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Lemma 0.1 Let f be a differentiable function in (0,∞) such that f(r) = 0 for r ∈ (0,∞) implies
that f ′(r) > 0. Suppose further that f ′ is continuous in (0,∞). Then f has at most one root in
(0,∞).

Proof. Proceed by contradiction. Suppose that f has more than one root in (0,∞). Let r1

and r2, with r1 < r2, be two consecutive such roots (note that we can always find two consecutive
roots r1 and r2 because f ′(r) > 0 for any root r). From the hypothesis, we have f ′(r1) > 0 and
f ′(r2) > 0. Since f ′ is continuous at r1, there exists an 0 < ε < (r2− r1) such that f

′(x) > 0 in the
interval (r1, r1 + ε). This shows that f is strictly increasing on (r1, r1 + ε), and by the choice of r1

and r2, it follows that f(x) > 0 for all x ∈ (r1, r2). Similarly, since f ′(r2) > 0, and by continuity
of f ′ at r2, there exists 0 < δ < (r2 − r1) such that f ′(x) > 0 in (r2 − δ, r2 + δ), and hence, f is
strictly increasing in the interval (r2 − δ, r2 + δ). Let a ∈ (r2 − δ, r2 + δ), then f(a) < f(r2)= 0.
But a ∈ (r1, r2), and f(x) > 0 for all x ∈ (r1, r2), a contradiction. This completes the proof.

Definition A branching vector, or simply, a branch, is an r-tuple (α1, · · · , αr), where r > 1 and
α1, · · · , αr are positive real numbers with α1 ≤ α2 ≤ · · · ≤ αr.

In the literature, the notion of a branching vector, or a branch, always involves positive integers
as the coordinates of the branching vector. The reason being that these coordinates represent the
reduction of the parameter along each side of the branch. In this paper, we unconventionally use
positive real numbers instead. It will be justified later how these coordinates are interpreted when
it comes to associating them with the parameter reduction in each side of the branch.

Definition Let (α1, · · · , αr) be a branch.

(a) The characteristic function of (α1, · · · , αr) is: xαr − xαr−αr−1 − · · · − xαr−α1 − 1.

(b) The auxiliary function of (α1, · · · , αr) is: x−αr + x−αr−1 + · · ·+ x−α1 − 1.

Theorem 0.2 Let (α1, · · · , αr) be a branch. The following is true.

(a) In the interval (0,∞), the branching function f(x) = xαr − xαr−αr−1 − · · · − xαr−α1 − 1 of
(α1, · · · , αr) has a unique root x0, and f(x) < 0 if and only if x < x0.
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(b) In the interval (0,∞), the auxiliary function A(x) = x−αr + x−αr−1 + · · · + x−α1 − 1 of
(α1, · · · , αr) has a unique root x0, where x0 is the root of f(x), and A(x) > 0 if and only if
x < x0.

Proof. To prove part (a) we will prove a more general statement. We will show that the
statement in (a) is true for any function g(x) of the form xh − Σri=0aix

βi , where h is a positive
real number, βi, for i = 0 · · · r, are non-negative real numbers smaller than h with β0 = 0, and ai,
i = 0, · · · , r are positive integers. Since f(x) satisfies this form, the statement in (a) will follow.
Let g(x) be a function as above, and suppose that s is a root of g in (0,∞). Note that g is a

differentiable function in the specified interval. Moreover, g′(x) is a continuous function in (0,∞).
Since g(s) = 0, we have

sh = Σri=0ais
βi . (1)

Now g′(x) = hxh−1 −Σri=0aiβix
βi−1 = hxh−1 −Σri=1aiβix

βi−1 since β0 = 0. Therefore xg′(x) =
hxh − Σri=1aiβix

βi . Now

sg′(s) = hsh − Σri=1aiβis
βi

= hΣri=0ais
βi − Σri=1aiβis

βi (2)

= h[Σri=1ais
βi + a0]− Σ

r
i=1aiβis

βi

= [Σri=1ai(h− βi)s
βi ] + ha0. (3)

Note that we have used equality (1) to obtain equality (2).
Since h > βi for every i, s ∈ (0,∞), and ai is a positive integer for every i, it follows from (3)

that g′(s) is a positive integer. Now s was an arbitrarily chosen root of g(x). This shows that
g′(s) > 0 for every root s ∈ (0,∞) of g. Since the function g(x) satisfies the condition of
Lemma 0.1, it follows that g(x) has at most one root in (0,∞). Now g(0) = −a0 < 0, and since
h > βi for every i, g(x) is positive for sufficiently large x. By continuity of g(x), g(x) has a root in
(0,∞). Consequently, g has a unique root x′ in (0,∞), and satisfies g(x) < 0 if and only if x < x′.
It follows that the branching function f(x) has a unique root x0 in (0,∞), and satisfies f(x) < 0
if and only if x < x0.
The proof of part (b) follows from the fact that A(x) = −x−αrf(x).

Definition Let (a1, · · · , at) and (α1, · · · , αr) be two branches. The branch (a1, · · · , at) is said to
be not worse than (α1, · · · , αr) if the root of the characteristic function of (a1, · · · , at) is not larger
than that of (α1, · · · , αr).

Let (a1, · · · , at) and (α1, · · · , αr) be two branches such that (a1, · · · , at) is not worse than
(α1, · · · , αr). We first show that there exists a unique real number s, where 0 ≤ s < a1, such
that the root of the characteristic function of (a1− s, · · · , at− s) is the same as that of (α1, · · · , αr).
Define the two-variable function f(s′, x) = x−at+s

′
+ x−at−1+s′ + · · · + x−a1+s′ − 1, where s′ ∈

[0, a1[ and x ∈ (0,∞). Note that for every fixed value s0 of s
′, the function f(s0, x) is the auxiliary

function of the branch (a1 − s0, a2 − s0, · · · , at − s0), and by part (b) of Theorem 0.2, f(s0, x)
has a unique root x0 ∈ (0,∞) such that f(s0, x) < 0 if and only if x > x0. Define the function
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z(s′) : [0, a1) −→ (0,∞) that for every s0 ∈ [0, a1) associates z(s0), the unique root of f(s0, x).
Then by part (b) of Theorem 0.2, the function z(s′) is well defined. Moreover, it is straightforward
to verify that z(s′) is strictly increasing. We show next that z(s′) is a continuous function. Let
s0 be a fixed point in (0, a1). We show that z(s′) is continuous at s0. We only prove that z(s′) is
continuous on the left of s0 (i.e., at s−

0
). The proof that the function is continuous on the right of

s0 is very similar. Also, the proof that the function is continuous on the right of 0 is similar. We
proceed by contradiction. Suppose that z(s′) is not continuous at the left of s0. Then we can find
a strictly increasing sequence (si)

∞
i=1 with si < s0 for every i, such that (si)

∞
i=1 converges to s0, but

(z(si))
∞
i=1 does not converge to z(s0). Since z(s′) is a strictly increasing function, and since si < s0

for every i, it follows that the sequence (z(si))
∞
i=1 is increasing and bounded by z(s0), and hence is

convergent to a point y 6= z(s0). Now f(si, z(si)) = 0 for all i. By continuity of f , f(s0, y) = 0. But
f(s0, z(s0)) = 0 and f(s0, x) has a unique root in (0,∞). It follows that y = z(s0), a contradiction.
Therefore the function z(s′) is a continuous function on (0, a1).
By looking at the function f(s′, x), it is not difficult to see that as s′ approaches a1, the root

z(s′) of f(s′, x) approaches (positive) infinity, and hence z(s′) is unbounded. Therefore, there
exists a point sb ∈ [0, a1) such that z(sb) > r0, where r0 is the root of the characteristic function
of the branch (α1, · · · , αr). Moreover, since the branch (a1, · · · , at) is not worse than (α1, · · · , αr),
z(s′ = 0) ≤ r0. By continuity of z(s

′), and since z(s′) is strictly increasing, there exists a unique
point s ∈ [0, sb[ (and also in [0, a1)) such that z(s) = r0.
This shows that there exists a unique real number s, where 0 ≤ s < a1, such that the root of

the characteristic function of (a1 − s, · · · , at − s) is the same as that of (α1, · · · , αr). Now we are
ready to define the following notion.

Definition Let (a1, · · · , at) and (α1, · · · , αr) be two branches such that (a1, · · · , at) is not worse
than (α1, · · · , αr). Let r0 be the root of the characteristic function of (α1, · · · , αr). The surplus of
the branch (a1, · · · , at) relative to the branch (α1, · · · , αr) is the unique value s ∈ [0, a1) such that
the root of the characteristic function of (a1, · · · , at) is equal to r0.

The reason behind defining the above notion of the surplus is twofold. First, the notion of a
branch being better than another branch in the sense that the root of its characteristic polynomial
(or function) is smaller than that of the other branch, can be very misleading when it comes to
combining the two branches with a third branch. As an example to illustrate this point, consider
the two branches (1, 11) and (4, 4). The branch (1, 11) is better than (4, 4) because the root of
its characteristic polynomial is smaller than 1.185 whereas that of (4, 4) is larger than 1.185. Now
consider a situation where we branch with a (1, 6) branch and on the 1-side of the branch we follow
that with a (1, 11) branch. We get the combined branch (2, 6, 12) with the root of its characteristic
polynomial being larger than 1.240. One intuitively is tempted to believe that since (4, 4) is worse
than (1, 11), branching with a (4, 4) branch on the 1-side of the (1, 6) branch should result in a
worse branch than (2, 6, 12). However, this is not the case. The branch (5, 5, 6) is better than
(2, 6, 12) with the root of its characteristic polynomial being smaller than 1.240. So if one’s goal is
to show that every branch in a certain algorithm is not worse than a (2, 5) whose root is smaller
than 1.237, and uses the (4, 4) branch to combine it with the 1-side of the (1, 6) branch rather than
the (1, 11) in the belief that the (4, 4) corresponds to a worst-case scenario, he will be obtaining
a (5, 5, 6) branch which has a root of 1.229 better than the root of the (2, 5) branch, whereas the
worst-case scenario corresponding to the (2, 6, 12) branch has a root that is larger than that of the
(2, 5) branch!
The reason why this phenomenon has taken place can be readily seen. The branch (1, 11) is
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much more “skewed” than the balanced (4, 4) branch, and when combined with some other branches
it may result in a worse branch. To avoid this problem, we use the notion of the surplus. When
we use the notion of the surplus, the surplus of the (4, 4) branch is larger than the (1, 11) branch
relative to the (2, 5) branch. The (2, 5) branch will be referred to as a base branch. We will show
next that if the surplus of a branch is not smaller than that of another branch relative to a certain
base branch, then when the first branch is combined with any third branch it results in a branch
that is not worse than that when the second branch is combined with this third branch, all being
relative to the base branch. This will show that when combining branches, using the surplus is
safe.
The second benefit behind the notion of the surplus is that instead of combining a branch with

another branch, we can simply add its surplus to the other branch. This makes the “arithmetic”
of branching easier to carry out.

Theorem 0.3 Let (α1, · · · , αr) be a base branch. Let (a1, · · · , at) and (b1, · · · , bp) be two branches
such that (a1, · · · , at) has a surplus of s1 relative to (α1, · · · , αr), and (b1, · · · , bp) has a surplus
of s2 relative to (α1, · · · , αr) with s1 ≥ s2. Let (c1, · · · , cq) be any branch. Let B1 be the branch
resulting by branching with the branch (a1, · · · , at) on the ci-side of the branch (c1, · · · , cq), where
i ∈ {1, · · · , q}, and B2 that resulting by branching with (b1, · · · , bp) on the ci-side of the branch
(c1, · · · , cq). If B2 is not worse than (α1, · · · , αr) than neither is B1.

Proof. Let r0 be the root of the characteristic function of (α1, · · · , αr). Let A1(x) = x−cq +
x−ci+1 + x−ci−1 + · · · + x−c1 − 1 + x−ci−at + · · · + x−ci−a1 be the auxiliary function of B1 and
A2(x) = x−cq + x−ci+1 + x−ci−1 + x−ci−1 + · · ·+ x−c1 − 1 + x−ci−bp + · · ·+ x−ci−b1 be the auxiliary
function of B2. Let r1 and r2 be the roots of A1 and A2, respectively. From the hypothesis, we
have r2 ≤ r0. From part (b) in Theorem 0.2, it follows that:

r
−cq

0
+ r

−ci+1

0
+ r

−ci−1

0
+ · · ·+ r−c1

0
− 1 + r

−ci−bp
0

+ · · ·+ r−ci−b1
0

≤ 0. (4)

To prove the theorem, we only need to show that:

r
−cq

0
+ r

−ci+1

0
+ r

−ci−1

0
+ · · ·+ r−c1

0
− 1 + r−ci−at

0
+ · · ·+ r−ci−a1

0
≤ 0. (5)

From inequality (4), it suffices to show that r−ci−at

0
+ · · ·+ r−ci−a1

0
≤ r

−ci−bp
0

+ · · ·+ r−ci−b1
0

, or
equivalently,

r−at

0
+ · · ·+ r−a1

0
≤ r

−bp
0
+ · · ·+ r−b1

0
. (6)

Since (a1, · · · , at) has a surplus s1 relative to the base branch (α1, · · · , αr), we have r−at+s1
0

+
· · · + r−a1+s1

0
− 1 = 0. Similarly, since (b1, · · · , bp) has a surplus of s2 relative to the base branch,

we have r
−bp+s2
0

+ · · ·+ r−b1+s2
0

− 1 = 0. Therefore, r−at+s1
0

+ · · ·+ r−a1+s1
0

= r
−bp+s2
0

+ · · ·+ rb1+s2
0

.

Now s1 ≥ s2, and hence, r
−at+s2
0

+ · · ·+r−a1+s2
0

≤ r−at+s1
0

+ · · ·+r−a1+s1
0

= r
−bp+s2
0

+ · · ·+r−b1+s2
0

.

Consequently, r−at

0
+ · · · + r−a1

0
≤ r

−bp
0

+ · · · + r−b1
0

and inequality (6) follows, and so does the
theorem.

The above theorem shows that the notion of surplus captures the the intuitive notion of branch
comparison. Since computing the actual value of the surplus of a branch relative to another branch,
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or in particular, to the base branch, is not an easy task, the following corollary provides a feasible
tool for comparing branches. The proof of the corollary follows a very similar approach to that of
the Theorem 0.3 with a minor tweak at the end. We leave the proof to the interested reader.

Corollary 0.4 Let (α1, · · · , αr) be a base branch. Let (a1, · · · , at) and (b1, · · · , bp) be two branches
such that (a1, · · · , at) has a surplus of value greater or equal to s1 relative to (α1, · · · , αr), and
(b1, · · · , bp) has a surplus smaller than s1 relative to (α1, · · · , αr). Let (c1, · · · , cq) be any branch.
Let B1 be the branch resulting by branching with the branch (a1, · · · , at) on the ci-side of the branch
(c1, · · · , cq), where i ∈ {1, · · · , q}, and B2 that resulting by branching with (b1, · · · , bp) on the ci-side
of the branch (c1, · · · , cq). If B2 is not worse than (α1, · · · , αr) than neither is B1.

Corollary 0.4 provides a feasible way for showing that the branch (a1, · · · , at) is less skewed than
(b1, · · · , bp). This can be done by computing a lower bound on the surplus of (a1, · · · , at) relative
to the base branch—which can be done by few trial and errors on the characteristic function of the
(a1 − s, · · · , at − s) for different values of s using the monotonicity of this function and part (b) in
Theorem 0.2–such that this lower bound is an upper bound on the surplus of (b1, · · · , bp) relative
to the base branch, which can also be showed in a similar fashion.
One thing is left to be explained. When we have a branch of the form (a1, · · · , at), where

a1, · · · , at are positive real numbers, how do we interpret this branch in conjunction with the notion
of a search tree? In the standard notion of a branch, the coordinates of a branch correspond to
the reduction of the parameter along each side of the branch. This notion makes sense when these
coordinates are positive integers. However, this may no longer be the case. To illustrate how such
a branch can be interpreted, consider a branch of the form (n1+s, n2, · · · , np), where n1, · · · , np are
positive integers, and s is a real positive number which is the surplus resulting from branching with
a branch (b1, · · · , bq) of surplus at least s (relative to a standard branch (α1, · · · , αr)), on the n1-side
of the branch (n1, n2, · · · , np). When it comes to interpreting the branch (n1 + s, n2, · · · , np) with
respect to the notion of the search tree and the reduction in the parameter, we look at this branch
as an (n1, n2, · · · , np) branch followed by a (b1, · · · , bq) branch on the n1-side. Now to calculate
an upper bound on the size of the search tree, we can simply use the root of the characteristic
function of the branch (n1 + s, n2, · · · , np). The reason being that, by using a similar proof to
that of Theorem 0.3, it can be shown that the root of this characteristic function is not smaller
than that of the characteristic polynomial of the two combined integer-coordinate branches. So an
upper bound on the root of this characteristic function implies an upper bound on the root of the
characteristic polynomial of the combined branches. Therefore, hypothetically, we can look at the
branch (a1, · · · , at) as a branch with real-valued coordinates and use the root of its characteristic
function to compute an upper bound on the size of the search tree. However, such a branch should
be understood as a standard branch with integer coordinates, with the accumulation of certain
surplus along some of its sides.
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