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Abstract

We show that computing the crossing number of a graph with a
given rotation system is NP-complete. This result leads to a new and
much simpler proof of Hliněný’s result, that computing the crossing
number of a cubic graph (no rotation system) is NP-complete.

1 Introduction

Computing the crossing number is NP-complete, as shown by Garey
and Johnson [2]. Hliněný recently showed, using a rather complicated
construction, that even determining the crossing number of a cubic
graph is NP-complete [3], a long-standing open problem.

We investigate a new approach to cubic graphs through graphs
with rotation systems. We show that determining the crossing num-
ber of a graph with a given rotation system is NP-complete, and
then prove that this problem is equivalent to determining the crossing
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number of a cubic graph. This also gives a new and easy proof that
determining the minor-monotone crossing number (defined in [1]) is
NP-complete.

2 NP-hardness

Consider a graph drawn in the plane (or any orientable surface). The
rotation of a vertex is the clockwise order of its incident edges. A ro-
tation system is the list of rotations of every vertex. We are interested
in drawings of a graph in the plane with a fixed rotation system, which
has appeared in previous papers [4, 5].

We also consider allowing “flipped” rotations (previously seen in [4]).
Given a rotation of a vertex v, the flipped rotation reverses the cyclic
order of the edges incident to v.

Theorem 2.1 Computing the crossing number of a graph with a given
rotation system is NP-complete. The problem remains NP-complete
if we allow the rotation at each vertex to flip independently.

Proof We adapt Garey and Johnson’s reduction from OPTIMAL

LINEAR ARRANGEMENT to CROSSING NUMBER [2]. Given a graph
G = (V, E), a linear arrangement is an injective function f : V →
1, . . . , |V |, and the value of the arrangement is computed as

∑

uv∈E

|f(u) − f(v)|.

Given G and k, deciding whether G allows a linear arrangement of
value at most k is NP-complete [2, GT42].

Let us fix a connected graph G = (V, E), with V = v1, . . . , vn, m =
|E|, and k. We may assume that n ≤ m. From G we construct an edge-
weighted graph H with fixed rotation system, as shown in Figure 1.
The use of weighted edges simplifies the construction; later we will
replace each weighted edge by a small unweighted graph, obtaining a
simple graph H ′ with a fixed rotation system. Note that for a fixed
drawing of a weighted graph, a crossing of an edge of weight k with
an edge of weight l contributes kl to the crossing number.

We start with a cycle (u1, . . . , u4n), and a single vertex u0 con-
nected to each vertex on the cycle. We choose the edge-weights of
this part of the graph so high that it has to be embedded without any
intersections.
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Figure 1: The graph H

For every 1 ≤ i ≤ 2n we connect ui to u4n+1−i by a path Pi of
length 2 and edges of weight w. Furthermore, we connect the mid-
points of Pi and P2n+1−i by a path Qi of length 3 with edges of weight
w′, whose middle edge aibi has been replaced by two edges of weight
w′/2 (1 ≤ i ≤ n).

Finally, we encode G as follows: for each edge vivj ∈ E we add an
edge from ai to bj (with i < j, an arbitrary choice). The rotation of
H is as shown in Figure 1. At ai, each edge from E is inserted into
the rotation at ai between the two ai, bi-edges of weight w′/2; we do
likewise at every bi. The edges of E at ai can be ordered arbitrarily
(same at bi).
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This concludes the description of H. We let k′ = n(n − 1)ww′ +
kw′ + m2, where w = 5m4 and w′ = 2m2. We claim that G allows
a linear arrangement of value at most k if and only if H (with the
rotation system shown in the drawing) has crossing number at most
k′.

If G has a linear arrangement of value at most k, we can draw
H using the order of the vi in that linear arrangement to obtain a
drawing of crossing number at most k′ (the m2 term compensates for
the potential pairwise crossings of the edges in H that represent edges
in E).

For the reverse implication, consider a drawing of H with crossing
number at most k′ = n(n − 1)ww′ + kw′ + m2. Then k′ < n2ww′ +
m2w′+m2, and by choice of w and w′ this is at most 10m8+2m4+m2 <
w2. Hence, in our drawing, no two edges of weight w intersect each
other, and, therefore, the paths Pi (1 ≤ i ≤ 2n) are drawn as shown
in Figure 1.

Next, consider the modified paths Qi. Qi must intersect each of
the paths Pi+1 through P2n−i, contributing (2n− 2i)ww′ to the cross-
ing number. Summing these values for i = 1, . . . , n, we observe a
contribution of at least n(n − 1)ww′ by intersections between the Qi

and the Pi to the crossing number. This leaves k′ − n(n − 1)ww′ =
kw′ + m2 < m2w′ + m2 < w′w′ < w′w crossings, implying that there
cannot be any further intersections between a Qi and a Pi (since it
would contribute w′w to the crossing number, more than is left). By
the same reasoning, we also do not have intersections between any two
Qi.

Finally, we want to argue that all the ai and bi lie between Pn

and Pn+1. Since Qn lies entirely between Pn and Pn+1 (as we argued
earlier), so do an and bn. Consider any ai or bi. As G is connected by
assumption, there is a path from an to ai using edges encoding G and
edges of weight w′/2. If this path intersects Pn or Pn+1, it contributes
w or more to the crossing number. However, since k′−n(n−1)ww′ =
kw′ + m2 < m2w′ + m2 = 2m4 + m2 < 5m4 = w, this is not possible.
Therefore, ai and bi are also located between Pn and Pn+1.

In summary, the drawing of H looks as shown in Figure 1. This
drawing clearly indicates a linear arrangement f of G. An edge e = uv
contributes at least |f(u) − f(v)|w′ to the crossing number of H, so
∑

uv∈E |f(u) − f(v)| ≤ kw′ + m2. Since m2 < w, the value of the
linear arrangement is at most k.

The last step is to replace each edge e of weight x by x parallel
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edges, and then subdivide each of those edges: the effect is that e is
replaced by a copy of K2,x with the endpoints of e identified with the
partite set of size 2. The new edges are inserted in the rotation at
where e was, and the new edges are ordered as indicated in Figure 2.
Thus we obtain an unweighted graph H ′ from H. Since we can draw
any of the parallel edges alongside whichever one is involved in the
smallest number of crossings, we may assume that an optimal drawing
of H ′ has all parallel edges routed in parallel; also, subdivisions do not
affect the crossing number. Therefore, cr(H ′) = cr(H), and H ′ is an
unweighted graph with fixed rotation system for which is it is NP-hard
to determine crossing number.

Note that the argument showing that the drawing of H looks as
in Figure 1 did not make any assumptions about the rotation at a
vertex. Therefore, even if we allow flipped rotations, we can still
conclude that the drawing of H yields a linear arrangement of value
at most k. Consequently, computing the crossing number of graphs
with rotation systems remains NP-complete if we allow rotations to
flip.

2

→ . . .

Figure 2: Replacing an edge by parallel paths

3 Cubic Graphs

In this section we show how to use Theorem 2.1 to prove that com-
puting the crossing number of a cubic graph is NP-complete. This
was a long-standing open question that was solved only recently by
Petr Hliněný, using a rather complicated construction.
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Theorem 3.1 (Hliněný [3]) Computing the crossing number of a
cubic graph is NP-complete.

Proof Consider a graph G with a given rotation system, and let
cr(G) be the minimum number of crossings in a drawing of G such that
every vertex has either the given rotation, or that rotation flipped.
We will construct a cubic graph G′ such that cr(G) ≤ k if and only if
cr(G′) ≤ k.

Replace each vertex v by a grid of hexagons Hv, made up of 2k+1
rows of d = deg(v) hexagons per row. Let the vertices along the top
be labeled v1, . . . , v2d+1, as shown in Figure 3.
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Figure 3: Hexagonal grid replacing vertex

Let us say the rotation at v lists edges in order e1, . . . , ed (cyclic
order, so the first element is chosen arbitrarily). We can then make
each ei incident to v2i. Repeating this at every vertex, we obtain a
graph G′ of maximum degree 3.

Suppose that we have a drawing of G′ with at most k crossings.
Let X be the set of edges of Hv involved in crossings. Of the 2k + 1
rows of hexagons, k+1 have odd index, and any two rows with distinct
odd indices are disjoint. Since |X| ≤ k, there is a row of hexagons Rv

in Hv − X. The drawing of Rv has k + 1 faces, and clearly all but
one is empty. Without loss of generality, each inner face is nonempty
(and bounded by a hexagon).

For each 1 ≤ i ≤ d, there is a unique “vertical” path Pi in Hv from
the endpoint of ei in Hv to Rv. Let H ′

v be the union of Rv and all Pi.
Consider the restriction of the drawing of G′ to the drawings of the
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H ′

v (for all v ∈ V ) and all edges between distinct Hv (the edges in E).
At each Hv, consider the edges ei extended through the paths Pi until
they reach Rv. Since Rv is not involved in any intersections, the ends of
these extended paths at Rv are in the order of the rotation of v, or the
reverse of that order. Hence, if we contract every Rv to a single point,
we obtain a subdivision of G with the given rotation or flipped rotation
at each vertex of G. Removing the subdivisions obtains the desired
drawing of G. Since none of the operations (restriction, contraction
of crossing-free edges, removing subdivisions) increase the crossing
number we have obtained a drawing of G with crossing number at
most k.

Thus, computing the crossing number of a graph of maximum de-
gree 3 is NP-complete.

Finally, given a graph of maximum degree 3, we can easily modify
it to get a cubic graph with the same crossing number: repeatedly
delete all vertices of degree less than 2, and for each vertex v of degree
2, add the graph shown in Figure 4 to G′. 2

v

Figure 4: Standard gadget for cubic graphs

As Hliněný observes, this result also implies that computing the
minor-monotone crossing number is NP-complete [3].

Our Theorem 2.1 is in turn derivable from Hliněný’s result, as the
gadget in Figure 5 shows.

If we take a cubic graph and replace each vertex by the gadget, we
obtain a graph with a fixed rotation system, whose crossing number
differs from the crossing number of the original graph by an additive
term.
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Figure 5: Rotation gadget
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[4] Daniel Štefankovič Michael J. Pelsmajer, Marcus Schaefer. Odd
crossing number is not crossing number. In Graph Drawing, 2005.
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