
Survey on the Use of Formal
Languages/Models for the Specification,
Verification, and Enforcement of Network

Access-lists

Adel El-Atawy
School of Computer Science,

Telecommunication, and Information Systems
DePaul University

Chicago, Illinois 60604
Email: aelatawy@cs.depaul.edu

April 12, 2006

Abstract

Complexity of access-lists and the diversity of their specifications
are continuously increasing. Stating the high level requirements as
well as verification of the implemented policies became an impossible
task if human intervention is required. Also, proving the soundness of
these inter-related and confusing policies is very hard without an ap-
propriate framework. Therefore, a formal and canonical specification
for security access-lists is highly needed for us to be able to specify
requirements, verify correctness and enforce the policy.

In this paper, we present some of the work available in the liter-
ature that discusses these problems and propose solutions for having
an automated network security policy management.

1

1 Introduction

Complexity of access-lists and the diversity of their specifications are con-
tinuously increasing. Size of access lists (or security policy) can be in order
of thousands per security-enforcing device in the system (e.g., firewall, IDS,
screening router, . . .). Moreover, the interaction between these devices and
the complexity of the underlying network can cause any modification to one
of the policies to be propagated to all other devices. For example, if a firewall
at the edge of the network rejected an incoming flow, then there will be no
need to re-consider it in following policies. Also, if a traffic is to be rejected
by firewalls in the depth of the network, then allowing it in the first place
will only leave the internal network’s capacity to be eaten up with useless
traffic.

Although these examples seem like serious problems, the more dangerous
cases take place when malicious traffic is allowed by mistake into the corpo-
rate servers due to lack of coordination between different security devices.
For example, if traffic was to be rejected by advanced devices (i.e., devices
near the network edge) and the devices in depth has already optimized their
policies depending on this fact, then the first device filtering mechanism was
disabled as a part of a periodical maintenance or a faulty upgrade (which is
very common); the network is endangered by this unaccounted for flows.

In business-based security policies, more complex conditions and restric-
tions can take place. Examples of such rule; having an employee’s access
restricted in only a given time of year, or after he performs some specific
operation. Or having highly secured documents accessed by only a limited
number of viewers at a time, or if permitted by another person with higher
access-rights. Or conflict of interest between roles a user can play at the
same time, although he can play each role separately in different business
sessions. Examples can be quite sophisticated and complex for analysis and
enforcement purposes.

Scenarios like these ones are very common and can be very hard to expect
or anticipate their occurrences. Thus, an automated robust infrastructure is
needed to communicate this information between these security enforcement
devices/entities as well as between administrators. Also, such framework will
be responsible for the more problematic aspect of network administration;
translating high level requirements into actual device policies. With thou-
sands of rules distributed over tens of devices, it becomes an impossible task
for a human administrator to tackle. Besides, the standards in which these

2

policies are written are ever changing and each vendor has his own version
of policy grammar, and special cases of access and traffic handling.

Therefore, a formal and canonical specification for representing security
access-lists is highly needed to be able to specify requirements, verify cor-
rectness and enforce the policy. Trials to formalize security requirements and
policies started a long time ago. In 1981, [13] showed different models and
approaches to specify, model and enforce security policies in basic electronic
systems for military purposes. In 1993, [1] proposed a calculus for access
control in distributed systems. In 1994, [18] tried to show a general for-
mal definition and architecture for network and systems policies. However,
the problems are continuously emerging as systems get more complex, and
computational features keep on increasing.

In this paper, we present some of the work available in the literature
that discusses these problems and propose solutions for having an automated
network security policy management. Modeling security policies was the
focus of many researchers with diverse backgrounds, approaches and targets.
Each section is designated to a specific approach or an application in which
formal model and formal languages are used in network security policies.

2 Background

In this section, some of the basics of network security as well as established
models of Security Policy will be presented.

2.1 Network Security and Network Access Lists

Limiting the traffic entering an enterprize or corporate network is a must
to maintain a streamlined operation. The number of network-based attacks
and intrusion attempts is continuously increasing, and a way to enforce some
form of a security policy is mandatory to stop these attacks. Moreover, in-
sider malicious activity is also a threat to the corporate security. Valuable
information might be sent from inside-out thus policies should include restric-
tions on the allowed types of data transmission from entities within. Even
in personal and home networks, sensitive personal data might be endangered
by outsiders. Also, worms and similar threats has to be stopped from being
propagated from the SOHO (small office/home office) to the outside.

3

Specifying the network security policies (P) is usually specified as a se-
quence of filtering rules (R1, R2, . . . , Rn) feed into an independent security
device or host-based software, called a firewall. Each rule consists of two
parts; a criteria and an action. Using the notation from [11];

Ri := Ci → acti

where acti is one of the possible actions that can be applied on a single packet
(e.g., accept, discard, protect, log,. . .), and Ci is a set of values that must be
found in their corresponding fields in the packet for the criteria to be fulfilled.

Ci = fv1
i ∧ fv2

i ∧ . . . ∧ fvk
i

given that we have k fields that can be used as filtering conditions, and fvj
i

means that in field j the value is the one mentioned in rule i.
Normally, policies work under single-trigger conditions, which means a

packet is checked against each rule top-to-bottom until a successful match is
found and the action of such a rule is applied. In some devices, as in IPSec,
multi-trigger is used, where all actions of all satisfied rules will be applied to
the packet.

2.2 Role Based Access Control Model

References: [5], [9], [12] and [17].

To specify access restrictions and permissions, RBAC (Role Based Access
Control Model) was suggested in order to facilitate user access to resources.
A user is granted (or prohibited) access to a specific resource based on the
roles he can play. Within the roles, there exist what is called a role hierarchy
which allows some kind of inheritance between the rule rights. [In other
words, we can view roles as typing, and role hierarchy is a way to implement
sub-typing over the entities defined in the system. However, objects can play
different roles, and have multiple types types.]

Of course, some complications arises when there conflict of interest be-
tween two roles that are granted to the same subject or user, or when a user
is granted more roles than what he is allowed to, or even when the user is
granted a role that is beyond his qualifications. These are solved by having
what is called Separation of Duty Constraints, cardinality, and prerequisites
constraints (will be discussed in later sections).

4

A comparison between simple access lists, and RBAC structure can be
found in [5]. Features of each are compared and shown to be equivalent in
almost all cases. However, the version of the RBAC used in comparison is
somehow restricted, so it can be stated that RBAC models are more powerful
in modeling higher level policies than access lists.

In [12], a model for flat role-based access control (FRBAC) is given in the
Z specification notation. The FRBAC is a special case of the RBAC, where
there is no hierarchical structure in any of the entities (roles, users, objects
. . . are all flat).

2.3 Organizational Based Access Control Model

Main References: [10], [7] and [8].

The above mentioned RBAC is missing some of the necessary features
needed for fully modeling the AC requirements. Some of these limitations
are; the lack of contextual permissions or prohibition rules, obligation or
recommendation rules cannot be modeled, organization-specific rules have
no means of being stated. Or-BAC was proposed to solve these limitations
and others.

The overall entity relation possibilities can be represented in the following
figure.

Within this model, there is a hierarchical for all the entities; organizations,
roles, objects, Also, the concept of views is presented, where an object
can be a member of multiple views, each view can be seen by a different
organization. In other words, objects can play views as users can play roles.
But the distinction between both comes from the fact that objects are not
active entities, they cannot perform actions or activities. Activities are the
actual effect that a user can exert, while actions are the conceptual versions
of such activities. Each organization can consider an activity to be a specific
action. For example, in a hospital system, the activity “consulting” can be
considered an action of “reading” for the “archives” department, while the
same activity can be considered a “writing” action for the “emergency room”.

Another concept is the concept of “a context”. A context is how the
current circumstances are stated. The “Define” relation is between the or-
ganization, its subjects, actions, objects and context. In the same hospital
example, context can be “emergency”, “normal operation”, or “urgency”.

5

Figure 1: The ORBAC Model

6

More details about how to model contexts, and the conceptual meaning be-
hind this modeling can be found in another paper [7] by some of the coauthors
who originally proposed the OrBAC.

The system includes support for constraints as add-on predicates.
Different variants of the ORBAC were presented later on. For exam-

ple, the AdOr-BAC (Administrative Organization Based Access Control) [8].
These additions were suggested to enable administrative management of the
OrBAC, additions/deletetions of entities, defining relations, It can be
viewed as a meta-policy for accessing the policy at run-time.

3 UML Version of Security Policy

Main References: [15], [14] and [16].

3.1 RBAC into UML/OCL

Among the first trials to model RBAC completely including its constraints
into UML were by [2]. The constraints themselves - previously defined by
other researchers - were modeled into the UML using its accompanying
Object Constraint Language (OCL). The authors have previously defined
another language (RCL2000: Role-based Constraint specification Language
2000) to specify formally the constraints required in a system. However,
for these specifications to be used in actual system design, the migration
to a model like UML/OCL was a must. The link between UML and OCL
themselves were not fully exploited before this work. Examples of writing
constraints using OCL are provided in the next section.

3.2 RBAC Constraints Visualization using UML

In [16], the (Unified Modeling Language) UML was used as an intermediate
step to reach the final goal of a verified policy. Given the RBAC the proposed
system maps this into an UML class template. The template can be then
instantiated with the values and settings given in the specific system under
consideration. One of the great advantages of the use of UML is that the

7

application framework can be incorporated with the system security policy
into a single entity.

UML has different families of diagrams; the authors used class diagram
template and the object diagram template. The first for modeling the RBAC
pattern, the latter for the system constraints. The second template is used
to model the system constraints that are provided as (Object constraint
language) OCL.

The Class Diagram Template was used to model the RBAC (that is con-
sidered a pattern) with its entities and relations. The diagram consists of
class descriptors with its parameters and single-parameter constraints. To
represent the RBAC fully, they needed User, Role, Session, and Permission
classes for the different entities in the RBAC. For example, for the system
users, there exist the Users template. Some operations are defined as Cre-
ateSession, AssignedRoles, DeassignedRoles, Other templates are the
association templates like UserAssignment and SessionRoles. Activity or
Operation templates are constrained in their operation by OCL templates
that place pre- and post- conditions on their execution. An example of con-
ditions can be written as:

context| User::|CreateSession():(|s:|Session)
post: result=|s and
|s.oclIsNew()=true and
self.|Session → includes(|s)

context|Role::|GrantPermission():(|p:|Permission)
pre:self.|Permission → excludes(|p)
post:self.|Permission → includes(|p)

The Object Diagram Template is used to model the system constraints
that are external to the RBAC definition. Normally, OCLs are based on
first order logic, which makes them very hard to understand and analyze,
especially for the ordinary user. While OCLs can be given as annotations to
the RBAC when modeled as class diagram, writing them as Object Diagrams
is more formal and precise.

In the paper, they show three types of constraints and specify formally
how they can be converted to Object entities in the Object Diagram. These

8

Figure 2: The simple model of the Banking Organization

types are the Separation of Duty Constraints, the Prerequisite Constraints,
and the Cardinality Constraints. The first deals with conflict of interest be-
tween policy parts. It can be Static Separation of Duty (SSD), which ensures
the validity of the current state (e.g., after user is granted permissions for
conflicting roles, . . .). The other is Dynamic Separation of Duty (DSD),
which deals with conflict of interest as well, but within the running session.
To see the difference, these are two constraints for each type;

context |SSDRole inv:
|r1.|User → excludesAll(|r2.|User)

context |DSDRole inv:
|r1.|Session → excludesAll(|r2.|Session)

Each constraint limited the activation of conflicting entities. However,
the SSD focused on roles given to users, while DSD focuses on enabling roles
within a single session. For further details, the paper presents diagrams with
detailed explanation for each type of constraints.

The Second type of constraints (Prerequisite Constraints) are obvious
from their name. For example, a user cannot be head of technical department
unless he had already acquired the role of administrator.

The third type of constraint; Cardinality constraints ensures that there
is a limit on the number of roles a user can play. In general, they restrict the
number of entities that can be related to each other.

9

Figure 3: Violation of the SSD Constraint

Figure 4: Violation of the DSD Constraint

10

Figure 5: Violation of the Pre-requisite Constraint

Figure 6: Violation of the Cardinality Constraint

The paper presented a case study on a banking application. It included a
Teller, a Customer Service Rep, an accountant, a loan officer as users. Also,
it states that some pairs are conflicting as (teller, loan officer), (loan officer,
accountant). Other DSD, Prerequisite and cardinality constraints are also
modeled.

Some operations were presented to the model, and conflicting patterns
were identified visually quite easily. Of course, an automated system could be
designed to check for these predefined patterns and pinpoint them efficiently.

3.3 Secure UML

Other work by [14] also used UML as a means of modeling security policies.
In [14], a modified UML was proposed that incorporate the security require-
ments in the system design from the very beginning. They used OCL (Object
Constraint Language) as the expression language for defining the constraints.
This is not a new idea as it was the goal of the other work discussed in this
section. However, they added authorization as a new constraint type to the
previously mentioned constraint types and showed actually how to integrate

11

both the system and policy UMLs together.

3.4 UML-compatible formal language

Another reference [15], is not focused directly to security policies. How-
ever, they represent a UML-compatible formal language that can be used for
writing down descriptions for system architecture (that includes the security
policy). The paper presents ArchiTRIO, a HOL temporal logic language
which combines a subset of the UML notation with a precise formal semantics
from previously known languages (by the same group).

The main advantage of their work is that it is possible to make a hybrid
design; non-critical parts can be presented using the traditional UML nota-
tion, and critical aspects of the system can then be strictly and completely
represented using their formal language. Both parts are then fully integrated
into one single overall design. A user can start with the traditional UML
design until the need arises for more clarity and precision, then details are
embedded using a formal notation into the design.

The paper shows a running example of a building with three clearance
levels, and users have access rights and there are physical gates that are con-
trolled by the overall security policy. In order to model the section with high
clearance with its complex logic (more than UML can support), the authors
show how using their temporal-logic-based language they can specify the pol-
icy conditions. At first the system is designed simply using UML; showing
how sections are connected physically, and how the less secure sections inter-
act, open/close their gates, conditions on incoming personnel, Then a
class written specifically for the extra constraints is embedded into the object
of the high security section. In the example they specify the condition on
which the gate opens; it must be opened within the last TOpen seconds, and
it must be opened and not used yet by the user opened it, once he enters it
closes.

Future work mentioned for this paper included studying the possibility
of encoding the proposed language into HOL (Higher Order Logic) of one of
the available theorem provers such as PVS. Also, they plan to translate there
classes into automata-based formalization in order to exploit model checking
techniques.

12

Figure 7: ArchiTRIO: An example of a class and one of its axioms

4 XML Translation of Security Policies

Main References: [6] and [19].

4.1 Policy Specification/Generation using XML/XSL

In [6], the authors propose using XML to specify a version of the Or-BAC
(actually a reduced version) that is specific for network policies. Then this
XML version can later be translated to any specific firewall language using
the appropriate XSL.

The use of Or-BAC to start extracting the policy from is due to the fact
that Or-BAC is the superset of RBAC and, clearly, firewall filtering policies.
This ensures that no generated policy will be violating the global view of the
organization’s policy.

Another point of interest in their work is that they tried to specify the
policy ONLY as permissions (no prohibition, obligation, or recommendation
rules). This will make the order among the rules in the policy irrelevant,
which is a huge plus as most of firewall rule anomalies occur from having the
wrong order between the rules. Also, it worth mentioning that they model
the firewall as an organization in its own, of course a hierarchy or network
devices is present to govern all of them together.

The translation from the XML to the final policy rules takes place in two
steps. First, the XML is translated to an intermediate policy (via XSL),
where the policy can be checked for correctness and being cycle free,

13

Secondly, another XSL translation generates the final text that can be feed
to the firewall.

4.2 Access Control Systems in XACML/RW

In [19], a verifiable formal language is used to specify the policy. RW can be
formally verifiable in the sense that we can always answer this question: “Can
agent x do action a to object o within t time from event e?”. The language
RW (stands for read write) models the right of agents to perform the two
basic operation read and write. The Access Control System S is represented
as a tuple < A, P, r, w >, where A is a set of agents, P is the space of
propositional variables, r and w are mappings from PxA → L(P). Agent a
can read/write a variable p if and only if r(p, a) = true or w(p, a) = true,
respectively. The logical condition in each element of the space PxA specifies
if a can read (or write) the variable p.

The paper presents an example of a scientific conference with conditions
on whom can see the authors information, set the reviewers, change the
submitted paper, So given the following rules, conditions will be created,
followed by the appropriate logical conditions.

1. PC members and authors of papers are known to everybody. Authors
of papers cannot be changed.

2. The PC chair appoints the PC members. A PC member can resign his
membership.

3. The PC chair can assign a paper to a PC member for reviewing, except
if he is one of its authors.

4. All PC members, except the author(s) of a paper can know who are
the reviewers for this paper.

5. The reviewer of a paper can assign the paper to be sub-reviewed by an
agent who is not an author of the paper and has not been assigned the
same paper by another reviewer.

6. A reviewer of a paper p can resign, unless he has already appointed a
sub-reviewer for the paper.

14

7. Sub-reviewers are known to all PC members who are not authors of
the respective papers.

8. A sub-reviewer can resign, unless he has already submitted his review.

Figure 8: The permission mapping r and w for the given example

After obtaining the logical conditions needed, the program in RW can be
written as in Fig 9. As an example, the pcmember(a) predicate is translated
into XACML.

5 Ordered Binary Decision Diagram Formal-

ization

Main References: [3] and [11].

15

Figure 9: The class in RW that specifies the conference policy

16

Figure 10: An XACML translation of one predicate from the RW conference

class

17

In [3], our research team has worked on modeling firewall policies as
Boolean expression managed as OBDDs (Ordered Binary Decision Diagrams)
in order to check the policy for inconsistencies between its rules, and between
rules in different policies on more than one firewall in the network. Using this
representation many of the rule anomalies can be identified very efficiently.
Redundant and shadowed rules can be pinpointed by comparing the policy
represented as a single Boolean expression before and after a rule is removed.
An equality means a redundant or shadowed rule. The same technique (with
a little of detail) is applied for inter-firewall anomaly detection. Also, the
same idea was extended to identify errors in configuring rules for IPSec de-
vices [11]. In IPSec, the number of different actions the device can apply for
any single packet is larger than in the case of firewalls (in Firewalls only one
action: accept/deny is applied, in IPSec: accept, deny, encrypt, authenticate,
encrypt/authenticate, . . .).

The use of Boolean expressions to represent the criteria section of access-
list and security rules is not new. It was used before as a way to unify the
representation of rules regardless of the specifics of any rule (within the same
policy). For example,

if proto = TCP AND src = 11then deny⇒
if x1x3x0x2x4..x7 ∧ y0y1y3y2y4..y7 = truethen deny

if proto = ICMP AND dst = 3then deny⇒
if x1x0x2..x7 ∧ z0z1z2..z7 = truethen deny

Using the formulation presented we can check if both criteria apply to
the exact same traffic, or do their domain overlap; all by simple Boolean
operations.

The whole policy can be represented concisely into a single expression
for future operations. Assuming we use a single trigger model in which any
incoming packet will be matched against the policy, rule-by-rule, till a match
takes place (the packet satisfy the rule’s criterion), then the action of the rule
is applied. No further checking against successive rules is performed. Under
this assumption, the “policy domain” with an action a (Pa) is represented as

18

a single expression as follows;

Pa =
∨

i∈index(a)

(¬C1 ∧ ¬C2 ∧ . . . ∧ ¬Ci−1 ∧ Ci)

where index(a) is the indices of the rules having a as their action.

index(a) = {i|Ri = Ci → a}

6 Other Work

6.1 Efficient Comparison of Enterprize Privacy Poli-

cies

Main Reference: [4].

This paper presents an efficient algorithm that compares two privacy poli-
cies and checks if one of them refines the other. In other words, Refinement
is equivalence with a different level of abstraction. For an enterprize, policy
refinement means that there is a given policy that this enterprize has to a
adhere to, and policy refinement is to generate a policy that conform with
this given policy and adds extra requirements or customizations to the en-
terprize. So, one of the policies is more abstract, and relaxed than the one
that refines it.

IBM (with which three of the four authors are affiliated) has proposed
Enterprize Privacy Authorization Language (EPAL) to be used for these
purposes. It is an XML specification and is still open for suggestions and
standardization. As in Or-RBAC roles, organizations, users, data are mod-
eled in Hierarchies with inheritable Obligations and Conditions.

EPAL is given by a vocabulary, a list of authorization rules, a global
condition, and a default ruling. The vocabulary defines element hierar-
chies for data, purposes, users, and actions, as well as the obligation model
and the condition vocabulary. Data, users and actions are as in most ac-
cess control policies, and purposes are an important additional hierarchy
for the purpose binding of collected data. The vocabulary itself is a tuple:
V oc = (UH,DH,PH,AH, V ar,OM) where UH, DH, PH, and AH are hier-
archies called user, data, purpose, and action hierarchy, respectively, Var

19

is a condition vocabulary, and OM an obligation model. The condition
vocabulary is defined by a set of variables and their corresponding scope
V ar = (V, Scope).

6.2 Universal Network Traffic Classification Policy

Main Reference: My work, not yet published.

Most of the current research work on the analysis of firewall, IPSec, ...
policies include implicitly the filtering/classification algorithm within the
analysis technique itself. Thus, generalizing the analysis technique to other
security devices other than the one initially thought of is very hard and
needs many modifications (if even possible). For example, modeling single
and multi trigger in the same policy format is quite challenging. It shows
a drastic change in the inter-rule dependency and in the way the filtering
algorithm processes the rules themselves.

So, I proposed a way to write any policy (currently, firewalls, IPsec and
IDSs are supported easily), as list of rules, and an associated order: P =<
r1, o1 >,< r2, o2 >, . . . < rn, on >,. Each rule is a tuple that recursively
might contain another policy (another list of rules with their order). Any
single rule r is defined as:

r :=< C, a, i, P >

where C is the condition of matching, a is an action from the repository of
possible actions, i is an “ignore action” Boolean flag, and P is another policy
(a list of rules) to be processed if the packet matched this rule.

To process a packet, all rules are checked in order (i.e., 1,2,. . . |P |) till a
rule has its Condition satisfied. The action is applied to the packet (if the i
flag is true the new packet is discarded and the original is used instead) and
then recursively the same is repeated using the Policy mentioned within the
matched rule. Analyzing the correctness of the policy using this represen-
tation and simple algorithm is the same for whatever origin the policy was
taken from.

For firewalls, the root policy has all its rules without a sub-policy (the
policies mentioned within each rule is an empty list). When a match occurs,
the action is applied (either “no-operation”, or “forward packet to correct
interface”), and then the algorithm halts.

20

For IPSec policies with multi-trigger, each rule has all the other rules with
higher order (i.e., coming next) in its own sub-policy. The size of the policy
this way (if rules are actually repeated) is O(n2) such that the original was
of size n. However, this explosion in size is justified and it can not be higher
than this whatever the classification algorithm was (from all the possible
ideas we thought of in classification algorithms, n2 is the highest possible).

7 Conclusion

As long as the topic is not totally exhausted and the motivation of finding
better solutions is still pushing, the future work is still to collect more of the
research production available and find more ways to exploit the huge matrix
of formal tools into the vacant spots in between.

Having a complete model that will involve every possible aspect of secu-
rity policies might be possible, but then the enforcement of such a system
will incur an overhead that will make it far more expensive than going with
less security with older models. Having simpler models that are practically
feasible to deploy is a must. The solution might be in thinking about simpler
individual systems (e.g., firewalls, IDS sensors, file system access rights, dig-
ital media copyright enforcement, ...) than trying - from there - to generalize
such models to bundle more than one application at the same time.

Another approach is going deep into theory and think of new models that
satisfy the high level requirements. However, we have to be patient and not
keep searching for applications for these evolving models, let them ripe a
little first before we twist them to fit our ill-thought-of applications.

21

References

[1] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A calculus for ac-
cess control in distributed systems. ACM Transactions on Programming
Languages and Systems, 15(4):706–734, September 1993. 3

[2] G. Ahn and M. E. Shin. Role-based authorization constraints specifi-
cation using object constraint language. In WETICE ’01: Proceedings
of the 10th IEEE Intl. Workshops on Enabling Technologies, pages 157–
162, Washington, DC, USA, 2001. IEEE Computer Society. 7

[3] E. S. Al-Shaer and H. H. Hamed. Discovery of policy anomalies in
distributed firewalls. In INFOCOM, 2004. 15, 18

[4] M. Backes, G. Karjoth, W. Bagga, and M. Schunter. Efficient compari-
son of enterprise privacy policies. In SAC ’04: Proceedings of the 2004
ACM symposium on Applied computing, pages 375–382, New York, NY,
USA, 2004. ACM Press. 19

[5] J. Barkley. Comparing simple role based access control models and
access control lists. In RBAC ’97: Proceedings of the 2nd ACM workshop
on Role-based access control, pages 127–132, New York, NY, USA, 1997.
ACM Press. 4, 5

[6] F. Cuppens, N. Cuppens-Boulahia, T. Sans, and A. Mige. A formal
approach to specify and deploy a network security policy. In Second
Workshop on Formal Aspects in Security and Trust,Toulouse, France,
2004. 13

[7] F. Cuppens and A. Miège. Modelling contexts in the or-bac
model. In ACSAC ’03: Proceedings of the 19th Annual Computer Se-
curity Applications Conference, page 416, Washington, DC, USA, 2003.
IEEE Computer Society. 5, 7

[8] F. Cuppens and A. Miège. Administration model for or-bac. In OTM
Workshops, pages 754–768, 2003. 5, 7

[9] D.Ferraiolo, J.Cugini, , and D.R.Kuhn. Role based access control (rbac):
Features and motivations. In Proceedings of Computer Security Appli-
cations Conference, pages 241–248, December 1995. 4

22

[10] A. El-Kalam, S.Benferhat, A. Miège, R. El-Baida, F. Cuppens,
C. Saurel, P. Balbiani, Y.Deswarte, and G. Trouessin. Organization
based access control. In POLICY ’03: Proceedings of the 4th IEEE In-
ternational Workshop on Policies for Distributed Systems and Networks,
page 120, Washington, DC, USA, 2003. 5

[11] H. H. Hamed, E. S. Al-Shaer, and W. Marrero. Modeling and verification
of ipsec and vpn security policies. In ICNP, pages 259–278, 2005. 4, 15,
18

[12] E. J. Khayat and A. E. Abdallah. A formal model for flat role-based
access control. In ACS/IEEE International Conference on Computer
Systems and Applications (AICCSA’03). 4, 5

[13] C. E. Landwehr. Formal models for computer security. ACM Comput.
Surv., 13(3):247–278, 1981. 3

[14] T. Lodderstedt, D. Basin, and J. Doser. Secureuml: A uml-based mod-
eling language for model-driven security. In UML 2002 - The Unified
Modeling Language : 5th International Conference. 7, 11

[15] M. Pradella, M.Rossi, and D. Mandrioli. A uml-compatible formal lan-
guage for system architecture description. In SDL 2005: Model Driven
Systems Design: 12th International SDL Forum, volume 3530 of Lecture
Notes in Computer Science, pages 234–246. Springer Berlin / Heidel-
berg, June 2005. 7, 12

[16] I. Ray, N. Li, R. France, and D. Kim. Using uml to visualize role-
based access control constraints. In SACMAT ’04: Proceedings of the
9th ACM symposium on Access control models and technologies, pages
115–124, New York, NY, USA, 2004. ACM Press. 7

[17] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-
based access control models. IEEE Computer, 29(2):38–47, 1996. 4

[18] R. Wies. Policies in network and systems management - formal definition
and architecture. Network and Systems Management, 2(1):63–83, 1994.
3

[19] N. Zhang, M. Ryan, and D. P. Guelev. Synthesising verified access
control systems in xacml. In FMSE ’04: Proceedings of the 2004 ACM

23

workshop on Formal methods in security engineering, pages 56–65, New
York, NY, USA, 2004. ACM Press. 13, 14

24

