
Temporal Aspects as Security Automata

Peter Hui
Department of Computer Science

DePaul University
243 South Wabash

Chicago, IL 60604, USA

James Riely
Department of Computer Science

DePaul University
243 South Wabash

Chicago, IL 60604, USA

2005/10/14

Abstract

Aspect-oriented programming (AOP) has been touted as a promising paradigm
for managing complex software-security concerns. Roughly, AOP allows the secu-
rity-sensitive events in a system to be specified separately from core functionality.
The events of interest are specified in a pointcut. When a pointcut triggers, control
is redirected to advice, which intercepts the event, potentially redirecting it to an
error handler.

Many interesting security properties are history-dependent; however, currently
deployed pointcut languages cannot express history-sensitivity. (Mechanisms like
cflow in AspectJ capture only the current call stack.) We present a language of
pointcuts with past-time temporal operators and discuss their implementation using
a variant of security automata. The main result is a proof that the implementation
is correct.

AOP is usually presented as an extension of an underlying computational mech-
anism, but the extension is in no sense conservative. For program analysis, this is
in some sense this is the worst of both worlds. We adopt a different approach:
refining our earlier work, we define a minimal language of events and aspects in
which “everything is an aspect”. The minimalist approach serves to clarify the
issues and may be of independent interest.

1 Introduction
Aspect-oriented programming (AOP) ([9]) is a relatively new programming paradigm
designed to address crosscutting concerns across objects in the more traditional object-
oriented paradigm. In this model, the programmer defines aspects, each consisting
of a block of code (the advice body), and a pointcut, which states when the code is
to be executed. Current implementations allow for the user to define pointcuts which
trigger off of a specified atomic event, but facilities for triggering of a program’s history
typically limited to the current call stack (as in AspectJ’s cflow).

AOP has some potential for specifying and enforcing security policies. However,
many such policies are both history-sensitive and dynamic (likely to change at runtime).

1

In this paper, we define a syntax and operational semantics for temporal aspects, which
allow for pointcuts to be defined temporally— that is, in terms of events which have
happened in the past. An obvious solution is to record the entire program history,
but such an implementation is clearly impractical for long-lived programs. In this
vein, we present an equivalent, automaton-based syntax and operational semantics,
which records only relevant events. The automaton state provides an abstraction of the
history, and our main result demonstrates that this abstract view faithfully implements
the original semantics.

The situation is complicated by two facts: First, a pointcut may cause an event to
be intercepted before it occurs; this is typical of security policies that specify sequences
which must be aborted, rather than those which are allowed. Second, new advice may
arrive at runtime, dynamically modifying existing policies. In both cases a key diffi-
culty is getting the semantics of the source language “right”. Refining our previous
work [5], we adopt a minimalist approach which lays bare the essence of the problem
without a great deal of object-oriented cruft.

Our implementation language uses a variant of Schneider’s security automata [14].
A security automaton enforces a security policy by monitoring the execution of a target
system, and intercepting instructions which would otherwise violate the specified pol-
icy. For instance, a user may specify that subsequent to a FileRead operation, the user
is forbidden from executing a Send operation. The corresponding automaton would
monitor the target system, watching for instances of FileRead. If one was seen, the au-
tomaton would then monitor the system for an attempted Send, and if such an attempt
were made, it would intercept the call and presumably execute some error handling
code instead.

We proceed as follows: in Section 2, we review related work. In Section 3, we
define Polyadic µABC, a minimal aspect-based calculus defining roles, advice, and
non-temporal advised messages. In Section 4, we augment Polyadic µABC to include
temporal pointcuts, specified using a subset of the regular expressions. In Section 5, we
define an equivalent automaton-based semantics, and describe several security related
examples. In Section 6, we demonstrate equivalence of the two semantics by providing
a translation of a configuration in the history-based semantics to an equivalent config-
uration in the automaton-based semantics. Future work is discussed in Section 7.

2 Related Work
In [9], Kiczales, et. al. identified several problems for which common programming
paradigms, namely object-oriented and procedural programming, could offer no known
elegant solutions. They characterized these problems as crosscutting concerns, which
cut across many facets of the system. They proposed a new paradigm, namely an aspect
oriented approach to address these concerns. Current implementations such as AspectJ
(http://www.aspectj.org) and Aspect# (http://www.castleproject.org) al-
low users to define pointcuts to trigger on atomic events, but with no regard for what
the target system has done in the past. There have been several studies of the semantic
foundations of AOP [20, 3, 12, 22, 17, 13, 7, 6, 11]. Recently, there has also been
work on both the semantics and implementation of temporal pointcuts [15, 21, 10, 2];

2

however none of this work discusses dynamic aspects (ie, advice that can be loaded at
runtime), which is central to our approach.

Security automata have been widely investigated as a means of implementing secu-
rity policies, and in fact Schneider has shown that these automata can implement any
safety policy, and that any safety policy can be implemented using such an automa-
ton ([14]). In [19], Walker uses security automata to encode security policies to be
enforced in automatically generated code. In [18], Erlingsson and Schneider use se-
curity automata to implement software fault isolation security policies, which prevent
memory accesses outside of the allowable address space. In that work, they discuss
techniques used to merge security automata directly into binary code at the x86 assem-
bler and Java Virtual Machine Language (JVML) level. In [4], Barker and Stuckey
investigate role based and temporal role based access control policies, implemented
using constraint logic specifications. In [16], Thiemann incorporates security automata
into an interpreter for a simply typed call-by-value lambda calculus, which he then
translates to an equivalent two-level lambda calculus, upon which type specialization
removes all run-time operations involving security state.

The limitations of stack-based security policies are explored in [8]; history-based
solutions are presented in [1]. Our work can be used as an alternative implementation
technique for the ideas in the later paper.

3 Polyadic µABC
NOTATION. For any metavariable X, we write X̄ for an ordered sequence of X’s.

We define a polyadic variant of µABC, introduced in [5]. The earlier paper fol-
lowed the style of object-oriented languages; each message “p�q : `” had a source p,
a destination q, and a name `. Such a message is triadic in that its meaning depends
on a triple of names, or roles. Here we generalize triadic messages to polyadic events,
〈p1, . . . ,pn〉 (equivalently 〈p̄〉), with triadic messages as a special case “〈p,q, `〉”.

For simplicity, we look at a single-threaded variant. At each moment in runtime,
there is a single event 〈p̄〉 under consideration. Execution is determined by advice
that triggers on the event. At any given moment, the current event is decorated with a
vector of advice ā, which is waiting to process the event. Thus a1, . . . ,an〈p̄〉 indicates
that advices named ai are waiting to process event p̄. We say that ai advises p̄, and that
ā〈p̄〉 is an advised event. For consistency with the precedence of declarations, we read
the advice list from right to left; thus an is the first advice to process the event.

The special advice call initiates advice lookup. When call〈p̄〉 executes, all the ad-
vice triggering on 〈p̄〉 is listed, resulting in a new execution state: ā〈p̄〉. To determine
whether an advice is triggered, we use the pointcut α. Pointcuts may be defined to
trigger on an exact role, or a set of roles. We facilitate the specification of such sets
using a role preorder, with maximal element top.

An advice body adv a[α]=u(x̄)N is parameterized both on the event x̄ and the
remaining advice u. Following the terminology of around advice in AspectJ, we referee
u as the proceed variable.

3

3.1 Syntax and Evaluation
We give the syntax and evaluation semantics of the language parametrically with re-
spect to pointcuts α and pointcut satisfaction D̄ ` 〈p̄〉 sat α, described in the next sub-
section. Note that terms have the form D̄; ā〈p̄〉; ie, a term is a list of declarations
followed by a single advised event. We refer to p̄ as the current event, ā as the current
advice list, and an as the current advice (ā = a1, . . . ,an).

TERM SYNTAX

a-z Names; call, commit, top and are reserved

D,E ::= Declarations
role p<q Declare Role; dn(role p) = p
adv a[α]=u(x̄)N Declare Advice; dn(adv a) = a; u and x̄ bound in N

L,M,N ::= Terms
D;M Declaration; dn(D) bound in M
ā〈p̄〉 Advised Message

NOTATION. We write dn(D) for the declared name of D. Reserved names may not
be declared. We identify syntax up to renaming of bound names. For any syntactic
category with typical element E , we write fn(E) for the set of free names occurring
in E . We write E{a/x} for the capture avoiding substitution of a for x in E . We write
E{ā/x̄} for E{a1/x1, . . . ,an/xn}; note that E{ā/x̄} is defined only if x̄ and ā have the same
length.

CONVENTION. To improve readability, we use the following discipline for names:
• a–e are advice names (including the reserved names call, beg, end);
• f–t are role names (including the reserved name top);
• u–w are advice names that are bound in the body of an advice declaration;
• x–z are role names that are bound in the body of an advice declaration;
• is a reserved name used to bind a name that is not of interest — that is, does

not occur free in any subterm.

We drop syntactic elements that are not of interest. Consider the declaration “adv a[α]=
u(x̄)N”; we may elide the name “adv[α]=u(x̄)N”, or the pointcut “adv a=u(x̄)N”,
or the body “adv a[α]”, or both the pointcut and the body “adv a”.

Evaluation of is defined using configurations which consist of a vector of declara-
tions and a term. By EVAL-DEC, declarations are recorded in the configuration when-
ever they are encountered in a term. By EVAL-CALL, if an event 〈p̄〉 is being processed
with first advice call, then the advice list ā is calculated, consisting of the advice names
ai such that the pointcut declared with ai is satisfied by 〈p̄〉. By EVAL-ADV, if an event
〈p̄〉 is being processed with first advice a, then the body of a is executed; the advice
body is parameterized by both the event 〈p̄〉 and remaining advice b̄.

4

EVALUATION (D̄BM→ Ē B N)

(EVAL-DEC)

D̄B E;M→ D̄,E BM

(EVAL-CALL)

[ā] =

[
a
∣∣∣∣

D̄ 3 adv a[α]
D̄ ` 〈p̄〉 sat α

]

D̄B b̄,call〈p̄〉 → D̄B b̄, ā〈p̄〉

(EVAL-ADV)

D̄ 3 adv a=u(x̄)N

D̄B b̄,a〈p̄〉 → D̄B N{b̄/u, p̄/x̄}

3.2 Atomic Event Pointcuts
We now consider a simple boolean logic over events. We allow event sets to be speci-
fied using role patterns which include subroles and “varargs”, ie, optional roles.1

POINTCUT SYNTAX

P,Q ::= Role Pattern
p Exact Role
+p Sub Role

α,β ::= Atomic Event Pointcut
〈P̄〉 Call Event
〈P̄,*〉 Call Event, varargs
α∨β Disjunction
¬α Negation

σ,ρ ::= 〈p̄〉 Atomic Event

Define 1 as 〈*〉; define 0 as ¬1; and define α∧β as ¬(¬α∨¬β). We write D̄ ` r 6 p
for the obvious preorder generated from the role declaration order.

ATOMIC POINTCUT SATISFACTION (D̄ ` σ sat α) (Obvious rules for or/not)

(SAT-CALL-ANY)

D̄ ` 〈p̄〉 sat 〈*〉
(SAT-CALL-EMPTY)

D̄ ` 〈〉 sat 〈〉

(SAT-CALL-EXACT)

D̄ ` 〈q̄〉 sat 〈Q̄〉
D̄ ` 〈r, q̄〉 sat 〈r, Q̄〉

(SAT-CALL-SUB)

D̄ ` 〈q̄〉 sat 〈Q̄〉 D̄ ` r 6 p
D̄ ` 〈r, q̄〉 sat 〈+p, Q̄〉

4 Temporal Pointcuts
We extend µABC with temporal pointcuts. To do this, we modify the language of
advice to include a temporal formula φ in addition to the atomic formula α. Intuitively,
the pointcut fires when φ matches the past and α matches the current event.

In an aspect language, the ontology of events is complicated by the fact that events
can be diverted; that is, an event can trigger advice that intercepts the event before it oc-
curs, potentially causing the event to abort. This is particularly common in applications

1In the full version we also allow vararg parameters in advice declarations, ie adv a[α]=u(x̄,*)N.

5

to security, where pointcuts often specify dangerous event sequences that interrupt nor-
mal processing. To indicate that an event is to be recorded in the history, we include
the special advice commit.

Thus when the past is considered in firing a pointcut, we require that advice specify
both the past φ and the potential future α. The past is specified as a regular expres-
sion over atomic event pointcuts; the potential future is specified as an atomic event
pointcut.

SYNTAX

D,E ::= · · · Declarations
adv a[φα]=u(x̄)N Declare Advice

φ,ψ,χ ::= Temporal Pointcuts
α Atomic Event Pointcut
ε Empty Sequence
φψ Sequence
φ* Kleene Star
φ+ψ Disjunction

σ,ρ ::= 〈p̄〉 Atomic Events

The semantics of temporal formulas D̄ σ̄ sat φ is defined in the standard way (re-
called in Appendix A) over strings of events, building on the semantics of atomic
events (D̄ ` σ sat α). Note that the regular expression /0 is represented here as the
atomic event pointcut 0. We define the language of the formula as follows: LH(D̄,φ) =
{σ̄ | D̄ σ̄ sat φ}.

We now give the evaluation semantics for the language with temporal advice. We
augment the semantics to record an execution history. We write |σ̄| for the length of
string σ̄. We define αn M= ααn−1, where α0 M= ε. We write “adv a[α]=u(x̄)N” as
shorthand for “adv a[1* α]=u(x̄)N”.

EVALUATION (σ̄; D̄BM→ ρ̄; Ē B N)

(EVAL-DEC-ROLE)

σ̄; D̄B role p<q;M
→ σ̄; D̄, role p<qBM

(EVAL-DEC-ADV)

σ̄; D̄B adv a[φα]=u(x̄)N;M
→ σ̄; D̄,adv a[1|σ̄| φα]=u(x̄)N BM

(EVAL-COMMIT)

σ̄; D̄B b̄,commit〈p̄〉 → σ̄,〈p̄〉; D̄B b̄(EVAL-CALL)

[ā] =

[
a
∣∣∣∣

D̄ 3 adv a[φα]
D̄ ` σ̄,〈p̄〉 sat φα

]

σ̄; D̄B b̄,call〈p̄〉 → σ̄; D̄B b̄, ā〈p̄〉

(EVAL-ADV)

D̄ 3 adv a=u(x̄)N

σ̄; D̄B b̄,a〈p̄〉 → σ̄; D̄B N{b̄/u, p̄/x̄}

EVAL-COMMIT causes an event to be recorded in the history. The original EVAL-DEC
is split into different cases for roles and advice. EVAL-DEC-ROLE, EVAL-CALL, and
EVAL-ADV are largely unchanged from the non-temporal semantics. Note only that in

6

EVAL-CALL the history is used, along with the current event, to determine whether an
advice fires.

Of particular note is the rule EVAL-DEC-ADV, which takes a newly declared advice,
and prepends a string of 1s to the temporal pointcut prior to adding it to the list of
declarations. The purpose of doing so is to ensure that the advice only triggers on
the event α from the point of declaration onwards, as opposed to some event that has
already occurred in the past.

5 Automaton
In this section, we define an equivalent automaton-based semantics specified using
temporal pointcuts. The automaton is a modified security automaton, in which each
state has a possibly empty set of advice associated with it. When a call〈p̄〉 is executed,
the current state’s set of advice is scanned for any advice whose pointcut is satisfied by
the event 〈p̄〉. If a matching advice is found, the call is intercepted, and the advice’s
body is executed instead.

The automaton initially starts out with a single state with no advice associated with
it:

A /0 : ω 1 ω M
= 1∗

The automaton is dynamically augmented with each newly declared piece of ad-
vice. We provide an example to illustrate.

EXAMPLE 1. Consider a security policy which prohibits Send operations after a Fil-
eRead has been executed ([14]). In an aspect-oriented world, one might implement
such a policy by declaring an advice adv a[φα]=u(x̄)M where M is the error handling
code, φ M= (¬FileRead)∗ FileRead (¬Send)∗, and α M

= Send.
Upon declaring this piece of advice, and assuming that no prior advice had been

declared, the program automaton becomes:

ARS : φ0 φ1,〈a〉
call〈FileRead〉

¬call〈FileRead〉

¬call〈Send〉

φ0
M
= (¬call〈FileRead〉)∗ call〈FileRead〉 (¬call〈Send〉)∗

φ1
M
= (¬call〈Send〉)∗

This automaton begins in state φ0, and monitors the target system for a call〈FileRead〉.
If one is seen, it moves to state φ1. Since this state has adv a[φα] associated with it, it
begins to monitor the system for a’s atomic event, call〈Send〉. If such an attempt is
made, it intercepts the call and executes advice a’s error handler instead.

EXAMPLE 2. Consider a Chinese Wall policy, in which we have two systems A and B,
such that if a user logs into A, we forbid the user from subsequently logging into A, and
vice versa. To implement one direction, we could declare an advice adv b[ψβ]=u(x̄)N,
where N is the error handling code, ψ M

= 1∗call〈Login, A〉(¬call〈Login, B〉)∗, and
β M= call〈Login, B〉,

7

The automaton for adv b, the first half of our Chinese wall policy becomes:

ACW0 : 〈ψ0〉 〈ψ1〉,〈b〉
call〈Login, A〉

1∗ ¬call〈Login, B〉

ψ0
M
= 1∗call〈Login, A〉(¬call〈Login, B〉)∗

ψ1
M
= (¬call〈Login, B〉)∗

This automaton begins in state ψ0, and monitors the target system for a call〈Login, A〉.
If one is seen, it moves to state ψ1. Since this state has advice 〈b〉 associated with it, it
begins to monitor the system for b’s atomic event, call〈Login, B〉. If such an attempt
is made, it intercepts the call and executes advice b’s error handler instead.

The automaton for advice c, the second part of our Chinese wall policy, is given
similarly:

ACW1 : 〈χ0〉 〈χ1〉,〈c〉
call〈Login, B〉

1∗ ¬call〈Login, A〉

χ0
M
= 1∗call〈Login, B〉(¬call〈Login, A〉)∗

χ1
M
= (¬call〈Login, A〉)∗

By computing the product of the above two automata using the standard product
construction, we arrive at an automaton which implements our desired Chinese wall
policy:

ACW0 ×ACW1 = ACW :

〈ψ1,χ0〉,〈b〉 〈ψ0,χ0〉 〈ψ0,χ1〉,〈c〉
call〈Login, A〉 call〈Login, B〉

5.1 Syntax and Evaluation
We define syntax and operational semantics for our automata. The transition alphabet
ranges over the atomic event pointcuts α. The states are sets of temporal pointcuts
φ, and associated with each state is a possibly empty set of advice names. While our
modified security automata are essentially NFAs, there is one key difference— in lieu
of accepting states, we instead have advice states, in which we associate with the state
a set of advice names. On a call, we search the current state’s set of advice names for
an advice whose atomic pointcut matches the call. If a matching advice is found, the
call is intercepted and the advice’s body executed instead.

Transitions between states are taken on commits. The advice states (φX) and tran-
sition function (φ α−→ ψ) are defined below. To make the presentation more readable,
we elide and advice when a state has none associated with it. That is, we write the state
“φ; /0” simply as φ.

8

ADVICE STATES (φX)

εX
φX ψX
φψX

φX
φ+ψX

ψX
φ+ψX φ*X

TRANSITION RELATION (φ α−→ ψ)

α α−→ ε
φ α−→ φ′

φψ α−→ φ′ψ
φX ψ α−→ ψ′

φψ α−→ ψ′
φ α−→ φ′

φ* α−→ φ′ φ*

φ α−→ φ′

φ+ψ α−→ φ′
ψ α−→ ψ′

φ+ψ α−→ ψ′

We write φ=⇒ for the reflexive transitive closure of α−→. We can modulate the
transition relation from atomic event pointcuts to atomic events: define D̄ ` φ σ−→ φ′
if φ α−→ φ’ and D̄ ` σ sat α. Further we can lift the definition to automaton states:
D̄ ` φ1, . . . ,φn

σ=⇒ ψ1, . . . ,ψn if D̄ ` φi
σ−→ ψi for all i between 1 and n. Finally we

lift the resulting relation (D̄ ` Φ σ=⇒ Ψ) to event sequences: D ` Φ0
σ1,...,σn====⇒ Φn if

D̄ `Φi−1
σi=⇒Φi for all i between 1 and n.

Next, we formally state how to derive an automaton from an advice adv a[φα]:

DEFINITION 3. For any temporal formula φ and advice a, let the automaton ι(φ,a)
induced by φ and a be the security automaton with states and transitions as defined by
the transition relation given above, with start state φ, and advice a associated with each
advice state.

We now define a syntax for our modified security automaton. A state in our au-
tomaton consists of a set of temporal pointcuts. For instance, in Example 2, automaton
ACW has three states: 〈ψ1,χ0〉,〈ψ0,χ0〉, and 〈ψ0,χ1〉. We associate with each state a
possibly empty set of advice names. An automaton is a set of states along with their
associated advice sets. The transitions between states are not explicitly specified, since
the transitions can be derived by examining the temporal pointcuts within the states.

AUTOMATON SYNTAX

A ::= 〈Φ, ā〉 | 〈Φ, ā〉,A Automaton — sequence of 〈state,advice set〉 pairs

Φ,Ψ ::= φ | φ,Φ State — set of temporal pointcuts

We define the product of two automata using the standard product construction. In
assigning sets of advice to the states in the product automaton, we take the set union of
each component state’s associated advice names:

DEFINITION 4. For any two automata A,B,

A×B = {〈ΨA,ΨB; ā, b̄〉|〈ΨA, ā〉 ∈ A,〈ΨB, b̄〉 ∈ B}

9

Next, we show how to merge an advice adv a[φα] with an existing automaton A .
Essentially, we construct the automaton for the advice, and create the product automa-
ton:

ν(A ,φ,a)
M
= A× ι(φ,a)

We now give an automaton-based evaluation semantics to our language. Whereas
previously we recorded the entire program history, we now instead maintain an au-
tomaton and state, which records only events of interest.

EVALUATION (A ; Φ; D̄BM→ A ′; Ψ; D̄′ BM′) (EVAL-DEC-ROLE AND EVAL-ADV AS BEFORE)

(EVAL-COMMIT)

D̄ `Φ p̄=⇒Ψ
A ; Φ; D̄B b̄,commit〈p̄〉

→ A ; Ψ; D̄B b̄

(EVAL-DEC-ADV)

A ; Φ; D̄ B (adv a[φα]=u(x̄)N;M)
→ ν(A ,φ,a); 〈Φ,φ〉; D̄,(adv a[α]=u(x̄)N)BM

(EVAL-CALL)

[ā] =

[
a

∣∣∣∣∣
〈Φ, b̄〉 ∈ A a ∈ b̄
D̄ 3 adv a[α]
D̄ ` 〈p̄〉 sat α

]

A ; Φ; D̄B b̄,call〈p̄〉 → A ; Φ; D̄B b̄, ā〈p̄〉

Operationally, EVAL-DEC-ROLE and EVAL-ADV act the same as in the history-
based semantics. EVAL-DEC-ADV takes a new advice, merges it into the automaton
using the ν operator, updates the current state, and adds the advice to the list of decla-
rations. EVAL-CALL looks through the list of advices attached to the current state for
one whose atomic pointcut matches the role vector p̄ being called. If a matching advice
is found, then the call〈p̄〉 is replaced with the advice body. EVAL-COMMIT simply
updates the state of the automaton.

6 Equivalence
In this section, we demonstrate equivalence of the history-based semantics provided
in Section 4 with the automaton-based semantics provided in Section 5 by providing
a translation from a configuration in the former to an equivalent one in the latter. We
conclude by showing that evaluation preserves the translation.

Intuitively, we translate a history-based configuration 〈σ̄, D̄〉 to an automaton-based
configuration 〈A ,Φ, Ē〉 as follows: given a history σ̄ and a set of declarations D̄, we
first construct an intermediate automaton A ′ which essentially simulates the automata
induced by each advice declared in D̄. We then compute the state Φ by simulating
the history σ̄ on A ′. Finally, we convert the intermediate automaton A ′ to the final
automaton A by pruning intermediate states.

Recall the manner in which EVAL-DEC-ADV is defined in the history-based se-
mantics: whenever an advice is declared, the current “timestamp” is explicitly noted
in the form of a string of ‘1’s prepended to the temporal pointcut. Thus if an advice

10

adv a[φα] is declared at time n, the resulting automaton will have a string of n “place-
holder” states π1, ...,πn, where πi

1−→ πi+1 for i between 1 and n−1, and πn
1−→ φ, as

shown below:

π1 π2 ... πn φ
1 1 1 1

CONVENTION. In constructing an automaton for an advice adv a[1nφα] declared at
time n, we label the states used as placeholders for time 1 through n as π1, ...,πn, and
we refer to these as π-states.

Strictly speaking, we must account for the fact that for an advice adv a[φα], φ may in
fact begin with a string of leading 1s. We can easily get around this by syntactically dif-
ferentiating between those 1s implicitly inserted by EVAL-DEC-ADV as a timestamp,
and those explicitly specified by the user. In the interest of simplifying the presentation,
we choose not to do so here.

When we construct the product of two automata, if a state Φ = 〈φi,ψi, ...χi〉 in the
resulting automaton is such that none of φi,ψi, ...χi are π-states, we say that Φ is π-free.

We will often need to project the π-free states of an automaton, so we formally
define this operation:

P 6π(A) = {〈Φ, ā〉 ∈ A |Φ contains no π states}

LEMMA 5. For two automata A and B , P 6π(A×B) = P 6π(A)×P 6π(B)

Proof. Immediate. �

To construct A ′, we take the product of the automata induced by each advice in D̄.
Observe that as the product automaton, A ′ simulates each advice’s automaton. As such,
when the history σ̄ is simulated on A ′, each advice’s π-states serve as a placeholder,
delaying monitoring of the pointcut until the point in the program’s execution at which
the advice was declared. When the simulation completes, we will have computed the
current state in A ′, which is guaranteed to be π-free. We then convert A ′ to A by setting
A to P 6π(A ′). We provide an example to illustrate:

EXAMPLE 6. Recall the following security policies and their corresponding advices
from Section 1:

Advice Policy Pointcut
a Read-send φα, where:

φ M= 1∗call〈FileRead〉(¬call〈Send〉)∗
α M

= call〈Send〉
b Chinese Wall, part I ψβ, where:

ψ M
= 1∗call〈Login, A〉(¬call〈Login, B〉)∗

β M= call〈Login, B〉

11

Consider the following scenario: advice a is declared, and we execute a call〈read〉
followed by a call〈f 〉 for some function f . We then declare advice b. Our set of
declarations now contains adv a[φα] and adv b[11 ψβ].

b’s pointcut starts with ‘11’, indicating that two calls were executed prior to its
declaration. adv a[φα] and adv b[ψβ] induce the following two automata, respectively:

Aa : φ0 φ1,〈a〉
call〈FileRead〉

¬call〈FileRead〉

¬Send

Ab : π0 π1 ψ0 ψ1,〈b〉
1 1 call〈Login, A〉

1∗

¬call〈Login, B〉

The π states in Ab serve as dummy placeholders and represent the program history
that was executed prior to a1’s declaration. To construct our intermediate automaton
A ′, we compute the product automaton Aa×Ab. The result is shown below:

A ′ = Aa×Ab :

φ0π0 φ0π1 φ0ψ0

φ1π1,〈a〉

φ1ψ0,〈a〉 φ0ψ1,〈b〉

φ1ψ1,〈a,b〉

¬call〈FileRead〉 ¬call〈FileRead〉

call〈FileRead〉

¬call〈Send〉

call〈Read〉
call〈Login, A〉

call〈Login, A〉 call〈FileRead〉

cal
l〈FileRead〉

¬call〈Login, A〉,¬call〈FileRead〉

¬call〈Login, B〉

¬call〈Send〉,¬call〈Login, B〉

To compute Φ, we simulate the program history σ̄ = (call〈FileRead〉,call〈f 〉)
on A ′, and we find that Φ = 〈φ1ψ0〉. Finally, we compute A by removing from A ′ any
states containing a π state. The result is shown below:

A :

φ0ψ0

φ1ψ0,〈a〉

φ0ψ1,〈b〉

φ1ψ1,〈a,b〉

call〈Login, A〉

call〈Login, A〉
call〈FileRead〉call〈FileRead〉

¬call〈Login, A〉,
¬call〈FileRead〉 ¬call〈Login, B〉

¬call〈Send〉 ¬call〈Send〉,
¬call〈Login, B〉
�

Finally, we formalize the translation from a history based configuration to an automaton-
based one. That is, given a history, declaration pair 〈σ̄, D̄〉, we formally show how to

12

construct the corresponding automaton, state, declaration triple 〈A ,Φ, Ē〉. Intuitively,
we construct the intermediate product automaton A ′ as discussed above, we compute
the state Φ by simulating the history σ̄ on A ′, and we prune the intermediate states
from the A ′ to obtain A . Deriving Ē is trivial.

Our translation makes use of the following functions:

Tdec(D̄) = {adv a[α]|adv a[φα] ∈ D̄}
Tstate(σ̄, D̄) = Ψ where D̄ = 〈adv [φ1 α1], . . . ,adv [φn αn]〉 and 〈φ1, ...,φn〉 σ̄=⇒Ψ

We are now in a position to define the function T which translates a history-based
configuration 〈σ̄; D̄〉 to an automaton-based configuration 〈A ;Φ; Ē〉:

DEFINITION 7. T (σ̄; D̄) = A ;Φ; Ē, where

A = P 6π

[
∏

adv a[φα]∈D̄

ι(φ,a)

]
Φ = Tstate(σ̄, D̄) Ē = Tdec(D̄)

We define the language of a formula φ as follows:

LA(D̄,φ) = {σ̄|D̄ ` φ σ̄=⇒ φ′, φ′X, and φ′ ∈ Tstate(σ̄, D̄)}

LEMMA 8. For all D̄ and φ, LH(D̄,φ) = LA(D̄,φ).

Proof. By induction on the structure of σ̄. �

We conclude by showing that the translation is preserved by evaluation. That is, if

• σ̄; D̄BM→ σ̄′; D̄′ BM′

• T (σ̄, D̄) = A ;Φ; Ē,

• A ; Φ; Ē BM→ A ′; Φ′; Ē′ BM′, and

• T (σ̄′, D̄′) = A ′′;Φ′′; Ē′′

then A ′ = A ′′,Φ′ = Φ′′, and Ē′ = Ē′′, as shown below:

σ̄; D̄ σ̄′; D̄′

A ;Φ; Ē A ′;Φ′; Ē′
T T

PROPOSITION 9. If σ̄; D̄BM→ σ̄′; D̄′ BM′ and T (σ̄, D̄) = A ,Φ, Ē, then A ; Φ; Ē B
M→ A ′; Φ′; Ē′ BM′, where T (σ̄′, D̄′) = A ′,Φ′, Ē′.

13

Proof. In each case, we first translate the left hand side into the automaton-based se-
mantics. We then apply the evaluation rule (e.g., EVAL-DEC-ADV) to the automaton
to obtain the next configuration 〈A ′,Φ′, Ē′〉. We then translate the right hand side into
the automaton based semantics and show that the result equals 〈A ′,Φ′, Ē′〉.

In the cases of EVAL-DEC-ROLE and EVAL-ADV, this is trivial.
In the case of EVAL-DEC-ADV, recall its evaluation rule:

σ̄; D̄B adv b[ψβ],M→ σ̄; D̄,adv b[1|σ̄|ψβ]BM

The declarations D̄ (equivalently Ē) are trivially preserved by Eval-Dec-Adv, which
leaves us to show that the automaton A and the state Φ are preserved.

We first show that the automaton is preserved by Eval-Dec-Adv: translating the left
hand side yields T (σ̄; D̄) = A ;Φ; Ē, where

A M
= P 6π

[
∏

adv a[φα]∈D̄

ι(φ,a)

]
Φ M

= Tstate(D̄) Ē M
= Tdec(D̄)

By EVAL-DEC-ADV, A ; Φ; Ē B adv b[ψβ],M→ A ′; Φ′; Ē′ BM, where

A ′ M= P 6π
[

∏
adv a[φα]∈D̄

ι(φ,a)

]
× ι(ψ,b) Φ′ M= Tstate(D̄),ψ Ē′ M= Tdec(D̄),b

Finally, we must show that T (σ̄′; D̄,adv b[1|σ̄|ψβ]) = A ′;Φ′; Ē′. By definition,
T (σ̄′; D̄,adv b[1|σ̄|ψβ]) = A ′′;Φ′′; Ē′′, where

A ′′ = P 6π
[
(∏

adv a[φα]∈D̄

ι(φ,a))× ι(1|σ̄|ψ,b)

]
= P 6π

[
(∏

adv a[φα]∈D̄

ι(φ,a))× ι(ψ,b)

]

Finally, Lemma 5 gives us that A ′ = A ′′:

P 6π
[
(∏

adv a[φα]∈D̄

ι(φ,a))× ι(ψ,b)

]
= P 6π

[
∏

adv a[φα]∈D̄

ι(φ,a)

]
× ι(ψ,b)

and hence that the automaton is preserved by EVAL-DEC-ADV.
To show that the state Φ is preserved by EVAL-DEC-ADV, we simulate σ̄ on the

intermediate automaton
[
∏adv a[φα]∈D̄ ι(φ,a)

]
× ι(1|σ̄|ψ,b). It immediately follows that

the resulting state Φ′′ = 〈Φ,ψ〉 = Φ′. The declarations Ē are trivially preserved by
EVAL-DEC-ADV.

We now consider the case of EVAL-CALL. We must show that in a history-based
configuration 〈σ̄; D̄〉, for any declared advice adv a[φα], if D̄ σ̄ sat φ and D̄` p̄ sat α
where p̄ is the role vector being called, then adv a[α] is associated with the state Φ in
T (σ̄, D̄). This follows directly from Lemma 8: if D̄ σ̄ sat φ in the history-based
semantics, then in the automaton based semantics, φ σ̄=⇒ φ′, where φ′X, so 〈φ′,a〉 ∈Φ.

Finally, the case of EVAL-COMMIT is trivial. Recall the evaluation rule in the
history based semantics: σ̄; D̄BM,commit〈p̄〉 → σ̄, p̄; D̄ BM, and in the automaton-

14

based semantics:

(EVAL-COMMIT)

D̄ `Φ p̄=⇒Ψ
A ; Φ; Ē B b̄,commit〈p̄〉

→ A ; Ψ; Ē B b̄

In this case, T (σ̄; D̄) = A ;Φ; Ē, and T (σ̄, p̄; D̄) = A ;Φ′; Ē where

A = P 6π
[

∏
adv a[φα]∈D̄

ι(φ,a)

]
Ē = Tdec(D̄)

What remains is to show that Ψ = Φ′. In doing so, we will have succeeded in showing
that A ,Φ, and Ē are all preserved by EVAL-COMMIT. By definition of T , simulating
σ̄ on the intermediate automaton ∏adv a[φα]∈D̄ ι(φ,a) places A in state Φ. To derive Φ′

from σ̄, p̄; D̄, we simply carry the simulation one step further, taking transition p̄. By
EVAL-COMMIT in the automaton-based semantics, we know that Φ p̄=⇒Φ′, and hence
that Ψ = Φ′, which is what we needed to show. �

PROPOSITION 10. If A ; Φ; Ē B M → A ′; Φ′; Ē′ B M′, and T (σ̄, D̄) = A ,Φ, Ē, then
σ̄; D̄BM→ σ̄′; D̄′ BM′, where T (σ̄′, D̄′) = A ′,Φ′, Ē′.
Proof. The proof closely parallels that of Proposition 9, and as such, we omit the details
here. Details can be found in Appendix B.

This brings us to the main result: that the two semantics are equivalent:

THEOREM 11. σ̄; D̄BM→∗ ρ̄; Ē B N if and only if T (σ̄; D̄BM)→∗ T (ρ̄; Ē B N).
Proof. By Propositions 9 and 10, and induction on the length of→∗. �

7 Conclusions
We have described a novel minimal language for aspect-oriented programming with
temporal pointcuts. We described an implementation of the language using security
automata and proved the correctness of the implementation. We have presented exam-
ples of applications to software security.

In extended the current work, we are most interested in the possibility of static
analyses. In particular, we are interested in type-preserving translations of class-based
languages into µABC. We have already developed untyped translations; finding type-
preserving translations presupposes a suitable typing systems for µABC, which remains
future work.

References
[1] Martı́n Abadi and Cedric Fournet. Access control based on execution history. In

Proceedings of the Network and Distributed System Security Symposium Confer-
ence, 2003.

15

[2] Chris Allan, Pavel Avgustinov, Sascha Kuzins, Oege de Moor, Damien Sereni,
Ganesh Sittampalam, Julian Tibble Aske Simon Christensen, Laurie Hendren,
and Ondřej Lhoták. Adding trace matching with free variables to aspectj. In
OOPSLA 2005, 2005.

[3] J. Andrews. Process-algebraic foundations of aspectoriented programming. In In
Reflection, LNCS 2192, 2001.

[4] Steve Barker and Peter Stuckey. Flexible access control policy specification with
constraint logic programming. ACM Transations on Information and System Se-
curity, 6(4):501–546, 2003.

[5] Glen Bruns, Radha Jagadeesan, Alan Jeffrey, and James Riely. µABC: A minimal
aspect calculus. In Philippa Gardner and Nobuko Yoshida, editors, CONCUR
2004: Concurrency Theory, volume 3170 of Lecture Notes in Computer Science,
pages 209–224, London, August 2004. Springer.

[6] Curtis Clifton, Gary T. Leavens, and Mitchell Wand. Parameterized aspect calcu-
lus: A core calculus for the direct study of aspect-oriented languages. Submitted
for publication, at ftp://ftp.ccs.neu.edu/pub/people/wand/papers/clw-03.pdf,
oct 2003.

[7] R. Douence, O. Motelet, and M. Südholt. A formal definition of crosscuts.
In Proceedings of the 3rd International Conference on Reflection and Cross-
cutting Concerns, LNCS. Springer Verlag, September 2001. long version is
http://www.emn.fr/info/recherche/publications/RR01/01-3-INFO.ps.gz.

[8] Cdric Fournet and Andrew D. Gordon. Stack inspection: Theory and variants.
ACM Transactions on Programming Languages and Systems, 25(3):360–399,
May 2003.

[9] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented
programming. In European Conference on Object-Oriented Programming
(ECOOP), volume 1241 of Lecture Notes in Computer Science. Springer, June
1997.

[10] K. Klose and K. Ostermann. Back to the future: Pointcuts as predicates over
traces. In In Foundations of Aspect-Oriented Languages workshop (FOAL’05),
2005.

[11] R. Lämmel. A Semantical Approach to Method-Call Interception. In Proc. of the
1st International Conference on Aspect-Oriented Software Development (AOSD
2002), pages 41–55, Twente, The Netherlands, April 2002. ACM Press.

[12] Hidehiko Masuhara, Gregor Kiczales, and Chris Dutchyn. Compilation semantics
of aspect-oriented programs.

[13] W. De Meuter. Monads as a theoretical foundation for aop. In International
Workshop on Aspect-Oriented Programming at ECOOP, 1997.

16

ftp://ftp.ccs.neu.edu/pub/people/wand/papers/clw-03.pdf

[14] Fred Schneider. Enforceable security policies. ACM Transactions on Information
and System Security, 3(1):30–50, 2000.

[15] V. Stolz and E. Bodden. Temporal assertions using AspectJ. In RV’05 - Fifth
Workshop on Runtime Verification, 2005. To Appear.

[16] Peter Thiemann. Enforcing safety properties using type specialization. In Pro-
gramming Languages and Systems: 10th European Symposium on Programming,
ESOP 2001, volume 2028. Springer, 2001.

[17] David Tucker and Shriram Krishnamurthi. Pointcuts and advice in higher-order
languages. In Conference Record of AOSD 03: The 2nd International Conference
on Aspect Oriented Software Development, 2003.

[18] Úlfar Erlingsson and Fred Schneider. Sasi enforcement of security policies: a
retrospective. In NSPW ’99: Proceedings of the 1999 workshop on New security
paradigms, pages 87–95, New York, NY, USA, 2000. ACM Press.

[19] David Walker. A type system for expressive security policies. In POPL ’00: Pro-
ceedings of the 27th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pages 254–267, New York, NY, USA, 2000. ACM Press.

[20] David Walker, Steve Zdancewic, and Jay Ligatti. A theory of aspects. In Con-
ference Record of ICFP 03: The ACM SIGPLAN International Conference on
Functional Programming, 2003.

[21] R. J. Walker and K. Viggers. Implementing protocols via declarative event pat-
terns. In Twelfth International Symposium on the Foundations of Software Engi-
neering, 2004.

[22] Mitchell Wand, Gregor Kiczales, and Christopher Dutchyn. A semantics for ad-
vice and dynamic join points in aspect-oriented programming. appeared in Infor-
mal Workshop Record of FOOL 9, pages 67-88; also presented at FOAL (Work-
shop on Foundations of Aspect-Oriented Languages), a satellite event of AOSD
2002, 2002.

A Semantics of Temporal Pointcuts
TEMPORAL POINTCUT SATISFACTION (D̄ σ̄ sat φ)

(SAT-ATOM)

D̄ ` σ sat α
D̄ σ sat α
(SAT-OR-LEFT)

D̄ σ̄ sat φ
D̄ σ̄ sat φ+ψ

(SAT-SEQ)

D̄ σ̄ sat φ
D̄ ρ̄ sat ψ
D̄ σ̄, ρ̄ sat φψ

(SAT-STAR)

D̄ σ̄ sat φ
D̄ ρ̄ sat φ*

D̄ σ̄, ρ̄ sat φ*

17

(SAT-OR-RIGHT)

D̄ σ̄ sat ψ
D̄ σ̄ sat φ+ψ

(SAT-SEQ-EMPTY)

D̄ ε sat ε
(SAT-STAR-EMPTY)

D̄ ε sat φ*

B Proof of Proposition 10
Again, in the cases of EVAL-DEC-ROLE and EVAL-ADV, this is trivial. In the case of
EVAL-DEC-ADV, recall its evaluation rule:

A ; Φ; Ē B adv b[ψβ],M→ A ′; Φ′; Ē′ BM

where

A ′ = A× ι(ψ,b) Φ′ = Φ,ψ Ē′ = Ē,b

In the history-based semantics, we have

σ̄; D̄B adv b[ψβ],M→ σ̄; D̄,adv b[1|σ̄|ψβ]BM

where T (σ̄; D̄) = A ;Φ; Ē. What remains is to show that T (σ̄; D̄,adv b[1|σ̄|ψβ]) =
A ′;Φ′; Ē′, which we already proved in Proposition 9.

In the case of EVAL-CALL, if a call〈p̄〉 is replaced by the body of some advice
adv a[φα], this must mean that advice a is associated with the current state of the
automaton, and that D̄ ` p̄ sat α. We must show that in the history-based semantics,
(i) the advice adv a[φα] is declared (trivial), (ii) that D̄ ` p̄ sat α (given), and that (iii)
D̄ σ̄ sat φ. Point (iii) follows directly from Lemma 8: since adv a[α] is associated
with the current state, it must mean that φ σ̄=⇒ φ′, and φ′X. By Lemma 8, it immediately
follows that D̄ σ̄ sat φ.

Finally, in the case of EVAL-COMMIT, recall its evaluation rule in the automaton-
based semantics:

(EVAL-COMMIT)

D̄ `Φ p̄=⇒Ψ
A ; Φ; Ē B b̄,commit〈p̄〉

→ A ; Ψ; Ē B b̄

If A ; Φ; ĒB b̄,commit〈p̄〉 →A ; Ψ; ĒB b̄, then it must be the case that Φ p̄=⇒Ψ. Now,
let σ̄; D̄ be the history-based configuration such that T (σ̄; D̄) = A ;Φ; Ē. Then by defi-
nition of T ,

A = P 6π
[

∏
adv a[φα]∈D̄

ι(φ,a)

]
Ē = Tdec(D̄)

Recall the rule in the history-based semantics:

σ̄; D̄BM,commit〈p̄〉 → σ̄, p̄; D̄BM

18

We must show that T (σ̄, p̄; D̄) = A ;Φ′; Ē where Φ′ = Ψ. A and Ē follow immediately
from the definition of T .

Furthermore, by definition of T , simulating σ̄ on the intermediate automaton ∏adv a[φα]∈D̄ ι(φ,a)

puts the automaton in state Φ. To derive Φ′ from σ̄, p̄; D̄, we simply carry the simula-
tion one step further, taking transition p̄. By EVAL-COMMIT in the automaton-based
semantics, we know that Φ p̄=⇒ Φ′, and hence that Φ′ = Ψ, which is what we needed
to show. �

C Derived Forms
To give a feel for the language, we define a few derived forms and discuss their exe-
cution. The derived forms make use of the syntactic transformation hook(c,M), which
places c at the end of the current advice list of M. (Recall that every term has the form
M = D̄; ā〈p̄〉).

hook(c,(D̄; ā〈p̄〉)) M= D̄;c, ā〈p̄〉

DERIVED FORMS (LET)

D,E ::= · · · Declarations
let x̄=N; Let; dn(let x̄) = x̄

let x̄=N;M M
= (adv c=(x̄)M);hook(c,N) Let; c 6∈ fn(D̄)∪ fn(M)

For example we have the following.

let x̄=N; let ȳ=L;M = adv c=(x̄)
(
(adv d=(ȳ)M);hook(d,L)

)
;

hook(c,N)

DERIVED FORMS (FUNCTIONS)

L,M ::= · · · Terms
λx̄.N Abstraction

λx.N M
= role f;

(
adv[〈f,+top〉]=(,x)N

)
;〈f〉 Abstraction; f 6∈ fn(N)

L M M
= let f=L; let x=M;call〈f,x〉 Application; f,x 6∈ fn(M)

For example we have the following.

(λx.〈x〉) 〈p〉= adv c=(f)(adv d=(x)call〈f,x〉);d〈p〉;
role g;
adv a[〈g,+top〉]=(,x)〈x〉;
c〈g〉

Let D̄ =
(
adv c=(f)(adv d=(x)call〈f,x〉);d〈p〉

)
, role g,

(
adv a[〈g,+top〉]=(,x)〈x〉

)
.

Also let Ē = D̄,(adv d=(x)call〈g,x〉). Then we have the following.

(λx.〈x〉) 〈p〉 →→→ D̄B c〈g〉

19

→ D̄B (adv d=(x)call〈g,x〉);d〈p〉
→ Ē B d〈p〉
→ Ē B call〈g,p〉
→ Ē B a〈g,p〉
→ Ē B 〈p〉

20

	Introduction
	Related Work
	Polyadic ABC
	Syntax and Evaluation
	Atomic Event Pointcuts

	Temporal Pointcuts
	Automaton
	Syntax and Evaluation

	Equivalence
	Conclusions
	Semantics of Temporal Pointcuts
	Proof of Proposition 10
	Derived Forms

