
1

Adaptive Statistical Optimization Techniques for
Firewall Packet Filtering
Adel El-Atawy, Hazem Hamed, Ehab Al-Shaer

School of Computer Science, DePaul University, Chicago, USA

Abstract— Packet filtering plays a critical role in the
performance of many network devices such as firewalls,
IPSec gateways, DiffServ and QoS routers. A tremendous
amount of research was proposed to optimize packet filters.
However, most of the related works use deterministic
techniques and do not exploit the traffic characteristics
in their optimization schemes. In addition, most packet
classifiers give no specific consideration for optimizing
packet rejection, which is important for many filtering
devices like firewalls.

Our contribution in this paper is twofold. First, we
present a novel algorithm for maximizing early rejection of
unwanted flows without impacting other flows significantly.
Second, we present a new packet filtering optimization
technique that uses adaptive statistical search trees to
utilize important traffic characteristics and minimize the
average packet matching time. The proposed techniques
timely adapt to changes in the traffic conditions by per-
forming simple calculations for optimizing the search data
structure. Our techniques are practically attractive be-
cause they exhibit simple-to-implement and easy-to-deploy
algorithms. Our extensive evaluation study using Internet
traces shows that the proposed techniques can significantly
minimize the packet filtering time with reasonable memory
space requirements.

I. I NTRODUCTION

Packet classification is a critical component that de-
termines the performance of many network devices,
including firewalls, IPSec gateways, Intrusion Detection
Systems, DiffServ and QoS routers. The main task
of packet filters or classifiers is to categorize packets
based on a set of rules representing the filtering policy.
The information used for classifying packets is usually
contained in distinct header fields in the packet, which
are protocol field, source IP, source port, destination IP ,
and destination port in IPv4. Each filtering ruleR is an
array of field values. A packetP is said to match a rule
R if each header-field ofP matches the corresponding
rule-field of R. In firewalls, each ruleR is associated
with an action to be performed if a packet matches a
rule. These actions indicate whether to block (“deny”)
or forward (“allow”) the packet to a particular interface.
For example, a filtering ruleR=(TCP, 140.192.*:23, *:*,

allow) matches traffic destined to subnet 140.192 and
TCP destination port 23 only. A firewall policy consists
of N rulesR1, R2, . . . , RN . Since any packet may match
multiple rules in the policy, based on the rule ordering,
the first matching rule is given the highest priority. If
a packet does not match any of the rules in the policy,
then it is discarded because the default rule (last rule) is
assumed to be deny [1].

With the dramatic advances in the network/link speed,
firewall packet filtering must be constantly optimized to
cope with the network traffic demands and attacks. This
requires reducing the packet matching time needed to
“allow” as well as “deny” packets. In fact, discarded
packets might cause more harm than others if they are
rejected by the default-deny rule as they traverse a long
matching path. This problem is even more critical when
application-level filtering is used. Thus, efficient yet
easy to implement packet filtering techniques are highly
crucial for successful deployment of traffic filtering
technologies on the Internet.

In the first part of this paper, we propose a tech-
nique that analyzes the firewall policy rules in order to
construct a set of rules that can reject the maximum
number of unwanted packets (i.e., discarded by the
policy rules) as early as possible. This is an NP-complete
problem and thus we used an approximation algorithm
that pre-processes the firewall policy off-line and gener-
ates different near-optimal solutions. However, the most
appropriate solution that incurs the least overhead cost
is dynamically selected based on the network traffic
statistics.

The second part of this work is highly motivated by the
Internet traffic properties that were observed in our study
in this paper and addressed by other researchers [16]
as well. Our study of many Internet and private traces
shows that the major portion of the network traffic/flows
matches a small subset of the field values in the firewall
rules. We also observed that this “skewness” in traffic
distribution is likely to stay for time intervals that are
sufficient to make such skewness important to consider
in packet filtering. We therefore propose using statistical
search trees based on the matching-frequency of different

2

field values in the policy, as calculated from the traffic.
The ultimate tree is a combination of alphabetic trees
optimized on each field-level to consider the frequency
distribution of different field values. We presented two
tree structures: near-optimal cascaded tree structure for
single-threaded processing, and parallel tree structure for
network processor platforms. Both the early rejection and
the statistical search tree algorithms exhibit lightweight
implementations and require no special support in fire-
walls. They can also be generalized for other filtering
devices such as IPSec and Intrusion Detection Systems.

Packet filtering optimization has been studied exten-
sively in the research literature [8]. However, many of
the current packet classification techniques exploit the
characteristics of filtering rules but they do not consider
the traffic behavior in their optimization schemes. Be-
ing deterministic, these techniques guarantee an upper
bound on the packet matching time. On the other hand,
our statistical matching approach aims to improve the
average filtering time. In addition, unlike many of the
presented techniques, our technique has much less space
complexity. The use of statistical trees for optimizing
routing table lookups was discussed in [10]. However,
the proposed technique uses only a single field (routing
prefix) that has a given frequency distribution. Our
scheme, however, use statistical tree of multiple-field
values that is dynamically updated to reflect the network
traffic statistics. Moreover, to the best of our knowledge,
the early rejection problem was not addressed by any of
the related work.

The paper is organized as follows. In Section II
we describe the previously published related work. In
Section III we present a technique for early classifi-
cation of rejected packets. In Section IV we present
our statistical-tree based packet classification technique.
In Section V we present an evaluation study for the
proposed techniques. Finally, in Section VI we present
the conclusions and our plans for future work.

II. RELATED WORK

The packet classification problem has been extensively
studied recently. The basic approach to packet classifica-
tion is to sequentially search the rule list until a match is
found. Although this approach is very efficient in terms
of memory, the scalability of this solution is generally
poor, as the search time is proportional to the length of
the longest path in the rule list. The main solutions to
improve the search times use various combinations of
one or more of the following: hardware-based solutions,
specialized data structures, geometric algorithms, and
heuristics.

Hardware-based solutions using Content Addressable
Memories(CAM) exploit the parallelism in the hardware
to match multiple rules in parallel. They are limited to
small policies because of cost, power and size limitations
of CAMs. Other hardware based solutions are described
in [17], but still limited number of rules. The policy rules
are structured as a trie, with a classification time O(B)
whereB is the total number of bits on all dimensions.
This value can still be exceedingly large (e.g., for the
5-tuple in IPv4,B = 104).

Aggregated Bit Vector (ABV) approach [2] solves the
problem withd independent lookups on one dimension,
followed by a combining phase. For each dimension, a
lookup is done using a trie, and returning a list of all
matching rules on that dimensions. The final result is
then computed by finding the rule with highest priority.
Because the amount of memory consumed for storing
the lists can be extremely large, ABV represents the list
using a compressed bit vector.

A wide variety of specialized data structures have been
used for fast packet classification. Srinivasan et al. [19]
build a table of all possible field value combinations
(cross-products) and pre-compute the earliest rule match-
ing each cross-product. Search can be done quickly by
doing separate lookups on each field, then combining the
results into a cross-product table followed by indexing
into the table. Unfortunately, the size of the cross-product
table grows significantly with the number of rules.

A geometric algorithm was proposed by Feldmann et
al. [6], introducing a data structure called Fat Inverted
Segment (FIS) Tree. FIS partitions the first dimension
with the endpoints of the projection of the rules on that
dimension. Each of the segments is then partitioned,
according to the remaining dimensions of the rules
covering each segment, into a number of ad dimensional
regions. To avoid an O(N2) explosion of the storage
requirements, thed dimensional regions are linked in
a Fat Inverted Segment Tree of bounded depth, and the
common partitions of the regions are pushed up in the
FIS tree. The main advantage of the FIS technique is
that it scales well with the number of filtering rules.

Work on decision-tree based classification algorithms
based on geometric cutting was introduced by Gupta
and McKeown [8] and Woo [21]. Both schemes build a
decision tree using local optimization decisions at each
node to choose the next bit or field to test. The paper
by Woo [21] goes one step ahead by using multiple
decision trees. While this may increase search time, it
can greatly reduce storage. Similarly, the Hierarchical
Cuttings (HiCuts) scheme described in [9] uses range
checks instead of bit tests at each node of the decision
tree.

3

Gupta and McKeown [8] proposed a heuristic ap-
proach called Recursive Flow Classification (RFC). One
advantage of RFC is that the various lookup stages
can be pipelined, so in a hardware implementation the
classifier can have a very high throughput. However, this
approach does not scale to medium or large number of
rules.

Although all previous work contribute significantly to
the advancement of packet classification research, their
main objective was to improve the worst-case matching
performance. Hence, they do not exploit the statistical
filtering schemes to improve the average packet matching
time. In addition, they mostly exhibit high space com-
plexity.

The related work closest to our approach is the one
proposed by Gupta [10]. By introducing statistical data
structures in optimizing packet filtering, this paper be-
came one of the most interesting foundation publications
in this domain. In this work, depth-constrained alpha-
betic trees are used to reduce lookup time of destination
IP addresses of packets against entries in the routing
table. The authors show that using statistical data struc-
tures can significantly improve the average-case lookup
time. As the focus of the paper is on routing lookup, the
scheme is limited on search trees of a single field with
arbitrary statistics. In addition, the paper provides no
further details on traffic statistics collection and dynamic
update of the statistical tree.

III. E ARLY TRAFFIC REJECTION

Firewall rules are often written as exceptions (i.e.,
accept rules) to the default deny rule for incoming traffic.
This might explain the research emphasis on optimiz-
ing the acceptance decision path in firewall filtering.
However, rejected packets might traverse long decision
path of rule matching before they are finally rejected by
the default-deny rule. This causes significant matching
overhead proportional to the number of rules in the
firewall policy. Although packets can be rejected by
intermediate deny rules in the policy, we focus on this
section on optimizing matching of traffic discarded due
to the default rule because it has more profound effect on
the performance of the firewall. In addition, optimizing
intermediate rule matching is also considered in Sec-
tion IV. In this section, we will describe a technique that
reduces the matching of discarded packets by dynami-
cally introducing an optimal set of early rejection rules in
firewall policy. Considering that the amount of rejected
traffic is usually less than the accepted traffic, our goal
is to select the minimum number of early rejection rules
that has the maximum discarding effect (i.e., covering the
discard address space in the policy) and they are adaptive

to characteristics of the recently discarded traffic. Special
consideration was given to allow for fast early rejection
with minimum on-line operations.

The address space of the traffic matching the default
deny rule (i.e., policy discard space) is obviously the
complement of the address space represented by all
preceding rules [11]. Intuitively, if a packet does not
match any of the field values common to all “allow”
rules, then this packet should be rejected as early as
possible to save any further matching through the policy.
Thus, the early rejection rules (RR) can be formed as
a combination of the common field values that cover
all rules in the policy. Considering that the number of
distinct field values is usually small relative to the policy
size (e.g., number of used destination ports is much less
than the number of rules), we can show that these rules
are more feasible to find. We will search in the firewall
policy for a combination of common field values such
that every rule uses at least one of these values. For
example, if all accept rules use as destination a certain
subnet or port number, then packets that do not have
this destination address, or destination port can be safely
rejected without any further matching.

Let us takeS as the set of policy rules, and letSj
k be

the set of all therules having in fieldfj the valuevk.
Definition 1: Let V (fj) = {vk|∃ a rule in the policy

that have the valuevk for field fj}, thenSj
k = {ri|f

ri

j =
vk, i = 1 . . . n, j = 1 . . . 5} where f ri

j represents the
value of fieldj in rule i.
Intuitively, Sj

k is the set of rules having in fieldfj the
same valuevk. The number of different sets (Sj

k) is equal
to the number of distinct values (

∑5

j=1
|V (fj)|) in all the

policy rules’ fields. The problem is to find a subset of
the Sj

k’s, such that each rule in the policy is a member
of at least one of them.

Definition 2: Let A represents the set of all possible
Sj

k, and letA′ ⊂ A represents a selection ofSj
k’s such

that
⋃

S
j

k∈A′ S
j
k = S.

This means that the set of rules covered byA′ represents
all the rules in the policyS.

Theorem 1:The problem of finding the set of field
values of minimum size such that each rule in the policy
contains at least one of these field values is an NP-
Complete problem.

Proof: The decision problem associated with this
optimization problem is stated as follows: Finding a set
of field value of size at mostK such that each rule in
the policy contains at least one of these field values.

The proof then follows in the two standard steps:
Step 1: Polynomial Verification of Certificates. Given

the solution to the problem we can verify that it correctly
covers the whole policy by taking each field value in the

4

alleged solution and mark down all rules that have this
field value. And at the end we perform a quick sweep
over the policy to make sure all rules are marked as
covered. The complexity of this naive algorithm can be
found to beO(KN), whereN is the policy size. How-
ever, we can have it with less complexity by carefully
removing the marked rules after each iteration or sorting
the rules by their field values (that will introduce an
extra parameter into the complexity expression which is
the number of fields specified, which is usually taken as
a constant; 4 or 5 is a typical value). The first algorithm
will be enough, knowing thatK is O(N) we have the
algorithm isO(N2).

Step 2: Reduction from a known NP-Complete prob-
lem. We can use the set cover problem (SCP) with
bounded element frequency (vertex cover if frequency
is only 2). Given a SCP instance:S = {e1, e2, . . . eN},
and S1, S2, . . . SK ⊆ S such that each elementei

can be a member of at mostd subsets (the bounded
frequency condition). We can solve this instance by an
algorithm for our original problem by the following
simple mapping: each elementei is a rule in the policy,
that makesS the policy as a whole. The subsetsSj are
the subsets of the policy rules having a common field
value vj in one of their fields. By solving for the best
(minimum) cover (or a cover of size no more thanK)
we obtained a solution for the SCP problem.

By Step 1 and 2, our problem of ”finding the covering
set of field values of minimum size” is an NPC problem.

Using a solutionA′ we can form a Rejection Rule
(RR), such that for everySj

k ∈ A′ there will be a
Rejection term (RT) that together compose RR. Hence,
we use RR andA′ interchangeably throughput this paper.

RR =
∧

S
j

k∈A′

(Pkt(fj) 6= vk) (1)

wherePkt(fj) is the value of fieldfj in the packet to
be inspected. For example, a typical rule can look like;

RR = (DPort 6= 80) ∧ (DPort 6= 20) ∧

(DAddr 6= 15.16.17.18) ∧ (Proto 6= UDP)

A. Rejection address-space based optimization

Because it is an NP-Complete problem; searching for
the minimum size solution is practically not feasible as
the policy size increases. In our specific environment,
we limit the size of the set cover to be small (e.g., 1-7
sets) as large set cover solutions will incur unbearable
overhead in the filtering of each packet.

We use two approximation algorithms to solve this
problem. The first one has an approximation ratio of1+
ln(| S |) [14], while the other uses relaxed integer pro-
gramming and results in anf -approximation ratio [12],
where f is the maximum number of subsets that any
element can belong to (that in our case will be 5 for the
basic form of firewall rules;<proto, srcIP, dstIP, srcPort,
dstPort>). The latter algorithm is better for almost all
policy sizes (50+ rules) as it gives better approximation
ratios, but we use both to help in generating a more
diverse set of solutions.

B. Dynamic rule selection

The set cover approximation algorithm generates a set
of A′

i to be used as early rejection rules. However, we do
not know yet how many and which ones that we should
use to achieve an optimal rejection solution in firewall
filtering. In this section we will show how we can address
both issues using both the policy information and traffic
statistics to determine the upper bound and the proper
set ofA′

i’s to be used as RR. It is intuitively clear that
the more Rejection rules (equivalently,A′

i’s), the more
likelihood to reject unwanted traffic as eachRR tend
to cover more policy discard space. So let us assume
for the sake of simplicity that allRR’s have the same
probability of rejecting a packet, and rejected traffic is
only rejected through the default rule (i.e., no traffic is
targeted to the deny rules within the policy). Now, takeδr

as the portion of traffic that will be early rejected usingr
RR’s, andδinf as the maximum percentage of the traffic
that can be early rejected. Then for the early rejection
rules to decrease the average number of comparisons,
the number of rejection rulesr should be governed by;

n

2
(1− δinf) + nδinf >

r

2
δr + (r +

n

2
)(1− δinf)

+ (r + n)(δinf − δr)

This leads to:
r <

2nδr

2− δr
(2)

The left term in the inequality represents the average
number of comparisons per packet without using early
rejection, while the first, second and third terms in the
right side of the inequality represent average cost of
rejection by the early reject rules, acceptance/rejectionby
the policy and rejection by the default rules respectively.

We can see that the bound onr keeps on increasing
for all values of δ, as long as added rules can reject
more packets. In the extreme case, where all the traffic
is illegitimate, we can have as many RR’s as double the
policy size (2n). This averages ton, which is the number
of rules to be checked anyway for each of the packets

5

Algorithm 1 Startup Phase
< S,A >← Convert(Policy Rules)
rmax = 2nδest

2−δest

i← 0
repeat

A′ ← Approx SetCover(S,A)
RR Set← Build Rules(A’)
i← i + 1

until i >= rmax or A′ is empty
sort(RRSet) by size, shorter first
r ← 1
Active RR list ← RR Set(r)

that were going to the default rule if early rejection was
not used. So, this implies that we can add extra RR’ to
optimize filtering as long as the bound is satisfied.

More analysis is needed to determine the effect of
adding a specific RR. Letα be the traffic portion
accepted by the policy, and after addingr early rejection
rules we haveδr, βr, andγr be the traffic portion rejected
by the RR’s, the policydenyrules, and the default rule
respectively. Now, we can state the average number of
comparisons/matching per packet after adding ther RR
as follows:

Ar = c.r(
δr

2
+ α + βr + γr) + n(

α + βr

2
+ γr) (3)

wherec is the relative evaluation cost of an RR which
is usually proportional to the number of terms included
in the rule. We also have∂δ/∂r > 0, ∂β/∂r, ∂γ/∂r < 0,
andα+βr + γr + δr = 1. Let△δr be the portion of the
total traffic that is rejected by therth RR. Then we can
simply show that

βr−1 + γr−1 = βr + γr +△δr (4)

To justify adding therth RR rule: Ar − Ar−1 < 0
must hold. Thus, using (3) and (4) we can derive the
following condition:

△δr

c
>

α+βr

2
+ γr

n
(5)

Alternatively, it can be written as

△δr >
c (1− δr + γr)

2n
(6)

to facilitate evaluation at run time according to the
type of statistics kept at the firewall. After each window
of time, the added rule can be evaluated based on (5)
or (6) to decide whether therth RR is to be used or
removed, as described in Algorithm 2.

Initially, we can add the RR’s in order of their length,
as shorter rejection rule are faster to evaluate and cover
more space than longer ones. As the traffic statistics

Algorithm 2 Dynamic Rule Selection

if △δr > c(1−δr+γr)
2n

then
Active RR list → rule r {Remove last rule, rule r}
r ← r − 1

end if
if |RR Set| > r then {More rules to be added}

r ← r + 1
Active RR list ← RR Set(r)

end if
sort ActiveRR list according to hit frequency

Algorithm 3 Early Rejection
Match Packet against ActiveRR list (w’ shortcut evaluation)
if packet matched any RRthen

reject packet
INCREMENT△δi of matched rule
INCREMENT δr

else
send packet to normal filtering process
INCREMENT γr, αr, or βr

end if
DECREMENT WindowExpired
if Window Expired = 0then

Call Dynamic Rule Selection
Window Expired =Window

end if

shows the effectiveness of each RR, this will be used
periodically to further enhance the operation by dynam-
ically selecting the most valuable early rejection rules.
Moreover, RT’s are sorted within each rule according
to their effectiveness; to optimize running time using
shortcut evaluation of each RR’s.

The three algorithms show the main operations of the
early rejection module. In Algorithm 1, the build up of
the candidate rejection rule list out of different solutions
to the set cover problem takes place. Algorithm 2 is
responsible of the periodic addition/removal of rules
according to the performance gain/loss of each rule.
Algorithm 3 shows the per-packet operation of filtering;
showing the location of early rejection relative to nor-
mal packet filtering, as well as the update of statistics
required for early rejection. Also, it calls the dynamic
rule selection algorithm every window of packets to re-
tune the active early rejection rule list. The use of a
pre-processing phase (Algorithm 1) for generating the
set cover is to avoid the calculation of new solutions
as we go at run time, which can be very computational
expensive to be performed real time.

6

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 10 100 1000 10000

P
er

ce
nt

ag
e

of
 tr

af
fic

Flow size (packets)

Bytes
Packets

Flows

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.01 0.1 1 10 100 1000

P
er

ce
nt

ag
e

of
 tr

af
fic

Flow duration (seconds)

Bytes
Packets

Flows

Fig. 1. CCDF distribution of (a) flow size, and (b) flow duration
for Internet traces at the University of Auckland.

IV. STATISTICAL OPTIMIZATION OF FILTERING

TREES

Although most of the previous work on filtering op-
timization was based on deterministic techniques, our
proposed scheme considers the statistical properties of
the traffic passing through the firewall to construct a
search tree that gives a near-optimal searching time. We
use an adaptive alphabetic tree that dynamically inserts
the most frequently usedfield valuesat the shortest
path in the search tree. This results in a significant
matching reduction for the most popular traffic. One of
the important traffic characteristics commonly observed
in our analysis of large number of Internet and private
traces is the skewness of the traffic matching in the
policy, which reveals that the majority of the inbound
or outbound packet is matched against a small subset
of all filtering field values that exists in the firewall
policy. What makes this technique even more attractive
is the fact that (1) traffic skewness property is unlikely to
change over a short period of time, and (2) the total num-
ber of different filtering field values is highly unlikely
to be large in a firewall policy, retaining a reasonably
shallow alphabetic tree. Thus, a good implementation of
this scheme can result in a significant performance gain
over the deterministic optimization techniques that use
static bounds, as explained in Section II.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1 10 100 1000

S
ke

w
ne

ss
 fr

om
 u

ni
fo

rm
 d

is
tr

ib
ut

io
n

Sampling period (sec)

src-ip
src-port

dst-ip
dst-port

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

C
or

re
la

tio
n

be
tw

ee
n

co
ns

ec
ut

iv
e

pe
rio

ds

Sampling period (sec)

src-ip
src-port

dst-ip
dst-port

Fig. 2. Analysis of the frequency of packet-header field values: (a)
skewness from uniform distribution, and (b) time correlation of the
distribution.

Our proposed technique can be summarized as fol-
lows. The matching frequency for all filtering rules in
the firewall policy is periodically calculated from traffic
statistics over intervals of time. These statistics are then
used to construct an alphabetic search tree for every
filtering field. The constructed trees for each field are
combined to obtain an optimal statistical matching tree
of all rules in the policy. Finally, the alphabetic tree
is updated/reconstructed periodically to match the most-
recent traffic characteristics. In this section, we will first
present our traffic trace analysis and then describe in
detail each one of these steps.

A. Locality of matching properties in firewall filtering

The behavior of Internet traffic retains several
characteristics that can be utilized in the optimization
of packet filters. In this section, we highlight some
observations and properties of Internet flows and packet
headers, and we briefly describe how these properties
can be useful in reducing the matching time in packet
filters. The traffic analysis was performed on several
Internet packet traces collected at the edge routers
of DePaul University and University of Auckland
networks [18]. The traces are stored as one-hour packet
header logs at different days of week and times of day,

7

each containing the header information for 3M to 10M
packets that reflect realistic network conditions.

1) Packet flow properties:Studying the statistics of
various Internet traffic traces, we observed a number of
properties for Internet flows.

From our analysis, Figure 1-(a) shows that about 60%
of the flows have 3 packets or less, while 20% have 10
packets or more. The figure also shows that the long
flows carry around 70% of the Internet traffic. Similarly,
Figure 1-(b) shows about 50% of the flows last 2
seconds or less, while 20% have last 10 seconds or
more. It also shows that the long-lived flows carry
around 50% of the traffic. Thus, these observations
clearly indicate that a small portion of the firewall
policy (rules) is used for matching a significant portion
of the traffic packets over a considerable amount of
time. We call this thelocality of flow matchingin
firewall filtering. Previous studies [16] have also shown
that while the majority of Internet flows have short
flow sizes, the considerable amount of Internet traffic is
constituted from the long flows. A similar observation
was also shown for the flow duration. As a result,
this shows that filtering optimization based on packet
frequency is not only useful for improving the overall
matching performance but also practical in most cases.

2) Packet field properties:In this study we analyze
the packet-header field values that occur in Internet
traffic traces. Studying the statistics of these traces,
we observed the following properties for the fields of
Internet packet headers.

Skewed field value frequencies:The field value fre-
quency is the number of packets that carry this field value
within a certain interval of time. The field frequency
distribution is said to be skewed if few field values
have high frequencies in comparison to the frequencies
of other values in the same time interval. To measure
this skewness we use information theory formulation
to quantify the Entropy of any given distribution [4].
The skewness factorSf of a filtering field f is a value
between 0 (for a non-skewed or uniform distribution)
and 1 (for a totally skewed distribution).Sf is defined
by the formula:

Sf = 1−

∑n
i=1

pi lg pi

lg n
(7)

where pi is the probability of field valuevi and it is
calculated as the ratio of the number of packets matching
vi to the total number of packet received. Alson is the
number of possible values of fieldf .

For each traffic trace, the packet-header field frequen-
cies and the skewness of the frequency distribution are
calculated for all field values over varying sampling time
intervals. We observed that the some fields values are
very highly skewed, while other fields have moderate
or low skewness. We also observed that the skewness
increases slowly when the calculation time interval is
increased. Figure 2-(a) shows the skewness of field value
frequency distribution of inbound traffic. This figure ba-
sically shows that observed values of the source port field
have a high skewness factor in the range 0.45-0.6, while
the destination address has moderate skewness range
of 0.2-0.5, and both the source address and destination
port have low skewness of about 0.2. We also call this
the locality of field-value matchingbecause it shows that
only small portion of the field values are used by the
majority of the traffic. Thus, it will be highly desirable to
place the field values of high skewness/locality as high as
possible in the search tree to reduce number of matching
for this traffic and eventually the overall packet filtering
time.

Time-correlated field value frequencies:To know
how long this skewness will last, we study the correlation
of the frequency distribution of packet field values over
two consecutive time intervals. The field frequency dis-
tribution is said to betime-correlatedif the frequencies
of the field value is similar over the two intervals. We
use thecorrelation factor Cf of field f as a value
between 0 (for an uncorrelated distribution) and 1 (for
a totally-correlated distribution), and it is calculated as
follows [5]:

Cf =

∑n
i=1

(pi − µp)(qi − µq)

n · σp · σq
(8)

wherepi is the probability of field valuevi in a certain
time interval, andqi is the probability in the following
interval. The quantitiesµp and µq represent the mean,
while σp andσq represent the standard deviation of the
probability distributions.

Using the traffic traces, we calculated the correlation
of the frequency distribution for varying time intervals.
We observed that some packet-header fields retain high
time correlation, while other fields have moderate to
low correlation. We also observed that the correlation
increases slowly with the increase of the time interval for
calculating the field frequencies. Figure 2-(b) shows the
time-correlation of the field value frequency distribution.
This figure shows that source port field has a high cor-
relation factor close to 1.0, while the destination address
and port have moderate correlation range of 0.7-0.9, and
the source address has low correlation of about 0.6.
Therefore, this shows that the field value skewness is

8

>

>

>

23

>

>

27

21

20-21

22

22 53

25-2723

>

53

80-88

>

>

53

>

27

22

22 23

20-21

53

80-88

>

21 25-27

23

(a) (b)

Fig. 3. Search tree for the destination port statistics in Table I:
(a) binary tree, and (b) alphabetic tree.

Field Value Statistics
dst port 25-27 0.11
dst port 23 0.01
dst port 53 0.19
dst port 80-88 0.60
dst port 20-21 0.08
dst port 22 0.01

.

TABLE I

EXAMPLE STATISTICS OF THE DESTINATION PORT FIELD.

a valid statistical property that is practically useful to
optimize matching against popular filtering field values
in the policy for a reasonable period of time.

B. Statistical matching tree

Although binary tree search gives as the worst case
search time aslg n wheren is the number of elements, it
does not take in consideration the non-uniform (skewed)
distribution property of the field values matching based
on the traffic characteristics as described in Section IV-
A. To exploit this property, a statistical search tree can
be built using the values of each filtering field in order to
minimize the average matching time. This tree basically
inserts values of higher occurrence probability (matching
frequency) at higher tree levels than the values with
less probability. This way, field values that commonly
exist in the traffic will exert less number of packet
matches in comparison to uncommon values, resulting in
a significant reduction in the matching of most popular
flows, reducing the overall average filtering time of all
flows.

Although the statistical-based tree matching may not
be in favor of less-frequently matched traffic, it still
improves the overall average filtering by significantly
reducing matching of most popular packets. The more
the skewness in the traffic distribution over field values,
the more the gain in the filtering performance. Even in
the worst case scenario when the traffic distribution is

uniform, our techniques cannot do worse than the binary
search as a lower bound, which we can argue that is
unlikely to occur for all the fields at the same time for
long time. Our analysis of large number of various traces
presented in Section IV-A supports this. In addition, we
will also show how this scheme can be adaptive to track
changes in the traffic characteristics over time.

C. Matching tree construction using alphabetic trees

There are several types of statistical search trees
that we can employ in our technique. We choose the
Alphabetic Search Tree [13] mainly because its con-
struction has low complexity when compared with the
Optimal Binary Search tree, and it also has less searching
overhead when compared to Huffman trees [15]. Optimal
alphabetic binary search trees have been studied for a
long time. The best time complexity, for building optimal
alphabetic binary trees is achieved by two algorithms:
Hu-Tucker [13] and Garsia-Wachs [7]. The resulting tree
is an optimal alphabetic binary tree and the complexity
of building the tree is O(n lg n).

The alphabetic tree stores field values in the leaves
based on given weights such that the inherent order
of the stored values is preserved. So, at each internal
node we can tell that the left subtree contains nodes that
have values less than those at the right hand-side. This
added constraint of enforcing an order on the placement
of values in the tree enables the matching algorithm to
branch left or right based on the value extracted from the
packet as in the case of binary search trees and eliminates
the need for preprocessing of the packet field values.

Figure 3-(a) shows the normal balanced binary search
tree for the destination port filtering field values given
in Table I. The corresponding statistically optimized tree
is shown in Figure 3-(b). Using the field statistics given
in the table, the average number of matches is 3.8. The
average matching is reduced to 2.8, which is above 26%
reduction from the binary tree case. Notice that every
node in the binary search tree contains non-overlapping
values or range of values. The firewall policy can be
easily pre-processed to resolve any conflict between
overlapping values of the same filtering field [3].

Alphabetic tree aggregation:Since packet matching
is performed on multiple fields (5-tuple), multiple al-
phabetic search trees are constructed to correspond to
source IP, source port, destination IP and destination
port. The four trees are combined together to form a
statistical matching tree implementation based on alpha-
betic trees. We propose two approaches to achieve this
goal: cascaded-search and parallel-search trees.

In the cascaded search approach (Figure 4-(a)), we
start by building the top-level alphabetic tree using the

9

F
1

F
2

F
3

F
4

F
1

F
3

F
2

F
4

(a)
(b)

Fig. 4. Aggregate matching tree structure for (a) cascaded matching,
(b) parallel matching.

Algorithm 4 BuildTree (S, F)
S: Set of rules
F: Set of filtering fields
if |S| < limit then

return S
end if
for all fj ∈ F do

for all vk ∈ V (fj) do
C(vk) =

∑

ri∈S
j

k

C(ri)

end for
CalculateSfj

end for
Choosefbest : Sfbest

≤ Sfj
∀fj ∈ F

T = Construct Alphabetic Tree forfbest

for all vk ∈ V (fbest) do
T’ = BuildTree(Sfbest

k , F − {fbest})
T.vk ← T ′ {Saving a pointer to sub-tree at leaf node}

end for
return T

filtering field of highest skewness. The field skewness
is calculated based on (7) using the number of packets
matching each field value during a specific time interval.
For each field valuevk, the packet count is collected by
summing the number of packets hitting all the rules that
carry this value. This information is normally recorded
by filtering devices and are readily available at no extra
processing cost. Each leaf in the top-level tree holds the
field value, as well as a pointer to another alphabetic
subtree built recursively using values of the field that has
next highest skewness considering only the rules that use
this field value. As shown in Algorithm 4, the cascaded-
search tree construction continues in all leaves/values
until trees for each field are constructed (i.e., 4 levels
of cascaded trees if we exclude the protocol field) to
represent the entire set of rules in the firewall policy. It
is important though to notice that it may not be necessary
to build a tree in each level particulary if the number of
field values remaining is too small to gain a benefit over
the linear or binary search.

Theorem 2:Given a policy ofn rules, and a constant
number of filtering fields. The construction of the cas-

caded matching tree structure using Algorithm 4 has a
time complexity ofO(n. lg(n)).

Theorem 3:Given a policy ofn rules, and a constant
number of filtering fields. The cascaded matching tree
structure has a space complexity ofO(n).

Proof: The intuition behind both theorems is that
the sum of the number of leaves of the trees at any level
l is bounded by the number of rules. This is attributed to
the fact that each leaf represents a unique combination
of field values from the top level down to levell, and the
number of such combinations can not exceed the total
number of rules in the policy. Thus, the total size of
internal and external nodes in all the trees at any given
level cannot exceed2n. Also, the time complexity of
building all the trees at a certain level cannot exceed the
cost of building a single tree with the size of all trees
combined (O(n. lg(n))). The total space/time complexity
is the complexity of a single level multiplied by the
number of levels (fields). Since the number of filtering
fields is a constant, the space complexity isO(n), and
the time complexity isO(n. lg(n)).

To prove the above intuition formally: For any given
field fj , the set of field values is bounded by the number
of rules (i.e., |V (fj)| ≤ n). By building the cascaded tree
structure, we will have a set of trees each contributing
with a certain number of leaves. At levell, we have
Ll leaves, each leaf might be followed by one more
tree, or a simple short list of rules. At the first level,
we have a single tree based on a chosen field (with
minimum entropy). The number of leaves of this initial
tree is bounded by the maximum size of field values
(i.e., L1 ≤ n). Each field value will receive a subset of
the rules to further process. So the maximum number
of leaves in each of the trees of this next level is
bounded by the size of its rule subset:n1, n2, . . . nm.
Moreover, these subsets’ sizes sum up to a value less
than n (Ll =

∑

ni ≤ n). It is a known fact that
∑

g(ni) < g(n) ifg(.) = ω(x). Therefore, we deduce
that the building time of all the trees in the second level
is O(n lg(n)). Having this fact valid for all successive
trees (to a maximum of 5 levels corresponding to the
number of fields), we conclude that the overall building
time is O(dn lg(n)) = O(n lg(n)) for a constantd. For
the space complexity we follow a similar argument, but
regarding the size of each of the trees on any level. We
know that the number of nodes in anyni leaves tree will
be2ni−1 nodes (internal and external). Thus the overall
space complexity will beO(dn) = O(n) for a constant
number of fields.

As an alterative approach, we also developed a parallel
tree structure (Figure 4-(b)) that constructs an alphabetic
tree for every filtering field. All the tress, four in our case,

10

Algorithm 5 Cascaded-tree filtering
Ti ← Top-level search tree
ref ← Lookup H in treeTi

if ref is a tree for fieldfj then
Ti ← ref
fi ← fj

Goto 2
else if ref is a list L then

rule← Lookup H in list L
if rule 6= nil then

action← rule[action]
else

action← DEFAULT
end if

end if

can be searched in parallel and the matching results are
then combined to produce the final matching results, as
discussed in Section IV-D. The parallel tree structure
has the advantage of executing multiple searches con-
currently particularly on a network processor or multi-
threaded hardware. However, the cascaded tree structure
always gives less number of matches particulary if
the skewness factor varies significantly between of the
different fields. We discuss this issue in more detail in
our evaluation experiments in Section V.

D. Policy matching algorithms using alphabetic tree

After constructing the search trees, we proceed with
the packet matching process. The matching operation
is performed for each packet header field against the
list of field values in the filtering rules. In order to
perform the search on multiple fields (5-tuples), we have
two approaches depending on the underlying tree search
structure as follows.

Cascaded-tree matching:In this approach, we use
the cascaded search tree described in Section IV-C. The
algorithm starts with looking up the packet header value
in the top-level search tree of the highest skewness field.
As a result, the matching leaf node returns a reference to
either a search subtree for another field or a list of rules
that carry the field value in this leaf. In the former case,
the referenced tree is searched recursively for a matching
field value. In the latter, the list is linearly searched for
a matching rule. Once a rule matches the packet, the
corresponding action is returned, otherwise the search
continues till the end of the list. If no matching rules are
found, the default filtering action is returned.

Although the algorithm involves linearly searching
a list of rules at the final lookup stage, the matching
operations are very limited because the list contains only
a small number of rules as discussed in Section IV-C.

Algorithm 6 Parallel-tree filtering
for each field fi in set of optimized fieldsdo

rules[fi]← Lookup H[fi] in treeTfi

end for
candidates← φ
for each list Lj in rules do

candidates← candidates ∩ Lj

if candidates = φ then
action← DEFAULT

end if
end for
rule← Lookup H in candidates
if rule 6= nil then

action← rule[action]
else

action← DEFAULT
end if

Parallel-tree matching:In this approach, the parallel
search tree described in Section IV-C is used. Packet
lookup is performed against each of the field search trees
separately. As a result, we obtain for each field a set
of candidate rules that contain the corresponding field
value. Then, the rule that matches the packet is found
by getting the intersection between these sets of rules.
If the intersection contains more than one rule, the rule
with highest order (priority) is selected. If no rules are
common, then the default action is returned.

E. Tree reconstruction and updates

After the alphabetic trees are constructed for eligible
fields, they are used for matching upcoming packets. The
reduction in matching is maximal when the upcoming
traffic distribution over field values exactly matches
the distribution when the tree has been constructed.
However, this is not very likely to happen since as time
passes, some flows start and others terminate, leading
to accumulative changes in the traffic distribution over
field values. Therefore, using an alphabetic tree with
very old field value probabilities may result in inef-
ficient matching that yields more average search time
than regular binary search. To avoid this situation, we
impose two types of rectification to the alphabetic tree;
performance triggered updates, and periodic mandatory
updates. The first update is performed more frequently
and basically rebuilds the tree when traffic dynamics
lowers the performance (increases average number of
comparisons) below (above) a certain threshold. The
second rectification is executed at larger intervals and
simply disposes outdated alphabetic trees, and constructs
more effective ones based on current statistics.

11

Performance triggered updates:An accurate measure
for the effectiveness of using the alphabetic tree to search
the values of a certain fieldf is theoptimization efficacy
εf . The quantityεf is defined as the actual reduction in
matching as compared to binary search when the current
traffic is matched against an alphabetic search tree built
using the traffic statistics collected in the previous time
interval. Mathematically,εf is given by the following
formula:

εf = 1−

∑n
i=1

qi lg pi

lg n
(9)

whereqi is the probability of field valuevi in the current
time interval, andpi is the probability of this value in
the preceding interval.

Although this formula accurately estimates the match-
ing gain, its calculation is very expensive to be performed
at runtime for every packet. Another lightweight measure
that gives very close average results is the exponential
moving average of the matching gainε.

εi = (1− ω)εi−1 + ωgi wheregi =
hi − lg n

lg n

εi = (1− ω)εi−1 +

(

ω

lg n

)

hi − ω (10)

εthr = τεopt (11)

wherehi is the height (i.e., number of comparisons)
of the destination leaf of packeti, gi is the gain over
binary search for packeti. After a packet is matched
using the alphabetic tree, ifεi drops below a certain
thresholdεthr, the alphabet search tree is disposed for
this field and a new tree is built.εthr is calculated as
a ratio τ of the optimal gainεopt that the tree was
built to achieve. Notice that these expressions involve
only inexpensive addition and multiplication operations.
Figure 11 in section V-B shows these updates and their
effect on the performance of packet matching.

Periodic mandatory updates:To avoid extended peri-
ods of mediocre performance that is just above the re-
building threshold, a periodic update is performed every
constant (and relatively long) intervals of time. Using the
latest traffic statistics, a new matching tree is constructed
using fresh field value statistics in order to boost back
the matching performance close to its optimum level.
Since this type of tree update is mandatory, the update
period should be determined based on the computational
capacity of the filtering device. A reasonable update
period that suits common firewall devices could be one
hour.

Policy Size Acceptance Average Opt. number Gain
(approx) Rate (α) △δr of RR’s

500 75% 3% 30 7.3%
500 50% 3% 30 24.7%
500 50% 7% 36 34.9%
1000 85% 5% 33 9.20%
1000 75% 5% 44 18.3%
1000 50% 5% 58 37.8%
230 25% 5% 33 32.1%
230 50% 5% 27 18.8%
230 75% 5% 12 3.60%
570 25% 7% 41 47.8%
570 50% 7% 47 33.2%
570 75% 7% 27 15.2%
570 85% 7% 21 7.1%

TABLE II

EFFECT OF EARLY REJECTION ON AVERAGE NUMBER OF

COMPARISONS

Policy Number of Accepted
Rules Traffic (α)

Policy 1 1000 50%
Policy 2 1000 75%
Policy 3 200 50%

TABLE III

TEST POLICIES USED FOR GENERATING THE PLOTS INFIGURE 5

V. PERFORMANCE EVALUATION

A. Evaluation of early rejection

In this section, we evaluate the performance of the
early rejection technique. To test the performance gain of
using early rejection, we used several real and generated
policies with varying traffic behavior. The traffic was
injected to the policy, and the number of matches was
calculated.

Table II shows the gain of using early rejection rules
on the average number of matches (i.e., against policy
rules or rejection rules) using different policies; real and
generated (In Section V-B, we describe our technique of
generating policies). We injected tailored traffic that has
different percentages of accepted versus rejected flows,
and also varying matching probability with the rejection
rules to study its effect. The gain was high enough in
many cases which manifests a noticeable performance
increase in the firewall operation. The results were very
encouraging in all test cases, but when very small-
sized policies were used, the results were varying widely
depending on the current pattern of traffic used.

In the next experiment, we studied the effect of
how much of the traffic is rejected by the default rule

12

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1 10 100 1000

R
el

at
iv

e
m

at
ch

in
g

re
du

ct
io

n

Tree update interval (sec)

src-ip
src-port

dst-ip
dst-port

-0.2

0

0.2

0.4

0.6

0.8

1 10 100 1000

R
el

at
iv

e
m

at
ch

in
g

re
du

ct
io

n

Tree update interval (sec)

src-ip
src-port

dst-ip
dst-port

Fig. 6. The reduction of packet matching relative to binary search for each filtering field
on the firewall (a) inbound interface, (b) outbound interface.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

R
el

at
iv

e
m

at
ch

in
g

re
du

ct
io

n

Time of day (hours)

srca
srcp
dsta
dstp

Fig. 7. Relative matching reduction for
each field for different times of day

0

5

10

15

20

25

30

35

40

45

0 0.2 0.4 0.6 0.8 1

G
ai

n

Percentage of denied traffic reaching default rule

Policy 1
Policy 2
Policy 3

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

O
pt

im
al

 n
um

be
r

of
 R

ul
es

Percentage of denied traffic reaching default rule

Policy 1
Policy 2
Policy 3

Fig. 5. Early rejection (a) performance gain, and (b) the number of
Rejection Rules for three policies with varying percentage of default
rule traffic.

versus policy deny rules. Intuitively, the more the traffic
reaching the default rule the more successful the early
rejection technique will be. This was verified clearly by
injecting traffic tailored with different portions targeted
to the default rule. Figures 5 show the gain as it increases
when the portion that can reach the default rule increases
from 0% to 100%. As RR’s are added, the traffic reach-
ing the default rule decreases which increases the gain
of adding such early rules. These results were obtained
using three policies and associated traffic as shown in
Table III. Taking into consideration the percentage of
the accepted traffic, we can see that the achieved gain
in performance was not far from the optimal gain. For

example, inPolicy 1, the gain has reached 41% where
the optimum is 50% which can only be achieved if it was
possible to early reject all the traffic with no overhead
of early rejection rules.

B. Evaluation of adaptive statistical filtering

In this section, we evaluate the performance of the
alphabetic tree filtering technique. We use real-life
packet traces obtained from the NLANR project [18].
Based on the traffic flow information, we generated
filtering rules to handle inbound and outbound traffic
to the network. For each filtering field, we use 256
different values extracted from the packet header
information in the trace. Different filtering rules are
composed by randomly mixing and matching different
field values in order to generate a total of 2000 rules.
The generated policy typically resembles medium sized
firewall rules existing in real firewall policies [22].
These filtering rules are used to study the effectiveness
of our proposed technique. We measure the packet
matching performance by evaluating the reduction in
the number of field matches relative to balanced binary
search tree instead of using the absolute number of
matches. Since binary search trees require a constant
number of matches (8 in our policy) to lookup any
field value, the relative reduction in matching is directly
proportional to the actual number of matches. However,
relative match reduction has the advantage of being
normalized, making it more suitable for observing and
studying the performance of our technique.

1) Optimization effectiveness for individual filtering
fields: In this experiment, for each individual filtering
field, we evaluated the average relative match reduction
when using our technique during various tree update
intervals. The traffic used in the experiment is collected
from the inbound firewall interface on a weekday be-
tween 12:00pm and 12:59pm. The results are presented
in Figure 6.

13

We observe that our technique outperforms the binary
search for certain field types, but very close to binary
search for other fields. For inbound traffic in Figure 6-(a),
applying our technique to the source port field resulted
in 40% to 60% gain over binary search, while for the
destination address the gain varied from 10% to 40%
depending on the length of the tree update interval. On
the other hand, the destination port and source address
performance was almost similar to the binary search.
Similarly, for outbound traffic in Figure 6-(b), the highest
performance gain was (40%-60%) for the destination
port field, and (10%-20%) for the source address. How-
ever, the source port and destination address did not show
any significant gain.

Another observation is that increasing the tree update
interval improves, but slowly, the average match reduc-
tion. However, an over-extended update interval does not
significantly improve the matching gain. This is observed
in the same figure, where the source port matching gain
increases from 40% to 54% when the update interval is
increased from 1 to 100 seconds, however, increasing the
period 10 times results in only 6% increase in matching
gain. These results can be attributed to the fact that a
longer update interval gives more accurate statistics of
field values, while extending that interval adds only a
little more information. The collected statistics is closely
coupled with the Internet flow dynamics characterized
by flow lifetimes of less than 10 seconds as shown in
Figure 1.

In another experiment, we recorded the relative match-
ing reduction for different filtering field types during a
full weekday interval between 12:00pm and 12:59pm.
The results for the experiment are shown in Figure 7. As
previously noted, we observed that at most two filtering
fields sustain a high degree of skewness simultaneously,
which improves the filtering efficiency throughout most
of the day. Another important observation is that the
highly search effective fields change with time of day.
For example, during rush hours (8:00am-4:00pm), the
source port and the destination address are the most
effective fields, while at late night (10:00pm-4:00am) the
destination port is more effective. This emphasizes the
importance of dynamically choosing the most effective
(skewed) filtering field on tree updates.

2) Optimization effectiveness for filtering policy:In
this experiment, we evaluate the overall average relative
reduction in packet matching for the inbound filtering
policy using our technique with varying tree update
interval. The traffic used in the experiment is collected
on a weekday between 12:00pm and 12:59pm. The
experiment is performed for the both the cascaded and
parallel search implementations.

Figures 8-(a) and 8-(b) show that, using our technique,
the average relative match reduction is very close to
the optimal case, when the field value statistics in a
given interval exactly matches the statistics used in
the previous interval to build the alphabetic tree. The
deviation from the optimal case is due to the fact that
the field value statistics are constantly changing with
the Internet traffic dynamics. We also observe that,
similar to individual fields, the average overall relative
match reduction increases logarithmically with the tree
update interval, while the variance decreases. The highest
observed average relative match reduction measurements
are 0.5 and 0.4 with a 400s update interval for cascaded
and parallel search respectively. Beyond this update
interval, the match reduction average and variance are
almost constant.

To study how frequent our technique achieves differ-
ent performance gain levels, we provide a cumulative
statistics of the number of measurements versus the
relative match reduction in Figures 9-(a) and 9-(b). For
example, the plots show that, for 100s update interval,
90% of the measurements reflect better than 0.4 and 0.3
relative matching gain in the cascaded and parallel search
respectively.

Figures 10-(a) and 10-(b) show the performance of
our techniques with different tree update intervals for
an extended period of time from 12:00am to 11:59pm
on a weekday. It is clear from this figure that the
relative matching gain does not persist at a specific
level for a long period of time. The maximum gain is
achieved during day hours where fast filtering is highly
needed, due to the existence of a large traffic volume
that consequently creates significant skewness in the
field value statistics. During evening and night hours,
the traffic flow is much less, hence a reduced degree
of skewness as well as in the relative match reduction.
The observations regarding the tree update interval are
consistent throughout the entire day period with our
observations for the one hour interval.

In all these experiments, the parallel tree search
consistently resulted in less match reduction than the
cascaded search. This can be explained in the context of
data structure sizes used in both cases. In the cascaded
search, the top-level tree provides the smallest number of
matches, while the lower-level cascaded trees only add a
relatively small number of matches to that. In the parallel
search, the effective performance is determined by the
largest number of matches needed by any of the search
trees. In our experiment, this number turns out to be
significantly larger than the smallest number of matches.
This is because there is a large difference between the
skewness of the mostly skewed field and the next one.

14

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1 10 100 1000

R
el

at
iv

e
m

at
ch

in
g

re
du

ct
io

n

Tree update interval (sec)

measured
optimal

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1 10 100 1000

R
el

at
iv

e
m

at
ch

in
g

re
du

ct
io

n

Tree update interval (sec)

measured
optimal

Fig. 8. Average optimal and measured rela-
tive matching reduction with varying update
interval for (a) cascaded search, (b) parallel
search.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

P
er

ce
nt

ag
e

of
 m

ea
su

re
m

en
ts

Relative matching reduction

1
4

10
40

100
200

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

P
er

ce
nt

ag
e

of
 m

ea
su

re
m

en
ts

Relative matching reduction

1
4

10
40

100
200

Fig. 9. Cumulative ratio of measurements
greater than different matching reduction
for (a) cascaded search, (b) parallel search.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

R
el

at
iv

e
m

at
ch

in
g

re
du

ct
io

n

Time of day (hours)

10
20
40

100
200

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

R
el

at
iv

e
m

at
ch

in
g

re
du

ct
io

n

Time of day (hours)

10
20
40

100
200

Fig. 10. Measured matching reduction
for a full day interval with different update
intervals for (a) cascaded search, (b) parallel
search .

Therefore, if the skewness is very similar for all fields,
the parallel search would have surely outperformed the
cascaded search.

3) Adaptive tree updates:In this experiment, we
closely examine the dynamics of the adaptive search
tree update mechanism during a one hour interval on
a weekday from 12:00pm to 12:59pm. The field value
statistics are collected in the first 20 seconds, then the
matching efficacy of the most skewed field (source port)
is calculated periodically every 20 seconds based on
the formulas in Section IV-E. For each interval, the
search tree efficacyε is evaluated, and the weighted
moving average of the tree efficacyε is updated. The
alphabet tree is dynamically reconstructed whenever the
average tree effectiveness deviates significantly from the
optimal depth (τ = 0.2). Figure 11 shows the results of
this experiment with tree updates indicated by the solid
triangular marks.

The graph shows the average tree efficacy is updated
smoothly at every tree update interval, thus ignoring
sudden short-term decrease in the instantaneous match-
ing efficacy. When the matching efficacy trend sustains
a continuous decline, the average efficacy falls below
the designated threshold and the tree is reconstructed
based on the most recent statistics. Tree updates are
computationally intensive and should be performed only
when crucially needed. The frequency of tree updates
are tightly coupled with the deviation thresholdτ and
the averaging smoothing factorω. Our study of various

settings of these parameters show that, during rush hours,
our adaptive technique reconstructs the tree only 2-5
times in an hour whenω = 0.2 andτ = 0.2. This incurs
minor amortized overhead throughout the full interval in
which the alphabet tree is utilized.

VI. CONCLUSION

The Packet classification optimization problem has
received the attention of the research community for
many years. Nevertheless, there is a manifested need
for new innovative directions to enable filtering devices
such as firewalls to keep up with high-speed networking
demands. This paper addresses two important problems
related to packet filtering that are not yet thoroughly
explored in research: (1) early rejection of unwanted
packets, and (2) optimizing packet filtering based on traf-
fic statistics. The paper presents techniques, algorithms
and evaluation study to tackle each problem effectively.

As the size of a firewall policy grows, the effect
of discarded packets by default-deny rule become in-
creasingly harmful. we propose a novel technique that
introduce a minimal overhead on the firewall processing
to allow rejecting the maximum number of these packets
as early as possible, thereby reducing the matching time
significantly. We use an approximation algorithm off-line
to generate a set of near-optimal solutions based on the
firewall policy. Each one of these solutions represents
an early rejection rule to be inserted at the beginning

15

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 500 1000 1500 2000 2500 3000 3500

R
el

at
iv

e
m

at
ch

in
g

re
du

ct
io

n

Tree lifetime (sec) with 20 sec update interval

WMA
tree rebuild

Fig. 11. Relative matching reduction the source port during one
hour interval

of the policy to discard traffic intended for the default-
deny rule. Then, we use a dynamic algorithm to select
the early reject rule set that results in a minimum filtering
cost based on the current traffic statistics. Our early
rejection technique shows a matching reduction of19%
when the discarded traffic is as low as25% of the total
traffic, and 50% when the total discarded traffic is as
high as75%. The number of added early rejection rules
is relatively small:4%− 10% of the size of the original
firewall policy.

For the second problem, we first show that the
matching-frequency of field values in firewall rules is a
profound property to utilize in statistical packet match-
ing. We use this property to construct an aggregate
alphabetic trees that is adaptive to changes in the traffic
characteristics while considering the tree maintenance
cost. We also show that for the aggregate cascade tree
structure the space complexity is bounded byO(n), and
computational complexity isO(n lg n). We can argue
that using statistical alphabetic filtering tree guarantees
obtaining near-optimal average matching time if the
traffic statistics get stable over time. Therefore, this paper
addresses key issues related to this problem including
identifying practically useful statistical properties, build-
ing an optimal statistical filtering tree over multiple fields
for single and multi-threaded matching implementations,
and dynamic tree update based on recent statistics. Our
evaluation of the statistical filtering tree approach using
the traffic traces shows that, during day hours, with
200 sec update interval, the cascaded tree achieves45%
average relative gain, while the parallel tree achieves
35%. However, during the evening hours, the cascaded
tree achieves only20%−30%. On the other hand, the tree
reconstruction keep the relative gain close to optimal,
while being infrequent (about 2-5 times/hour).

The implementations of both techniques are sim-
ple and lightweight. The statistics collection is simple

calculation (e.g., counter increments) based on easily
obtainable information from well-known utilities like
Netflow [20].

REFERENCES

[1] E. Al-Shaer and H. Hamed. Discovery of policy anomalies in
distributed firewalls. InIEEE INFOCOM’04, March 2004.

[2] F. Baboescu and G. Varghese. Scalable packet classification. In
ACM SIGCOMM’01, 2001.

[3] F. Baboescu and G. Varghese. Fast and scalable conflict
detection for packet classifiers.Computer Networks, 42(6),
2003.

[4] Thomas M. Cover and Joy A. Thomas.Elements of Information
Theory. John Wiley & sons, 1991.

[5] A. L. Edwards. An Introduction to Linear Regression and
Correlation. W. H. Freeman and Co, San Francisco, 1993.

[6] A. Feldmann and S. Muthukrishnan. Tradeoffs for packet
classification. InIEEE INFOCOM’00, March 2000.

[7] A. Garsia and M. Wachs. A new algorithm for minimum cost
binary trees.SIAM Journal on Computing, 6(4):622–642, 1977.

[8] P. Gupta and N. McKeown. Algorithms for packet classification.
IEEE Network, 15(2):24–32, 2001.

[9] P. Gupta and N. McKeown. Packet classification using hierar-
chical intelligent cuttings. InInterconnects VII, August 1999.

[10] P. Gupta, B. Prabhakar, and S. Boyd. Near optimal routing
lookups with bounded worst case performance. InIEEE
INFOCOM’00, 2000.

[11] H. Hamed, E. Al-Shaer, and W. Marrero. Modeling and
verification of IPSec and VPN security policies. InIEEE
ICNP’05, Nov. 2005.

[12] D.S. Hochbaum. Approximation algorithms for the set covering
and vertex cover problems.SIAM Journal on Computing, pages
555–556, 1982.

[13] T. C. Hu and A. C. Tucker. Optimal computer search trees
and variable length alphabetic codes.SIAM Journal on Applied
Mathematics, 21:514–532, 1971.

[14] D. S. Johnson. Approximation algorithms for combinatorial
problems. InSTOC ’73: Proceedings of the fifth annual ACM
symposium on Theory of computing, pages 38–49, 1973.

[15] D. Knuth. Sorting and Searching, volume 3 ofThe Art of Com-
puter Programming. Addison-Wesley, Reading, Massachusetts,
second edition.

[16] K. Lan and J. Heidemann. On the correlation of internet flow
characteristics. Technical Report ISI-TR-574, USC/ISI, 2003.

[17] A. J. McAulay and P. Francis. Fast routing table lookup using
CAMs. In IEEE INFOCOM’93, March 1993.

[18] Passive Measurement and Analysis Project, National Labora-
tory for Applied Network Research. Auckland-VIII Traces.
http://pma.nlanr.net/Special/auck8.html, December 2003.

[19] V. Srinivasan, Subhash Suri, and George Varghese. Packet
classification using tuple space search. InComputer ACM
SIGCOMM Communication Review, pages 135–146, October
1999.

[20] Cisco Systems. Netflow services solutions guide.
http://www.cisco.com, Oct. 2004.

[21] Thomas Y. C. Woo. A modular approach to packet classifi-
cation: Algorithms and results. InIEEE INFOCOM’00, pages
1213–1222, March 2000.

[22] A. Wool. A quantitative study of firewall configuration errors.
IEEE Computer, 37(6):62–67, 2004.

