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Abstract— Packet filtering plays a critical role in the allow) matches traffic destined to subnet 140.192 and
performance of many network devices such as firewalls, TCP destination port 23 only. A firewall policy consists
IPSec gateways, DiffServ and QoS routers. A tremendous of N rulesRy, Ro, ..., Ry. Since any packet may match
amount of research was proposed to optimize packet _filf[er_s. multiple rules in the policy, based on the rule ordering,
However, most of the related works use deterministic y,o fist matching rule is given the highest priority. If
techniques and do not exploit the traffic characteristics . .

a packet does not match any of the rules in the policy,

in their optimization schemes. In addition, most packet T .
classifiers give no specific consideration for optimizing then it is discarded because the default rule (last rule) is

packet rejection, which is important for many filtering assumed to be deny [1].
devices like firewalls. With the dramatic advances in the network/link speed,
Our contribution in this paper is twofold. First, we firewall packet filtering must be constantly optimized to
present a novel algorithm for maximizing early rejection of - cope with the network traffic demands and attacks. This
Second, we present a new packet filtering optimization “allow” as well as “deny” packets. In fact, discarded
technique that uses adaptive statistical search trees to . o
packets might cause more harm than others if they are

utilize important traffic characteristics and minimize the .
average packet matching time. The proposed techniques rejected by the default-deny rule as they traverse a long

timely adapt to changes in the traffic conditions by per- Matching path. This problem is even more critical when
forming simple calculations for optimizing the search data application-level filtering is used. Thus, efficient yet
structure. Our techniques are practically attractive be- easy to implement packet filtering techniques are highly

cause they exhibit simple-to-implement and easy-to-depfo crucial for successful deployment of traffic filtering
algorithms. Our extensive evaluation study using Internet technologies on the Internet.

traces shows that the proposed techniques can significantly |4 the first part of this paper, we propose a tech-

minimize th_e packet filtering time with reasonable memory nique that analyzes the firewall policy rules in order to
space reqmrements. . .
construct a set of rules that can reject the maximum
number of unwanted packets.g(, discarded by the
|. INTRODUCTION policy rules) as early as possible. This is an NP-complete
Packet classification is a critical component that deroblem and thus we used an approximation algorithm
termines the performance of many network deviceshat pre-processes the firewall policy off-line and gener-
including firewalls, IPSec gateways, Intrusion Detectioates different near-optimal solutions. However, the most
Systems, DiffServ and QoS routers. The main tasippropriate solution that incurs the least overhead cost
of packet filters or classifiers is to categorize packeits dynamically selected based on the network traffic
based on a set of rules representing the filtering poligtatistics.
The information used for classifying packets is usually The second part of this work is highly motivated by the
contained in distinct header fields in the packet, whidhternet traffic properties that were observed in our study
are protocol field, source IP, source port, destination I, this paper and addressed by other researchers [16]
and destination port in IPv4. Each filtering rukeis an as well. Our study of many Internet and private traces
array of field values. A packe® is said to match a rule shows that the major portion of the network traffic/flows
R if each header-field o matches the correspondingmatches a small subset of the field values in the firewall
rule-field of R. In firewalls, each ruleR is associated rules. We also observed that this “skewness” in traffic
with an action to be performed if a packet matches dastribution is likely to stay for time intervals that are
rule. These actions indicate whether to block (“deny3ufficient to make such skewness important to consider
or forward (“allow”) the packet to a particular interfacein packet filtering. We therefore propose using statistical
For example, a filtering rul&=(TCP, 140.192.*:23, *:*, search trees based on the matching-frequency of different



field values in the policy, as calculated from the traffic. Hardware-based solutions using Content Addressable
The ultimate tree is a combination of alphabetic treédemories(CAM) exploit the parallelism in the hardware
optimized on each field-level to consider the frequendyg match multiple rules in parallel. They are limited to
distribution of different field values. We presented twemall policies because of cost, power and size limitations
tree structures: near-optimal cascaded tree structure ddICAMs. Other hardware based solutions are described
single-threaded processing, and parallel tree structurre ih [17], but still limited number of rules. The policy rules
network processor platforms. Both the early rejection arde structured as a trie, with a classification timeBp(
the statistical search tree algorithms exhibit lightweighvhere B is the total number of bits on all dimensions.
implementations and require no special support in firghis value can still be exceedingly large.q, for the
walls. They can also be generalized for other filtering-tuple in IPv4,B = 104).

devices such as IPSec and Intrusion Detection SystemsAggregated Bit Vector (ABV) approach [2] solves the

Packet filtering optimization has been studied exteproblem withd independent lookups on one dimension,
sively in the research literature [8]. However, many dbllowed by a combining phase. For each dimension, a
the current packet classification techniques exploit theokup is done using a trie, and returning a list of all
characteristics of filtering rules but they do not considenatching rules on that dimensions. The final result is
the traffic behavior in their optimization schemes. Béhen computed by finding the rule with highest priority.
ing deterministic, these techniques guarantee an uppecause the amount of memory consumed for storing
bound on the packet matching time. On the other haritie lists can be extremely large, ABV represents the list
our statistical matching approach aims to improve th&sing a compressed bit vector.
average filtering time. In addition, unlike many of the A wide variety of specialized data structures have been
presented techniques, our technique has much less spesssl for fast packet classification. Srinivasan et al. [19]
complexity. The use of statistical trees for optimizingpuild a table of all possible field value combinations
routing table lookups was discussed in [10]. Howeve(gross-products) and pre-compute the earliest rule match-
the proposed technique uses only a single field (routintg each cross-product. Search can be done quickly by
prefix) that has a given frequency distribution. Oulloing separate lookups on each field, then combining the
scheme, however, use statistical tree of multiple-fietésults into a cross-product table followed by indexing
values that is dynamically updated to reflect the netwoikto the table. Unfortunately, the size of the cross-produc
traffic statistics. Moreover, to the best of our knowledgéable grows significantly with the number of rules.
the early rejection problem was not addressed by any ofA geometric algorithm was proposed by Feldmann et
the related work. al. [6], introducing a data structure called Fat Inverted

The paper is organized as follows. In Section Begment (FIS) Tree. FIS partitions the first dimension
we describe the previously published related work. Mith the endpoints of the projection of the rules on that
Section Il we present a technique for early classifdimension. Each of the segments is then partitioned,
cation of rejected packets. In Section IV we preseatcording to the remaining dimensions of the rules
our statistical-tree based packet classification techniqggevering each segment, into a number afdmensional
In Section V we present an evaluation study for thegions. To avoid an Q(?) explosion of the storage
proposed techniques. Finally, in Section VI we presergquirements, thel dimensional regions are linked in
the conclusions and our plans for future work. a Fat Inverted Segment Tree of bounded depth, and the
common partitions of the regions are pushed up in the
FIS tree. The main advantage of the FIS technique is
that it scales well with the number of filtering rules.

The packet classification problem has been extensivelyWork on decision-tree based classification algorithms
studied recently. The basic approach to packet classifit@sed on geometric cutting was introduced by Gupta
tion is to sequentially search the rule list until a match snd McKeown [8] and Woo [21]. Both schemes build a
found. Although this approach is very efficient in termdecision tree using local optimization decisions at each
of memory, the scalability of this solution is generallyjode to choose the next bit or field to test. The paper
poor, as the search time is proportional to the length by Woo [21] goes one step ahead by using multiple
the longest path in the rule list. The main solutions tdecision trees. While this may increase search time, it
improve the search times use various combinations adn greatly reduce storage. Similarly, the Hierarchical
one or more of the following: hardware-based solution€uttings (HiCuts) scheme described in [9] uses range
specialized data structures, geometric algorithms, adgecks instead of bit tests at each node of the decision
heuristics. tree.

Il. RELATED WORK



Gupta and McKeown [8] proposed a heuristic afge characteristics of the recently discarded traffic. Special
proach called Recursive Flow Classification (RFC). Or@nsideration was given to allow for fast early rejection
advantage of RFC is that the various lookup stagesth minimum on-line operations.
can be pipelined, so in a hardware implementation theThe address space of the traffic matching the default
classifier can have a very high throughput. However, thieny rule {.e., policy discard space) is obviously the
approach does not scale to medium or large numberaafmplement of the address space represented by all
rules. preceding rules [11]. Intuitively, if a packet does not

Although all previous work contribute significantly tomatch any of the field values common to all “allow”
the advancement of packet classification research, theiles, then this packet should be rejected as early as
main objective was to improve the worst-case matchimgssible to save any further matching through the policy.
performance. Hence, they do not exploit the statisticRhus, the early rejection rules (RR) can be formed as
filtering schemes to improve the average packet matchiagcombination of the common field values that cover
time. In addition, they mostly exhibit high space comall rules in the policy. Considering that the number of
plexity. distinct field values is usually small relative to the policy

The related work closest to our approach is the osé&e €.9, number of used destination ports is much less
proposed by Gupta [10]. By introducing statistical datdnan the number of rules), we can show that these rules
structures in optimizing packet filtering, this paper bere more feasible to find. We will search in the firewall
came one of the most interesting foundation publicatiopslicy for a combination of common field values such
in this domain. In this work, depth-constrained alphahat every rule uses at least one of these values. For
betic trees are used to reduce lookup time of destinatierample, if all accept rules use as destination a certain
IP addresses of packets against entries in the routsgbnet or port number, then packets that do not have
table. The authors show that using statistical data struabis destination address, or destination port can be safely
tures can significantly improve the average-case looktgjected without any further matching. A
time. As the focus of the paper is on routing lookup, the Let us takeS as the set of policy rules, and 16f be
scheme is limited on search trees of a single field withe set of all therules having in field f; the valuevy.
arbitrary statistics. In addition, the paper provides no Definition 1: Let V(f;) = {vg|3 a rule in the poIicy
further details on traffic statistics collection and dynamitat have the valuey, for field f;}, thens’ = {ril £}

update of the statistical tree. vg,t = 1...mn,j = 1...5} where f]’" represents the
value of fieldj in rule .
lIl. EARLY TRAFFIC REJECTION Intuitively, S is the set of rules having in field; the

Firewall rules are often written as exceptione.( same value)k The number of different set§g) is equal
accept rules) to the default deny rule for incoming traffito the number of distinct valuei( _1 |V (fj)) inall the
This might explain the research emphasis on optimipelicy rules’ fields. The problem is to find a subset of
ing the acceptance decision path in firewall filteringhe Sj’s, such that each rule in the policy is a member
However, rejected packets might traverse long decisiofat least one of them.
path of rule matching before they are finally rejected by Definition 2: Let A represents the set of all possible
the default-deny rule. This causes significant matchilﬁi and letA’ C A represents a selection 6f’s such
overhead proportional to the number of rules in trte.atUSJeA, Sk =3.
firewall policy. Although packets can be rejected bY¥his means that the set of rules covered4fyepresents
intermediate deny rules in the policy, we focus on thisll the rules in the policys.
section on optimizing matching of traffic discarded due Theorem 1:The problem of finding the set of field
to the default rule because it has more profound effect galues of minimum size such that each rule in the policy
the performance of the firewall. In addition, optimizingontains at least one of these field values is an NP-
intermediate rule matching is also considered in SeComplete problem.
tion IV. In this section, we will describe a technique that ~ Proof: The decision problem associated with this
reduces the matching of discarded packets by dynarmptimization problem is stated as follows: Finding a set
cally introducing an optimal set of early rejection rules inf field value of size at mosk such that each rule in
firewall policy. Considering that the amount of rejectethe policy contains at least one of these field values.
traffic is usually less than the accepted traffic, our goal The proof then follows in the two standard steps:
is to select the minimum number of early rejection rules Step 1: Polynomial Verification of Certificates. Given
that has the maximum discarding effeicé( covering the the solution to the problem we can verify that it correctly
discard address space in the policy) and they are adaptiegers the whole policy by taking each field value in the



alleged solution and mark down all rules that have this We use two approximation algorithms to solve this
field value. And at the end we perform a quick swegproblem. The first one has an approximation ratid of
over the policy to make sure all rules are marked &s(| S |) [14], while the other uses relaxed integer pro-
covered. The complexity of this naive algorithm can bgramming and results in afrapproximation ratio [12],
found to beO(K N), whereN is the policy size. How- where f is the maximum number of subsets that any
ever, we can have it with less complexity by carefullglement can belong to (that in our case will be 5 for the
removing the marked rules after each iteration or sortifgsic form of firewall rulesgproto, srclP, dstIP, srcPort,
the rules by their field values (that will introduce amistPort-). The latter algorithm is better for almost all
extra parameter into the complexity expression which f®licy sizes (50+ rules) as it gives better approximation
the number of fields specified, which is usually taken aatios, but we use both to help in generating a more
a constant; 4 or 5 is a typical value). The first algorithmiverse set of solutions.

will be enough, knowing thaf{ is O(/N) we have the

algorithm isO(N?). B. Dynamic rule selection

Step 2: Reduction from a known NP-Complete prob- g get cover approximation algorithm generates a set
lem. We can use the set cover problem (SCP) Wil 4/ 1 pe used as early rejection rules. However, we do
bounded element frequency (vertex cover if frequengyy \now yet how many and which ones that we should
is only 2). Given a SCP instancé = {e1,e2,-..en}, se to achieve an optimal rejection solution in firewall
and 51,5,...5x € 5 such that each element gyaring. In this section we will show how we can address
can be a member of at most subsets (the boundedy,q jsqyes using both the policy information and traffic
frequency condition). We can solve this instance by fisistics to determine the upper bound and the proper
algorithm for our original problem by the following e of 475 to be used as RR. It is intuitively clear that
simple mapping: each elementis a rule in the policy, e more Rejection rules (equivalently;'s), the more
that makes5 the policy as a whole. The subsefs are i qlingod to reject unwanted traffic as eadhi tend
the subsets of the policy rules having a common fielfl o er more policy discard space. So let us assume
val_ug vj in one of their fields. By'solving for the bestfOr the sake of simplicity that alRR’'s have the same
(minimum) cover (or a cover of size no more thaf) , papility of rejecting a packet, and rejected traffic is
we obtained a solution for the SCP problem. _ only rejected through the default ruleg(, no traffic is

By Step 1 and 2, our problem of "finding the covering, rgeted to the deny rules within the policy). Now, take
set of field values of minimum size” is an NPC problemyg the portion of traffic that will be early rejected using

, , o RR’s, andd;,s as the maximum percentage of the traffic

Using a solutionA” we can form a Rejection Ruleihat can be early rejected. Then for the early rejection

(RR), such that for everys; € A’ there will be a je5 to decrease the average number of comparisons,

Rejection term (RT) that together compose RR. HenGge number of rejection rules should be governed by;

we use RR and!’ interchangeably throughput this paper. ” n
5(1 — (5inf) + nding >§5r + (7’ + 5)(1 — (5inf)

RR= M\ (Pkt(f;) # vk) (1) + (r + 1) (Ging — 6)

SIecA .
k< This leads to:

where Pkt(f;) is the value of fieldf; in the packet to r<
be inspected. For example, a typical rule can look like;

2n6,
55 (2)

The left term in the inequality represents the average
RR = (DPort # 80) A (DPort # 20) A number of comparisons per packet without using early
(DAddr # 15.16.17.18) A (Proto # UDP)  rejection, while the first, second and third terms in the
right side of the inequality represent average cost of
rejection by the early reject rules, acceptance/rejedtion
the policy and rejection by the default rules respectively.
Because it is an NP-Complete problem; searching forWe can see that the bound erkeeps on increasing
the minimum size solution is practically not feasible a®r all values ofd, as long as added rules can reject
the policy size increases. In our specific environmemhore packets. In the extreme case, where all the traffic
we limit the size of the set cover to be smadld, 1-7 is illegitimate, we can have as many RR’s as double the
sets) as large set cover solutions will incur unbearalpelicy size @n). This averages te, which is the number
overhead in the filtering of each packet. of rules to be checked anyway for each of the packets

A. Rejection address-space based optimization



Algorithm 1 Startup Phase Algorithm 2 Dynamic Rule Selection

< S, A >« Convert(Policy Rules) if AS. > w then
Ndest T <1
Tmaz = 22_5“,, Active_RR list — rule r {Remove last rule, rule}r
i 0 re—r—1
repeat end if
!

A" — Approxz_SetCover (S, A) if |RR_Set| >r then {More rules to be addgd

RR_Set« Build_Rules(A) re—r+1

i_% i+1 _ Active_RR list +— RR_Set(r)
until ¢ >= ry,q, or A’ is empty end if
sort(RRSet) by size, shorter first

sort Active RR list according to hit frequency

r1
Active_RR list «+ RR_Set(r)

Algorithm 3 Early Rejection

that were going to the default rule if early rejection Wagaich Packet against ActvBRlist (w' shortcut evaluation)
not used. So, this implies that we can add extra RR’ fopacket matched any RRen

optimize filtering as long as the bound is satisfied. reject packet

More analysis is needed to determine the effect ofINCREMENT A¢; of matched rule
adding a specific RR. Letv be the traffic portion INCREMENT .
accepted by the policy, and after addingarly rejection €lse -
rules we haveé,, 3., and~, be the traffic portion rejected fﬁg%giﬂcéﬁlt;" normal filtering process
by the RR's, the policydenyrules, and the default rule " Yrs Qr, OF 3,
respect!vely. Now, we can state the average numberlj)édCREMENT WindowExpired
comparisons/matching per packet after addingrtfRR it \window Expired = Othen
as follows: Call Dynamic Rule Selection

5. a+f Window_Expired =Window

ATZC-T(éJra%-ﬁrJr%)%-n( “+79%) ) endif

wherec is the relative evaluation cost of an RR which
is usually proportional to the number of terms included
in the rule. We also hav@j/or > 0, 03/0r,0y/0r < 0,

anda + S+, + 6, = 1. Let A4, be the portion of the shows the effectiveness of each RR, this will be used
total traffic that is rejected by the” RR. Then we can periodically to further enhance the operation by dynam-
simply show that ically selecting the most valuable early rejection rules.
o Moreover, RT’s are sorted within each rule according
Brot F 91 = Br 3 + 20 @) to their effectiveness; to optimize running time using
To justify adding thert” RR rule: A, — A,_; < 0 shortcut evaluation of each RR’s.
must hold. Thus, using (3) and (4) we can derive the

following condition: T ; )
early rejection module. In Algorithm 1, the build up of
JAN S %ﬁr + (5) the candidate rejection rule list out of different solugon
c n to the set cover problem takes place. Algorithm 2 is
Alternatively, it can be written as responsible of the periodic addition/removal of rules
according to the performance gain/loss of each rule.
m (6) Algorithm 3 shows the per-packet operation of filtering;
2n showing the location of early rejection relative to nor-
to facilitate evaluation at run time according to thenal packet filtering, as well as the update of statistics
type of statistics kept at the firewall. After each windowequired for early rejection. Also, it calls the dynamic
of time, the added rule can be evaluated based on (Bje selection algorithm every window of packets to re-
or (6) to decide whether the’” RR is to be used or tune the active early rejection rule list. The use of a
removed, as described in Algorithm 2. pre-processing phase (Algorithm 1) for generating the
Initially, we can add the RR’s in order of their lengthset cover is to avoid the calculation of new solutions
as shorter rejection rule are faster to evaluate and coasrwe go at run time, which can be very computational
more space than longer ones. As the traffic statistiegpensive to be performed real time.

The three algorithms show the main operations of the

JAY S
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Fig. 1. CCDF distribution of (a) flow size, and (b) flow durationFig. 2. Analysis of the frequency of packet-header field values: (a)
for Internet traces at the University of Auckland. skewness from uniform distribution, and (b) time correlation of the
distribution.

IV. STATISTICAL OPTIMIZATION OF FILTERING

TREES Our proposed technique can be summarized as fol-

lows. The matching frequency for all filtering rules in

Although most of the previous work on filtering opthe firewall policy is periodically calculated from traffic
timization was based on deterministic techniques, ostatistics over intervals of time. These statistics are then
proposed scheme considers the statistical propertiesuséd to construct an alphabetic search tree for every
the traffic passing through the firewall to construct filtering field. The constructed trees for each field are
search tree that gives a near-optimal searching time. \W&mbined to obtain an optimal statistical matching tree
use an adaptive alphabetic tree that dynamically inseofsall rules in the policy. Finally, the alphabetic tree
the most frequently usefield valuesat the shortest is updated/reconstructed periodically to match the most-
path in the search tree. This results in a significargcent traffic characteristics. In this section, we will first
matching reduction for the most popular traffic. One gfresent our traffic trace analysis and then describe in
the important traffic characteristics commonly observeatktail each one of these steps.
in our analysis of large number of Internet and private
traces is the skewness of the traffic matching in the i i L L
policy, which reveals that the majority of the inboun(f' Locality of matching properties in firewall filtering
or outbound packet is matched against a small subsefThe behavior of Internet traffic retains several
of all filtering field values that exists in the firewallcharacteristics that can be utilized in the optimization
policy. What makes this technique even more attractioé packet filters. In this section, we highlight some
is the fact that (1) traffic skewness property is unlikely tobservations and properties of Internet flows and packet
change over a short period of time, and (2) the total nuneaders, and we briefly describe how these properties
ber of different filtering field values is highly unlikelycan be useful in reducing the matching time in packet
to be large in a firewall policy, retaining a reasonablffiters. The traffic analysis was performed on several
shallow alphabetic tree. Thus, a good implementation lofternet packet traces collected at the edge routers
this scheme can result in a significant performance gaifi DePaul University and University of Auckland
over the deterministic optimization techniques that usetworks [18]. The traces are stored as one-hour packet
static bounds, as explained in Section II. header logs at different days of week and times of day,



each containing the header information for 3M to 10M For each traffic trace, the packet-header field frequen-
packets that reflect realistic network conditions. cies and the skewness of the frequency distribution are
calculated for all field values over varying sampling time
1) Packet flow propertiesStudying the statistics of intervals. We observed that the some fields values are
various Internet traffic traces, we observed a number \&#ry highly skewed, while other fields have moderate
properties for Internet flows. or low skewness. We also observed that the skewness
From our anaiysi51 Figure 1-(a) shows that about GOhﬂpreaseS SIOWIy when the calculation time interval is
of the flows have 3 packets or less, while 20% have iicreased. Figure 2-(a) shows the skewness of field value
packets or more. The figure also shows that the lofigduency distribution of inbound traffic. This figure ba-
flows carry around 70% of the Internet traffic. Similarlysically shows that observed values of the source port field
Figure 1-(b) shows about 50% of the flows last have a high skewness factor in the range 0.45-0.6, while
seconds or less, while 20% have last 10 seconds B¢ destination address has moderate skewness range
more. It also shows that the long-lived flows carr@f 0.2-0.5, and both the source address and destination
around 50% of the traffic. Thus, these observatio®rt have low skewness of about 0.2. We also call this
clearly indicate that a small portion of the firewalfhelocality of field-value matchingecause it shows that
policy (rules) is used for matching a significant portioRnly small portion of the field values are used by the
of the traffic packets over a considerable amount Bfajority of the traffic. Thus, it will be highly desirable to
time. We call this thelocality of flow matchingin Place the field values of high skewness/locality as high as
firewall filtering. Previous studies [16] have also showRossible in the search tree to reduce number of matching
that while the majority of Internet flows have shorfor this traffic and eventually the overall packet filtering
flow sizes, the considerable amount of Internet traffic {§ne.
constituted from the long flows. A similar observation ~ Time-correlated field value frequencieSo know
was also shown for the flow duration. As a resulhow long this skewness will last, we study the correlation
this shows that filtering optimization based on packéf the frequency distribution of packet field values over
frequency is not on|y useful for improving the overalfwo consecutive time intervals. The field frequency dis-

matching performance but also practical in most caselibution is said to beime-correlatedif the frequencies
of the field value is similar over the two intervals. We

2) Packet field propertiesin this study we analyze US€ thecorrelation factor Cy of field f as a value
the packet-header field values that occur in Intern@gtween O (for an uncorrelated distribution) and 1 (for
traffic traces. Studying the statistics of these tracedfotally-correlated distribution), and it is calculatesi a
we observed the following properties for the fields dP!lows [5]:

Internet packet headers. o S (i — ) (G — 1) @)
Skewed field value frequenciethe field value fre- F= n-op,- 0,

guency is the number of packets that carry this field vaIu%1 is th bability of field value: | tai
within a certain interval of time. The field frequencyv.v erep; 15 the probabliity of Tield valley In a certain
distribution is said to be skewed if few field valued™e Mterval, andy; is the probability in the following

have high frequencies in comparison to the frequenci'('a1 erval. The quantitieg,, and ., represent the mean,

of other values in the same time interval. To measufdc » &1d o, represent the standard deviation of the

this skewness we use information theory formulatio%mbgb'“ty dlstrlb_utlons. :
to quantify the Entropy of any given distribution [4] Using the traffic traces, we calculated the correlation
The skewness facto$, of a filtering field f is a value of the frequency distribution for varying t_ime interyals_.
between 0 (for a non-skewed or uniform distribution N observed_ that some packei-header fields retain high
and 1 (for a totally skewed distribution}; is defined Ime correla_tlon, while other fields have moderate_to
by the formula: low correlation. We also observed that the correlation
increases slowly with the increase of the time interval for
> i1 Pilgpi calculating the field frequencies. Figure 2-(b) shows the
BT — (7) " time-correlation of the field value frequency distribution.
This figure shows that source port field has a high cor-
where p; is the probability of field valuey; and it is relation factor close to 1.0, while the destination address
calculated as the ratio of the number of packets matchiagd port have moderate correlation range of 0.7-0.9, and
v; to the total number of packet received. Alsas the the source address has low correlation of about 0.6.
number of possible values of fielfl Therefore, this shows that the field value skewness is

-1
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uniform, our techniques cannot do worse than the binary
search as a lower bound, which we can argue that is
unlikely to occur for all the fields at the same time for
long time. Our analysis of large number of various traces
presented in Section IV-A supports this. In addition, we
will also show how this scheme can be adaptive to track
changes in the traffic characteristics over time.

C. Matching tree construction using alphabetic trees

~There are several types of statistical search trees
that we can employ in our technique. We choose the
Alphabetic Search Tree [13] mainly because its con-

Fig. 3. Search tree for the destination port statistics in Table
(a) binary tree, and (b) alphabetic tree.

Field | Value | Statistics struction has low complexity when compared with the
dstport | 25-27| 0.11 Optimal Binary Search tree, and it also has less searching
g:iggﬁ ég 8'% overhead when compared to Huffman trees [15]. Optimal
dstport | 80-88 | 0.60 alphabetic binary search trees have been studied for a
dstport | 20-21 | 0.08 long time. The best time complexity, for building optimal
dstport | 22 0.01 alphabetic binary trees is achieved by two algorithms:

Hu-Tucker [13] and Garsia-Wachs [7]. The resulting tree
TABLE | is an optimal alphabetic binary tree and the complexity
EXAMPLE STATISTICS OF THE DESTINATION PORT FIELD of building the tree is Qflgn).

The alphabetic tree stores field values in the leaves
based on given weights such that the inherent order
a valid statistical property that is practically useful tcc))f the stored values is preserved. So, at_each internal

o . . L . node we can tell that the left subtree contains nodes that
optimize matching against popular filtering field Valueﬁave values less than those at the right hand-side. This
in the policy for a reasonable period of time. : ) '

added constraint of enforcing an order on the placement
of values in the tree enables the matching algorithm to
B. Statistical matching tree branch left or right based on the value extracted from the

Although binary tree search gives as the worst capacket as in the case of binary search trees and eliminates
search time ak n wheren is the number of elements, itthe need for preprocessing of the packet field values.
does not take in consideration the non-uniform (skewed)Figure 3-(a) shows the normal balanced binary search
distribution property of the field values matching basdgee for the destination port filtering field values given
on the traffic characteristics as described in Section I\ Table I. The corresponding statistically optimized tree
A. To exploit this property, a statistical search tree cds shown in Figure 3-(b). Using the field statistics given
be built using the values of each filtering field in order t# the table, the average number of matches is 3.8. The
minimize the average matching time. This tree basicalyerage matching is reduced to 2.8, which is above 26%
inserts values of higher occurrence probability (matchirigduction from the binary tree case. Notice that every
frequency) at higher tree levels than the values wittpde in the binary search tree contains non-overlapping
less probability. This way, field values that commonlyalues or range of values. The firewall policy can be
exist in the traffic will exert less number of packeeasily pre-processed to resolve any conflict between
matches in comparison to uncommon values, resultingdderlapping values of the same filtering field [3].

a significant reduction in the matching of most popular Alphabetic tree aggregationSince packet matching
flows, reducing the overall average filtering time of ais performed on multiple fields (5-tuple), multiple al-
flows. phabetic search trees are constructed to correspond to

Although the statistical-based tree matching may nsburce IP, source port, destination IP and destination
be in favor of less-frequently matched traffic, it stilport. The four trees are combined together to form a
improves the overall average filtering by significantlgtatistical matching tree implementation based on alpha-
reducing matching of most popular packets. The mobetic trees. We propose two approaches to achieve this
the skewness in the traffic distribution over field valuegpal: cascaded-search and parallel-search trees.
the more the gain in the filtering performance. Even in In the cascaded search approach (Figure 4-(a)), we
the worst case scenario when the traffic distribution sart by building the top-level alphabetic tree using the



(b) caded matching tree structure using Algorithm 4 has a
time complexity ofO(n.1g(n)).
Fy F2 Fs Fy Theorem 3:Given a policy ofn rules, and a constant
number of filtering fields. The cascaded matching tree
structure has a space complexity @fn).

Proof: The intuition behind both theorems is that
the sum of the number of leaves of the trees at any level
[ is bounded by the number of rules. This is attributed to
Fig. 4. Aggregate matching tree structure for (a) cascaded matchiige fact that each leaf represents a unique combination

(b) parallel matching. of field values from the top level down to levgland the

number of such combinations can not exceed the total
Algorithm 4 BuildTree (S, F) number of rules in the policy. Thus, the total size of
S: Set of rules internal and external nodes in all the trees at any given
F: Set of filtering fields level cannot excee@n. Also, the time complexity of

it 5] < limit then building all the trees at a certain level cannot exceed the

enrdeti?m s cost of building a single tree with the size of all trees

for all f; € F do f:omblned O(n. l_g(n))). Th_e total space/tlm_e _complexny
for all vy € V(f;) do is the complexity of a single level multiplied by the

C(ok) = 3,,es Crs) number of levels (fields). Since the number of filtering

end for ' fields is a constant, the space complexityCisn), and
CalculateSy, the time complexity ig0(n.1g(n)).

end for To prove the above intuition formally: For any given

Choosefyest © S, < Sp,Vf;j € F field f;, the set of field values is bounded by the number

T = Construct Alphabetic Tree fofycs:

for all vy € V(o) do of rules {.e., |V (f;)| < n). By building the cascaded tree

T = BuildTree(Sgbest’F — {frest]) st_ructure, Wg will have a set of trees each contributing

T, — T’ {Saving a pointer to sub-tree at leaf nyde with a certain number _of leaves. At levél we have
end for L; leaves, each leaf might be followed by one more
return T tree, or a simple short list of rules. At the first level,

we have a single tree based on a chosen field (with
minimum entropy). The number of leaves of this initial

filtering field of highest skewness. The field skewnessee is bounded by the maximum size of field values
is calculated based on (7) using the number of pack¢i®., L; < n). Each field value will receive a subset of
matching each field value during a specific time intervahe rules to further process. So the maximum number
For each field valuey, the packet count is collected byof leaves in each of the trees of this next level is
summing the number of packets hitting all the rules thabunded by the size of its rule subset;, no,...n,,.
carry this value. This information is normally recordedloreover, these subsets’ sizes sum up to a value less
by filtering devices and are readily available at no extthan n (L; = > n; < n). It is a known fact that
processing cost. Each leaf in the top-level tree holds thé g(n;) < g(n)ifg(.) = w(x). Therefore, we deduce
field value, as well as a pointer to another alphabetigat the building time of all the trees in the second level
subtree built recursively using values of the field that h#s O(n 1g(n)). Having this fact valid for all successive
next highest skewness considering only the rules that usses (to a maximum of 5 levels corresponding to the
this field value. As shown in Algorithm 4, the cascadediwmber of fields), we conclude that the overall building
search tree construction continues in all leaves/valu@se is O(dnlg(n)) = O(nlg(n)) for a constant. For
until trees for each field are constructede( 4 levels the space complexity we follow a similar argument, but
of cascaded trees if we exclude the protocol field) tegarding the size of each of the trees on any level. We
represent the entire set of rules in the firewall policy. know that the number of nodes in anyleaves tree will
is important though to notice that it may not be necessdng 2n; — 1 nodes (internal and external). Thus the overall
to build a tree in each level particulary if the number adpace complexity will bed(dn) = O(n) for a constant
field values remaining is too small to gain a benefit oveiumber of fields. [ ]
the linear or binary search. As an alterative approach, we also developed a parallel

Theorem 2:Given a policy ofn rules, and a constanttree structure (Figure 4-(b)) that constructs an alphabetic
number of filtering fields. The construction of the cadree for every filtering field. All the tress, four in our case,
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Algorithm 5 Cascaded-tree filtering

Algorithm 6 Parallel-tree filtering

T; — Top-level search tree
ref <« Lookup H in treeT;
if ref is a tree for fieldf; then
T, —ref
Ji— i
Goto 2
else ifref is a list L then
rule «— Lookup H in list L

for each field f; in set of optimized fieldslo
rules[f;] < Lookup H{[f;] in tree Ty,
end for
candidates «— ¢
for each list L; in rules do
candidates < candidates N L;
if candidates = ¢ then
action — DEFAULT

if rule # nil then end if
action «— rulelaction] end for
else rule « Lookup H in candidates
action — DEFAULT if rule # nil then
end if action — rule[action]
end if else
action «— DEFAULT
end if

can be searched in parallel and the matching results are

then combined to produce the final matching results, as

discussed in Section IV-D. The parallel tree structure Parallel-tree matching:In this approach, the parallel
has the advantage of executing multiple searches ceparch tree described in Section IV-C is used. Packet
currently particularly on a network processor or multitookup is performed against each of the field search trees
threaded hardware. However, the cascaded tree strucsgparately. As a result, we obtain for each field a set
always gives less number of matches particulary df candidate rules that contain the corresponding field
the skewness factor varies significantly between of thalue. Then, the rule that matches the packet is found
different fields. We discuss this issue in more detail iny getting the intersection between these sets of rules.
our evaluation experiments in Section V. If the intersection contains more than one rule, the rule

with highest order (priority) is selected. If no rules are

D. Policy matching algorithms using alphabetic tree  common, then the default action is returned.

After constructing the search trees, we proceed with
the packet matching process. The matching operati
is performed for each packet header field against t
list of field values in the filtering rules. In order to After the alphabetic trees are constructed for eligible
perform the search on multiple fields (5-tuples), we ha¥ields, they are used for matching upcoming packets. The
two approaches depending on the underlying tree searetuction in matching is maximal when the upcoming
structure as follows. traffic distribution over field values exactly matches

Cascaded-tree matchingln this approach, we usethe distribution when the tree has been constructed.
the cascaded search tree described in Section IV-C. THewever, this is not very likely to happen since as time
algorithm starts with looking up the packet header valymsses, some flows start and others terminate, leading
in the top-level search tree of the highest skewness field.accumulative changes in the traffic distribution over
As a result, the matching leaf node returns a referencefigd values. Therefore, using an alphabetic tree with
either a search subtree for another field or a list of ruleery old field value probabilities may result in inef-
that carry the field value in this leaf. In the former caséicient matching that yields more average search time
the referenced tree is searched recursively for a matchthgn regular binary search. To avoid this situation, we
field value. In the latter, the list is linearly searched fdmpose two types of rectification to the alphabetic tree;
a matching rule. Once a rule matches the packet, therformance triggered updates, and periodic mandatory
corresponding action is returned, otherwise the seangbdates. The first update is performed more frequently
continues till the end of the list. If no matching rules arand basically rebuilds the tree when traffic dynamics
found, the default filtering action is returned. lowers the performance (increases average number of

Although the algorithm involves linearly searchingcomparisons) below (above) a certain threshold. The
a list of rules at the final lookup stage, the matchingecond rectification is executed at larger intervals and
operations are very limited because the list contains ordynply disposes outdated alphabetic trees, and constructs
a small number of rules as discussed in Section IV-Cmore effective ones based on current statistics.

Eg Tree reconstruction and updates
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Performance triggered updategin accurate measure| POlICY Size| Acceptance Average | Opt. number| Gain
for the effectiveness of using the alphabetic tree to sea Ch(aggg)x) Re;tSeo/@) g;r of 3ROR S =30
the values of a cert_ain fi(_alﬂ is theoptimization effic_acy_ 500 500/2 3%(: 30 24_70;)
Ef- Th_e quantitys s is deﬂneq as the actual reduction in g 50% 7% 36 34.9%
matching as compared to binary search when the current 1000 85% 5% 33 9.20%
traffic is matched against an alphabetic search tree built 1000 75% 5% 44 18.3%
using the traffic statistics collected in the previous time 1000 50% 5% 58 37.8%
interval. Mathematicallys; is given by the following 230 25% 5% 33 32.1%
formula: 230 50% 5% 27 18.8%

230 75% 5% 12 3.60%

n 570 25% 7% 41 47.8%

ep=1- 2iz1 918D 9) 570 50% 7% 47 33.2%

lgn 570 75% 7% 27 15.2%

_ . , _ 570 85% 7% 21 7.1%
whereg; is the probability of field value; in the current TABLE I

time interval, andp; is the probability of this value in
the preceding interval.

Although this formula accurately estimates the match-
ing gain, its calculation is very expensive to be performed

EFFECT OF EARLY REJECTION ON AVERAGE NUMBER OF
COMPARISONS

at runt.ime for every packet. Another Iightweight measure Policy | Number of| Accepted
that gives very close average results is the exponential Rules Traffic (c)
moving average of the matching gain Policy 1 1000 50%
Policy 2 1000 75%
h; —lgn Policy 3 200 50%
g =(1—w)g_1+ wg; whereg; = ————
i = JEi-1+ wgi gi lgn TABLE Il
_ _ w TEST POLICIES USED FOR GENERATING THE PLOTS INIGURE 5
g = (1 — w)ei_l +— | h—w (10)
lgn
Ethr = TEopt (11)

V. PERFORMANCE EVALUATION
where h; is the height ite., number of comparisons)

of the destination leaf of packet ¢; is the gain over A Evaluation of early rejection
binary search for packet After a packet is matched |n this section, we evaluate the performance of the
using the alphabetic tree, #; drops below a certain early rejection technique. To test the performance gain of
thresholdz;,,, the alphabet search tree is disposed fasing early rejection, we used several real and generated
this field and a new tree is built;,, is calculated as policies with varying traffic behavior. The traffic was
a ratio 7 of the optimal gaine,,; that the tree was injected to the policy, and the number of matches was
built to achieve. Notice that these expressions involglculated.
only inexpensive addition and multiplication operations. Table Il shows the gain of using early rejection rules
Figure 11 in section V-B shows these updates and theji the average number of matchés.( against policy
effect on the performance of packet matching. rules or rejection rules) using different policies; reatlan
Periodic mandatory updatesTo avoid extended peri- generated (In Section V-B, we describe our technique of
ods of mediocre performance that is just above the mgenerating policies). We injected tailored traffic that has
building threshold, a periodic update is performed evedjfferent percentages of accepted versus rejected flows,
constant (and relatively long) intervals of time. Using thend also varying matching probability with the rejection
latest traffic statistics, a new matching tree is constructades to study its effect. The gain was high enough in
using fresh field value statistics in order to boost ba¢kany cases which manifests a noticeable performance
the matching performance close to its optimum levehcrease in the firewall operation. The results were very
Since this type of tree update is mandatory, the updatecouraging in all test cases, but when very small-
period should be determined based on the computatiofiied policies were used, the results were varying widely
capacity of the filtering device. A reasonable updatéepending on the current pattern of traffic used.
period that suits common firewall devices could be oneln the next experiment, we studied the effect of
hour. how much of the traffic is rejected by the default rule
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Fig. 6. The reduction of packet matching relative to binary searchdoh diltering field Fig. 7. Relative matching reduction for
on the firewall (a) inbound interface, (b) outbound interface. each field for different times of day

® example, inPolicy 1, the gain has reached 41% where
“ the optimum is 50% which can only be achieved if it was
* , possible to early reject all the traffic with no overhead
¥ jE of early rejection rules.
% / o B. Evaluation of adaptive statistical filtering
i: A In this section, we evaluate the performance of the
. / X oyt o | alphabetic tree filtering technique. We use real-life
T Poley 5 a packet traces obtained from the NLANR project [18].
0 Oﬁememageofg';‘edum,e:gﬁ.ngdefaunmf 1 Based on the traffic flow information, we generated
60 , filtering rules to handle inbound and outbound traffic
— to the network. For each filtering field, we use 256
? // different values extracted from the packet header
L S information in the trace. Different filtering rules are
5 / composed by randomly mixing and matching different
éso/ P e field values in order to generate a total of 2000 rules.
’glzo e T oo The generated policy typically resembles medium sized
P e firewall rules existing in real firewall policies [22].
o ' Poloy 4 These filtering rules are used to study the effectiveness
ol - - - Po‘f”'”*” ! of our proposed technique. We measure the packet
Percentage of denied raffc reaching defauitule matching performance by evaluating the reduction in

Fi o . ttge number of field matches relative to balanced binary
g. 5. Early rejection (a) performance gain, and (b) the number 0 . .
Rejection Rules for three policies with varying percentage of defag€@rCh tree instead of using the absolute number of
rule traffic. matches. Since binary search trees require a constant
number of matches (8 in our policy) to lookup any
field value, the relative reduction in matching is directly
versus policy deny rules. Intuitively, the more the traffiproportional to the actual number of matches. However,
reaching the default rule the more successful the earglative match reduction has the advantage of being
rejection technique will be. This was verified clearly byiormalized, making it more suitable for observing and
injecting traffic tailored with different portions targetedstudying the performance of our technique.
to the default rule. Figures 5 show the gain as it increases
when the portion that can reach the default rule increased) Optimization effectiveness for individual filtering
from 0% to 100%. As RR'’s are added, the traffic reacffields: In this experiment, for each individual filtering
ing the default rule decreases which increases the gé#&id, we evaluated the average relative match reduction
of adding such early rules. These results were obtainetien using our technique during various tree update
using three policies and associated traffic as shownimervals. The traffic used in the experiment is collected
Table Ill. Taking into consideration the percentage dfom the inbound firewall interface on a weekday be-
the accepted traffic, we can see that the achieved gaireen 12:00pm and 12:59pm. The results are presented
in performance was not far from the optimal gain. Fan Figure 6.
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We observe that our technique outperforms the binaryFigures 8-(a) and 8-(b) show that, using our technique,
search for certain field types, but very close to binathe average relative match reduction is very close to
search for other fields. For inbound traffic in Figure 6-(aj)he optimal case, when the field value statistics in a
applying our technique to the source port field resultegven interval exactly matches the statistics used in
in 40% to 60% gain over binary search, while for théhe previous interval to build the alphabetic tree. The
destination address the gain varied from 10% to 40@eviation from the optimal case is due to the fact that
depending on the length of the tree update interval. Gime field value statistics are constantly changing with
the other hand, the destination port and source addréss Internet traffic dynamics. We also observe that,
performance was almost similar to the binary searcéimilar to individual fields, the average overall relative
Similarly, for outbound traffic in Figure 6-(b), the highesimatch reduction increases logarithmically with the tree
performance gain was (40%-60%) for the destinatiarpdate interval, while the variance decreases. The highest
port field, and (10%-20%) for the source address. Howbserved average relative match reduction measurements
ever, the source port and destination address did not stem& 0.5 and 0.4 with a 400s update interval for cascaded
any significant gain. and parallel search respectively. Beyond this update

Another observation is that increasing the tree updateerval, the match reduction average and variance are
interval improves, but slowly, the average match reduatmost constant.
tion. However, an over-extended update interval does noflfo study how frequent our technique achieves differ-
significantly improve the matching gain. This is observeght performance gain levels, we provide a cumulative
in the same figure, where the source port matching gatatistics of the number of measurements versus the
increases from 40% to 54% when the update intervalrislative match reduction in Figures 9-(a) and 9-(b). For
increased from 1 to 100 seconds, however, increasing theample, the plots show that, for 100s update interval,
period 10 times results in only 6% increase in matchir#gP% of the measurements reflect better than 0.4 and 0.3
gain. These results can be attributed to the fact thatredative matching gain in the cascaded and parallel search
longer update interval gives more accurate statistics respectively.
field values, while extending that interval adds only a Figures 10-(a) and 10-(b) show the performance of
little more information. The collected statistics is clgselour techniques with different tree update intervals for
coupled with the Internet flow dynamics characterizeath extended period of time from 12:00am to 11:59pm
by flow lifetimes of less than 10 seconds as shown on a weekday. It is clear from this figure that the
Figure 1. relative matching gain does not persist at a specific

In another experiment, we recorded the relative matdevel for a long period of time. The maximum gain is
ing reduction for different filtering field types during aachieved during day hours where fast filtering is highly
full weekday interval between 12:00pm and 12:59pmeeded, due to the existence of a large traffic volume
The results for the experiment are shown in Figure 7. Alsat consequently creates significant skewness in the
previously noted, we observed that at most two filterinfigld value statistics. During evening and night hours,
fields sustain a high degree of skewness simultaneoushe traffic flow is much less, hence a reduced degree
which improves the filtering efficiency throughout mostf skewness as well as in the relative match reduction.
of the day. Another important observation is that th€he observations regarding the tree update interval are
highly search effective fields change with time of dagonsistent throughout the entire day period with our
For example, during rush hours (8:00am-4:00pm), tldservations for the one hour interval.
source port and the destination address are the modin all these experiments, the parallel tree search
effective fields, while at late night (10:00pm-4:00am) theonsistently resulted in less match reduction than the
destination port is more effective. This emphasizes tleascaded search. This can be explained in the context of
importance of dynamically choosing the most effectivéata structure sizes used in both cases. In the cascaded
(skewed) filtering field on tree updates. search, the top-level tree provides the smallest number of

2) Optimization effectiveness for filtering policym matches, while the lower-level cascaded trees only add a
this experiment, we evaluate the overall average relatiradatively small number of matches to that. In the parallel
reduction in packet matching for the inbound filteringearch, the effective performance is determined by the
policy using our technique with varying tree updatiargest number of matches needed by any of the search
interval. The traffic used in the experiment is collectetlees. In our experiment, this number turns out to be
on a weekday between 12:00pm and 12:59pm. Thagnificantly larger than the smallest number of matches.
experiment is performed for the both the cascaded andis is because there is a large difference between the
parallel search implementations. skewness of the mostly skewed field and the next one.
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for a full day interval with different update

tive matching reduction with varying update reater than different matching reduction
tervals for (a) cascaded search, (b) parallel

interval for (a) cascaded search, (b) parall or (a) cascaded search, (b) parallel search
search. ' search .

Therefore, if the skewness is very similar for all fieldssettings of these parameters show that, during rush hours,
the parallel search would have surely outperformed tber adaptive technique reconstructs the tree only 2-5
cascaded search. times in an hour whew = 0.2 and7 = 0.2. This incurs

3) Adaptive tree updatesin this experiment, we minor amortized overhead throughout the full interval in
closely examine the dynamics of the adaptive searaliich the alphabet tree is utilized.
tree update mechanism during a one hour interval on
a weekday from 12:00pm to 12:59pm. The field value
statistics are collected in the first 20 seconds, then the
matching efficacy of the most skewed field (source port) The Packet classification optimization problem has
is calculated periodically every 20 seconds based teceived the attention of the research community for
the formulas in Section IV-E. For each interval, thenany years. Nevertheless, there is a manifested need
search tree efficacy is evaluated, and the weightedor new innovative directions to enable filtering devices
moving average of the tree efficagyis updated. The such as firewalls to keep up with high-speed networking
alphabet tree is dynamically reconstructed whenever tdemands. This paper addresses two important problems
average tree effectiveness deviates significantly from tredated to packet filtering that are not yet thoroughly
optimal depth £ = 0.2). Figure 11 shows the results ofexplored in research: (1) early rejection of unwanted
this experiment with tree updates indicated by the solfghckets, and (2) optimizing packet filtering based on traf-
triangular marks. fic statistics. The paper presents techniques, algorithms

The graph shows the average tree efficacy is updatetd evaluation study to tackle each problem effectively.
smoothly at every tree update interval, thus ignoring As the size of a firewall policy grows, the effect
sudden short-term decrease in the instantaneous matifheiscarded packets by default-deny rule become in-
ing efficacy. When the matching efficacy trend sustairseasingly harmful. we propose a novel technique that
a continuous decline, the average efficacy falls belantroduce a minimal overhead on the firewall processing
the designated threshold and the tree is reconstructeallow rejecting the maximum number of these packets
based on the most recent statistics. Tree updates asecarly as possible, thereby reducing the matching time
computationally intensive and should be performed onsygnificantly. We use an approximation algorithm off-line
when crucially needed. The frequency of tree updattsgenerate a set of near-optimal solutions based on the
are tightly coupled with the deviation threshotdand firewall policy. Each one of these solutions represents
the averaging smoothing factar. Our study of various an early rejection rule to be inserted at the beginning

VI. CONCLUSION
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calculation (e.g., counter increments) based on easily
obtainable information from well-known utilities like
Netflow [20].
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