, 2] is nearly as effective as
the average attack. The goal of a bandwagon attack is to associate the target item with a
small number of frequently rated items. This takes advantage of the Zipf’s law distribution:
a small number of items will receive the lion’s share of ratings. In a bandwagon attack, a
small set of frequently rated items are selected along with the set of random filler items.
Attack profiles give maximum rating to those items that have high visibility, and therefore
have a good probability of being similar to a large number of users.

Random, average, and bandwagon attack models are not particularly effective against
item-based collaborative filtering. In response, the segment attack was introduced in [1] and
further examined in [2, 6, 7]. It turns out that a segment attack is also quite effective against
user-based algorithms. A segment attack attempts to target a specific group of users who
may already be predisposed toward the target item. For example, an attacker that wishes
to push a fantasy book might want the product recommended to users expressing interest in
Harry Potter and Lord of the Rings.



Figure 2: The general form of a push attack profile.

A typical segment attack profile consists of a number of selected items that are likely to
be favored by the targeted user segment, in addition to the random filler items. This differs
from a bandwagon attack in that the selected items are expected to be highly rated within
the targeted user segment, rather than frequently rated. The selected segment items are
assigned the maximum rating value along with the target item. To provide the greatest
impact on item-based algorithms, all remaining filler items are given the minimum allowed
rating.

3 Recommendation Algorithms

We have concentrated in this work on the most commonly-used algorithms for user-based
and item-based collaborative filtering. Each algorithm assumes that there is a user / item
pair for whom a prediction is sought, the target user and the target item. The task for the
algorithm is to predict the target user’s rating for the target item.

3.1 User-Based Collaborative Filtering

The standard kNN collaborative filtering algorithm is based on user-to-user similarity [5].
In selecting neighbors, we have used Pearson’s correlation coefficient for user-user similarities
and a neighborhood size k = 20. We also filter out all neighbors with a similarity of less
than 0.1 to prevent predictions being based on very distant or negative correlations. Once
the most similar users are identified, predictions are calculated as described in [7].

3.2 Item-Based Collaborative Filtering

Item-based collaborative filtering works by comparing items based on their pattern of
ratings across users. For our purpose we have adopted the adjusted cosine similarity measure
introduced by [8]. Once again, we consider a neighborhood of size k = 20 and ignore items
with negative similarity. Once the most similar items are identified, predictions are calculated
as described in [7].
In addition to these common collaborative filtering methods, we have also examined some
additional model-based approaches as a means of increasing robustness to attack.

3.3 Model-Based Collaborative Filtering

A standard model-based collaborative filtering algorithm uses k-means to cluster similar
users. Given a set of user profiles, the space can be partitioned into k groups of users that
are close to each other based on a measure of similarity. The discovered user clusters are



then applied to the user-based neighborhood formation task, rather than individual profiles.
A more successful approach based on PLSA models [9] provides a probabilistic method for

characterizing latent or hidden semantic associations among co-occurring objects. In [10, 11]
PLSA was applied to the creation of user clusters based on web usage data. We have adapted
this approach to the context of collaborative filtering.

Given a set of n users, U = {u1, u2, · · · , un}, and a set of m items, I = {i1, i2, · · · , im} the
PLSA model associates an unobserved factor variable Z = {z1, z2, · · · , zl} with observations
in the rating data. For a target user u and a target item i, the following joint probability
can be defined:

P (u, i) =
l∑

k=1

Pr(zk) • Pr(u|zk) • Pr(i|zk)

In order to explain a set of ratings (U, I), we need to estimate the parameters Pr(zk),
Pr(u|zk), and Pr(i|zk), while maximizing the following likelihood L(U, I) of the rating data:

L(U, I) =
∑

u∈U

∑

i∈I

ru,i • log Pr(u, i)

where ru,i is the rating of user u for item i.
We can now identify segments of users that have similar underlying interests. For each

latent variable zk, we create a user cluster Ck and select all users having probability Pr(u|zk)
exceeding a certain threshold µ. If a user does not exceed the threshold for any latent variable,
it is associated with the user segment of highest probability. Thus, every user profile will be
associated with at least one user segment, but may be associated with multiple segments.
This allows authoritative users to have broader influence over predictions, without adversely
affecting coverage in sparse rating data.

4 Evaluation Metrics

There has been considerable research in the area of recommender systems evaluation [12].
Some of these concepts can be applied, but in evaluating security we are interested not in
raw performance, rather the change in performance induced by an attack. Our goal is to
measure the effectiveness of an attack - the “win” for the attacker. The desired outcome
for the attacker in a “push” attack is of course that the pushed item be more likely to be
recommended after the attack than before. In the experiments reported below, we follow
the lead of [4] in measuring an algorithms stability via prediction shift. The prediction shift
metric as computed in [2] measures the change in the predicted rating of an item before
and after attack. We have also confirmed our results using other metrics such as hit ratio,
the average likelihood that a top N recommender will recommend the pushed item, but for
brevity have limited the results to just prediction shift [8, 7].

5 Experimental Results of Attack Models

In our experiments we have used the publicly-available Movie-Lens 100K dataset1. This
dataset consists of 100,000 ratings on 1682 movies by 943 users. All ratings are integer values

1http://www.cs.umn.edu/research/GroupLens/data/



between one and five where one is the lowest (disliked) and five is the highest (most liked).
Our data includes all the users who have rated at least 20 movies.

In all experiments, we used a neighborhood size of 20 in the k-nearest-neighbor algorithms
for user-based and item-based systems. To ensure the generality of the results, 50 movies
were selected randomly that represented a wide range of average ratings and number of
ratings. Each of these movies was attacked individually and the average is reported for all
experiments. We also generally selected a sample of 50 users as our test data, mirroring the
overall distribution of users in terms of number of movies seen and ratings provided. The
results reported below represent averages over the combinations of test users and test movies.
We use the metric prediction shift, as described earlier, to measure the relative performance
of various attack models.

Another aspect of attack profiles that impact their effectiveness is filler size or the percent-
age of items in the profile that are given ratings. For all the attack models we have studied,
the effectiveness of the attack varies as a function of the filler size. For brevity we have not
included these results, but have selected the filler size for each attack model/recommendation
algorithm pair that produces the largest prediction shift. For all the attacks, we generated
a number of attack profiles and inserted them into the system database and then gener-
ated predictions. We measure “size of attack” as a percentage of the pre-attack user count.
There are approximately 1000 users in the database, so an attack size of 1% corresponds to
10 attack profiles added to the system.

5.1 Vulnerability of Popular Collaborative Filtering Algorithms

Figure 3(a) shows the results of a comparative experiment examining three attacks against
the two most popular collaborative recommendation algorithms at a 1% attack. Recall that
the rating scale in this domain is 1-5 with an average of 3.6, so a rating shift of 1.4 is enough
to lift an average-rated movie to the top of the scale. As the figure shows, the additional
system knowledge required for average attack results in a significant increase in prediction
shift over random attack. The item-based algorithm on the other hand appears more robust
than the user-based algorithm without significant knowledge requirements. This observation
led us to develop the segment attack intended specifically to manipulate the item similarity
used by the item-based algorithm while still requiring limited knowledge.

To build our segmented attack profiles, we identified the segment of users as all users who
had given above average scores(4 or 5) to any three of the five horror movies, namely, Alien,
Psycho, The Shining, Jaws, and The Birds.2 For this set of five movies, we then selected all
combinations of three movies that had at least 50 users support, and chose 50 of those users
randomly and averaged the results.

From Figure 3(a) we see if we evaluate the segmented attack based on its average impact on
all users, there is nothing remarkable. However the “in-segment” users, those users who have
rated the segment movies highly and presumably are desirable customers for the attacker are
impacted significantly for both algorithms. Although item-based is less affected than user-
based, a .6 prediction shift for a 1% attack is still a significant bias.

2The list was generated from on-line sources of the popular horror films:
http://www.imdb.com/chart/horror and http://www.filmsite.org/afi100thrillers1.html.
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Figure 3: Prediction shift comparisons

5.2 PLSA Comparison

Based on these results, additional model based collaborative recommendation techniques
were examined in an effort to identify a prediction scheme that would provide further robust-
ness to these types of attacks. From this exploration, we discovered PLSA recommendation
had significant robustness without compromising the quality of the predictions. For the
PLSA experiments, we employ a user segment size of 30 which was chosen for its pre-attack
prediction accuracy. Although a larger segment size did result in improved MAE, 30 seems
to be the point of diminishing returns for our dataset. Larger segment sizes require much
greater processing time in order to build a model, with marginal improvement for our pur-
poses. For PLSA, optimal results were obtained using k = 10 for the neighborhood size with
neighbors with a similarity score less than 0.1 filtered out.

Figure 3(b) depicts the “in-segment” prediction shift for the Horror segment attack across
various attack sizes. Clearly, the attack is extremely effective against the k-NN algorithm as
noted previously. By contrast, both item-based and PLSA are less affected by the segment
attack, but the strength of the PLSA algorithm is shown in its additional robustness at small
attack sizes. The PLSA algorithm has the additional benefit of stabilizing the prediction shift
for attack sizes beyond 5%, while the item-based algorithm continues to grow logarithmically.

6 Attack Profile Classification

In this section, we present our approach to attack detection and response based on profile
classification. Prior work in detecting attacks in collaborative filtering systems have mainly
focused on ad hoc algorithms for identifying basic attack models such as the random at-
tack [13]. In contrast, we have proposed an alternate technique based on more traditional
supervised learning. We show that a kNN classifier, using classification attributes intro-
duced in our prior work, and built on a training set created through injecting system data
with a mix of attack profiles, can be applied to unseen segment attack data with impressive
results [14, 15]. For this approach, a user’s profile is examined and based on characteristics
of the profile, the entry is given a classification as either authentic or attack and would



subsequently be eliminated from consideration in collaborative filtering.

6.1 Attributes for Detection

In prior work we have identified a number of attributes that are informative at detecting
profile injection attacks [14, 15]. We use three classes of detection attributes: Generic
Attributes – attributes designed to identify abnormalities in the overall distribution of a
profile; Model-based Attributes – attributes designed to identify similarities to known attack
models; and Intra-profile Attributes – attributes designed to identify suspicious trends across
profiles.

The hypothesis behind using generic attributes is based on the expectation that the overall
signature of attack profiles differs from authentic profiles. This difference comes from two
sources: the rating given the target item, and the distribution of ratings among the filler
items. As many researchers in the area have theorized [3, 13, 4, 7], it is unlikely for an attacker
to have complete knowledge of the ratings in a real system. As a result, generated profiles
often deviate from rating patterns seen for authentic users. An attribute that captures these
anomalies is likely to be informative in identifying reduced knowledge attack profiles.

In addition to the generic attributes described in our previous work, we have also included
an attribute we have termed Weighted Deviation from Mean Agreement (WDMA) [14, 15].
This attribute, designed to help identify anomalies, is an extension of the Rating Deviation
from Mean Agreement introduced by Chirita et al. [13]. The WDMA attribute places a high
weight on rating deviations for sparse items. The WDMA attribute can be computed in the
following way:

WDMAu =

nu∑
i=0

|ru,i−ri|
l2i

nu

Where U is the universe of all users u; let Pu be a profile for user u, consisting of a set of
ratings ru,i for some items i in the universe of items to be rated; let nu be the size of this
profile in terms of the numbers of ratings; and let li be the number of ratings provided for
item i by all users, and ri be the average of these ratings.

In our experiments, we have found that the generic attributes are insufficient for distin-
guishing attack profiles from eccentric but authentic profiles. This is especially true when
the profiles are small, containing few filler items. Model-specific attributes are those that
aim to recognize the distinctive signature of a particular attack model. Our detection model
discovers partitions of each profile that maximize its similarity to the attack model and then
generates detection attributes based on the rating distribution in these partitions [14, 15].

All of the attributes thus far have concentrated on inter-profile statistics; target focus,
however, concentrates on intra-profile statistics. The goal is to use the fact that an attacker
often must introduce many profiles in order to achieve their desired bias. We therefore
examine the density of target items across profiles. One of the advantages of the partitioning
associated with the model-based attributes described above is that a set of suspected targets
is identified for each profile. For our Target Model Focus attribute (TMF), we calculate the
degree to which the partitioning of a given profile focuses on items common to other attack
partitions, and therefore measures a consensus of suspicion regarding each profile.



6.2 Experimental Results of Detection

For our detection experiments, we used the same Movie-Lens 100K dataset used in Sec-
tion 5. To minimize over-training, the dataset was split into 2 partitions. The first partition
was made a training set, while the second was used for testing and was unseen during train-
ing. The training data was created by inserting a mix of different attacks including average,
random, and segment attacks at various filler sizes that ranged from 3% to 100%. Once
again to minimize over-training, a completely separate segment was used for training and
testing. The kNN algorithm was then applied by comparing a profile to be classified to the
profiles in the training data to create a binary profile classifier that output either authentic
or attack using Weka [16]. Figure 4 depicts the average confusion matrix for our detection
algorithm averaged over filler sizes of 3%, 5%, 10%, 20%, 40%, 60%, 80%, and 100% for
a 1% attack. As is apparent from the confusion matrices, the detection capabilities of the

authentic attack

925.35 17.65 authentic

0.62 8.38 attack

Average Attack

authentic attack

927.14 15.86 authentic

0.12 8.88 attack

Random Attack

authentic attack

922.67 20.34 authentic

0.34 8.66 attack

Segment Attack

Figure 4: Confusion matrices for 1% push attacks averaged across all filler sizes.

combined attributes of our previous work and those discussed in this paper hold significant
promise for increasing robustness by eliminating the effects of attack profiles of multiple
attacks. It is also important to note, few authentic users were misclassified as attacks which
if excluded from collaborative filtering could otherwise reduce the system’s accuracy [14].

7 Conclusions

The open and interactive nature of collaborative filtering is both a source of strength and
vulnerability for recommender systems. Biased profile data can easily sway the recommen-
dations of a collaborative system toward inaccurate results that serve the attacker’s ends.
Previous research has shown both user-based and item-based algorithms to be vulnerable to
the segment attack. We have introduced a more robust recommendation algorithm based on
PLSA. In addition, we have demonstrated that a classifier learning approach can accurately
distinguish attack profiles from real users, and can limit the damage caused by attacks.
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