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Abstract 
 

Requirements traceability provides critical support in helping manage the evolution 
of software systems.  Establishing and maintaining trace links is an arduous problem 
requiring intensive human effort when traces need to be established manually.  Automatic 
retrieval tools can help maintain traceability links by dynamically identifying traces 
between artifacts. In order to effectively reduce the effort involved in evaluating the 
correctness of the retrieved links such automatic tools must achieve high retrieval 
performance. This paper presents results of experimental studies to analyze the 
performance of a dynamic trace retrieval approach implementing a probabilistic 
information retrieval network. The experiments are conducted on three different datasets. 
An implementation of the retrieval approach described in the paper involves the 
definition of a small training set for which correct traces are previously defined.  This can 
be accomplished by either using past knowledge or by manually evaluating the traces in 
the generated training set. A study explores the effect of different sized training sets 
on the retrieval performance of the automatic tool.  A second study analyzes methods for 
defining confidence values, which are attached to each (un)retrieved trace to indicate 
how confident we are that the dynamically retrieved trace represents a true link, or vice 
versa that the link that are not retrieved by the tool are in fact false links. The results of 
this research are beneficial for enhancing the utility and performance of dynamic tracing 
tools. 
 
1. Introduction    
 

Requirement traceability has been widely recognized as an important factor in 
effectively managing the development and evolution of software systems. Researchers 
have investigated the application of information retrieval techniques to the modeling of 
traceability retrieval process and found these approaches promising [1,2,3,4]. The process 
of these automatic retrieval approaches consists of document parsing based on 
grammatical structure of the terms, link generation according to the term occurrence in 
both the requirement and the searchable documents, and finally presenting the candidate 
links to the user for their evaluation. 

Although these dynamic retrieval methods have demonstrated the feasibility of 
replacing traditional trace tools, their performance is not entirely satisfactory. The 
performance of the retrieval tools is mainly evaluated by two metrics: recall and precision. 



Recall is used to measure the number of correctly retrieved documents out of the set of all 
the documents that should be retrieved, while precision is used to measure the number of 
correctly retrieved documents out of the total set of retrieved documents. To effectively 
support the system impact analysis, tracing tools are expected to have high recall to 
retrieve as many relevant artifacts as possible. Research in this area shows that when 
recall of a traceability tracing tool reaches 90%, precision drops below 40%, sometimes 
even less than 10% [1,3,4,5]. When this occurs, the user is forced to conduct a time-
consuming, error-prone search through the remaining document collection to find missed 
traces.  

Our study aims to reduce the human effort involved in manual link discrimination by 
improving the performance of automatic traceability tools. To this end, a series of 
experiments has been conducted against three different datasets to analyze the 
performance of a dynamic trace retrieval approach implementing a probabilistic 
information retrieval network. Section 2 presents the dynamic trace retrieval approach 
utilized in our previous work. Section 3 describes the results of experiments to investigate 
the effect of different training sets on the retrieval algorithm performance.  Section 4 
proposes a method for computing confidence levels for both retrieved and rejected links. 
The confidence values express the degrees of belief that both the automatically retrieved 
links and the rejected ones are correct. Section 5 concludes with an analysis of the results 
of the empirical study and a discussion on future work. 
 
2. Probabilistic Information Retrieval Model  
 

The basic retrieval algorithm in our dynamic trace retrieval approach was 
implemented using a probabilistic network model based on Wong and Yao’s work [7,8]. 
The model is represented by a directed acyclic graph where the nodes are random 
variables and arcs indicate relationships between variables. Three sets of variables are 
defined in this retrieval model: documents set (d1,d2,…,dn), queries set (q1,q2,…,qm) and 
term set (t1,t2,…,tn). The term set is derived from the document collection at a pre-
processing stage by eliminating stop words and stemming those remaining words to their 
common grammatical roots.  

Documents and queries are assumed to be conditionally independent given the index 
terms. This is represented in the graphical model by arcs only between document and 
terms nodes or query and terms nodes, while no direct arcs between query and document 
nodes are present. Thus we assume that there is no direct association between document 
and query nodes, but the lexical association between the two nodes can be completely 
explained by the term node. Each document or query can be interpreted as a proposition 
of the whole concept space defined by index terms (t1,t2,…, n). Then the probability 
pr(d|q) of a document d being relevant to a query d can be explained as the degree of 
coverage of d given q. 

Based on this model, the probability of relevance of a document dj with respect to a 
query q is defined as [6]: 
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Documents dj are ranked by their degree of relevance to the query q pr(dj|q). A 
threshold value is established prior to the retrieval so that all documents with probability 
score higher than the threshold will be retrieved.  
 

3. Training Set Identification 
 

The trace retrieval tool ranks the relevance of documents with respect to a given 
query according to a probability value computed using expression (1). A candidate link 
between query q and document d is established whenever the probability score pr(d|q) is 
above a certain threshold.   

Such a threshold value can be identified using a training set that contains a subset of 
documents. The traces linking documents in the training set to queries are assumed to be 
known: these known links are either manually established or can be derived from 
previous knowledge. The size of the training set is typically small, since creating and 
maintaining the traceability matrix for the training set may become difficult if the number 
of traces is very large. A discussion on these issues is presented in section 3.2 below.  

The following algorithm selects the threshold value for the probability scores 
computed by the retrieval algorithm. The threshold value is selected by maximizing a 
selection criterion that depends on two standard performance measures in information 
retrieval. Such measures are recall and precision. As previously stated, recall is the 
percentage of correctly retrieved links out of all correct links, and precision is the 
percentage of correct links retrieved out of all retrieved links.  

First for each document d in the training set and each query q, the probability values 
pr(d|q) are computed using the expressions in section 2. A target recall Rt is selected by 
the user. The target recall is typically high, since the objective is to retrieve as many links 
as possible. The threshold value is evaluated by optimizing the target function 
“approaching target recall Rt while maximizing recall + precision, where recall > 
precision”. Thus, the optimal threshold will be selected as the value T that yields a recall 
value close to a target recall Rt, while maximizing the retrieval precision.  

The algorithm used to select thresholds from the training set is given in [9] and 
repeated here for convenience: 
 
3.1 Optimal_Thresholding(training set, Rt) 

Input: Training set, which contains tuples of query artifacts, document artifacts, and 
associated probability scores.  

Input: Rt, denotes target recall, which is chosen by the user.  
For each category, do until termination condition is met: 
1.  Initialize T to a value T0, where T0∈[0,1]. We choose T0=0.1 according to 

previous experiments. 
2. Calculate the output recall R and precision P over all queries given 

threshold T.  
Store T if R+P is maximized compared to all previous output pairs of 
recall and precision, and R > P.  



3.  T←T+∆T, where ∆T=α*(R-Rt). α is a relatively small positive number to 
constrain the threshold adjustment. For the purposes of these experiments 
α=0.01. 

Output: Optimal threshold T. 
Termination condition is:  
1.  Threshold adjustment ∆T is small enough (for instance, |∆T|≤0.0001, which occurs 

when output recall R is closely achieved towards target recall Rt ), or 
2. T exceeds the upper bound 1 and lower bound 0 (which occurs when target recall 

Rt was set too high). 
 

An experimental study was conducted to analyze the effect of size of the training sets 
on the retrieval performance of the automatic tracing algorithm. The experiments applied 
the automatic retrieval algorithm to generate links between requirement artifacts and 
class diagrams for three software applications which are described below.  

IBS (Ice-Breaker) system is an application to deploy de-icing services on roads in a 
specific district. By using information gathered from weather stations and road sensors, 
the system forecasts road freezing conditions and manages the distribution of de-icing 
materials. Tasks of the system include maintaining district maps, managing de-icing 
material, arranging real-time truck work orders, planning de-icing and other issues. The 
Ice Breaker system consists of 172 functional requirements and 75 UML class diagrams.   

EBT (Event-Based Traceability) system was originally developed at the International 
Center for Software Engineering at the University of Illinois at Chicago [6] to provide 
support for software system maintenance over a long term. It utilized a publish-subscribe 
mechanism to dynamically maintain artifacts in the system. The system is composed of 
54 requirements and 60 UML classes. 

The third database, Light Control (LC) system was developed for the University of 
Kaiserslautern [2] to manage the lighting tasks in a building. According to the space 
occupation of the building and the current illumination, the LC system controls lights to 
fit the lighting schemes pre-defined by the user. There are a total of 36 requirements and 
25 class diagrams in this system. 

Our experiments focused on finding traces from requirements to UML class diagrams, 
as tracing to UML diagrams can be easily converted into traces to code by many 
commercial UML case tools [6]. 

 
3.2 Experiment Setup 
 
      The performance of the threshold selection algorithm is affected by the quality of the 
training set. Two issues that should be considered when selecting a training set are:  

1) The training set selection strategy: if the training set contains non-representative 
data, the obtained information is at risk of “overfitting”.  

2) The size of the training set: when the size of the training set is too small, it might 
not be representative enough of the true characteristics of the whole data set. 
However, manually building the requirement traceability matrix for training set 
evaluation is extremely time consuming. An “optimal” size of the training set 
needs to be identified to find a balance that minimizes human effort yet optimizes 
performance. 



The focus of the experimental study was to select an appropriate size for the training 
set, so that the threshold value selected from the training set could be effectively used to 
retrieve links from the entire document collection. The underlying hypothesis is that if the 
training set is well defined, then the percentage of correctly retrieved links from the entire 
document collection should be close to the target recall value Rt specified by the user 
during the threshold selection step. 

In our experiments, the documents in the training set are randomly selected from the 
collection of searchable documents.  Traceability matrices between requirements and 
class diagrams are available for all three examples. The matrices were created after long 
and tedious work by manually tracing requirements to class diagrams and were used to 
evaluate the performance of our approach. 

In IBS system, there are 75 functional requirements and 172 UML class diagrams, 
resulting in12900 potential links. A training set is established by randomly choosing a 
subset of the class diagrams. 

 The threshold value on the training set is discovered using the thresholding strategy 
described above in chapter 3. The selected threshold value is then applied to the entire 
document and query collection to examine its overall performance. Recall and precision 
of the retrieval algorithm over the entire dataset are analyzed, and compared to the recall 
and precision values for the training set.  

We conducted a Monte Carlo study to evaluate the performance of the threshold 
strategy if different sized training sets were selected. The study compared the 
performance of the threshold algorithm for training sets of sizes equal to 20%, 25%, 30%, 
35%, 40% or 45% of the entire data set. For IBS dataset, the algorithms were run for 
three target recalls: (90%, 85%, 80%). Details about the results of 85% and 80% are 
reported in the appendix. The Monte Carlo study consisted of running 1,000 simulations. 
In each simulation, a training set of a given size is generated from the entire document 
collection and the threshold algorithm is run to find the optimal threshold for the given 
target recall. Each simulation is analyzed using the following metrics:    

Dr: Difference between training set recall and overall recall value.  
Dp: Difference between training set precision and overall precision value. 
Both metrics measure how well the retrieval algorithm performs on the entire data set 

using the threshold obtained from the training set. As the training set size gets larger, we 
expect Dr and Dp to get smaller and closer to zero.      

The performance of the threshold strategy can be analyzed by computing min, max, 
average and standard deviation for both metrics in each simulation study.    

 
3.3 Results Analysis 
 

 3.3.1 Results for IBS database 
 
Table 1 displays the statistical analysis results on IBS data with 1000 iterations and 

target recall of 90%. The size of the training set varies from 20% to 45% of the entire 
dataset. The results in table 1 show that the difference of performance between the 
training set and the entire dataset decreases as the size of the training set increases. When 
20% of the data were selected as the training set, the average difference between recall 
between the two sets was 0.016502, with standard deviation equal to 0.044078; while for 



the training set containing 40% of the documents, the average recall difference decreased 
to 0.007115 and the standard deviation to 0.027537.  Difference in precision between the 
training set and the entire dataset followed a similar trend. 
 

Table 1: Statistical analysis on simulation of IBS with target recall 90% 
 Training set size 

Measure 20% 25% 30% 35% 40% 45% 

Max(Dr) 0.179225 0.157986 0.174107 0.148238 0.115276 0.099864
Min(Dr) -0.06673 -0.06999 -0.06338 -0.05582 -0.05233 -0.04303

rD  0.016502 0.012281 0.009271 0.007822 0.007115 0.005258
)( rDs  0.044078 0.039069 0.032235 0.0305 0.027537 0.023939

Max(Dp) 0.099003 0.110759 0.086076 0.090283 0.059268 0.049224
Min(Dp) -0.09132 -0.07552 -0.06307 -0.05202 -0.05189 -0.04558

pD  0.002983 0.002661 0.002434 0.001846 0.002293 0.001073
)( pDs  0.029561 0.025859 0.021855 0.019671 0.0175 0.015175

 
If the training set is well defined, the sample averages rD  and pD should be close 

to 0 with standard deviations )( rDs  and )( pDs  as small as possible. 
By examining the results on table 1, we find that for training sets containing about 

30% of the documents, the sample average for the difference in recall is rD =0.009271 
with standard deviation equal to )( rDs =0.032235. This means that in about 95% of the 
simulated training sets, the values computed for Dr are in the interval (-0.051, 0.073). 
This is also displayed by the histogram in Figure 1. Our results show that in most 
simulated training sets, the overall recall on the entire data set is close to the target recall, 
and that in more extreme cases, overall recall is either 5% higher or 7% lower than target 
recall in the training set. For instance, if target recall is equal to 90%, the selected 
threshold value would allow retrieval of a percentage of true links varying between 83% 
and 95% of the entire collection. In a very few cases, a larger difference in retrieval 
performance was observed between training set and entire collection. At a 90% target 
recall, the worst result returned overall recall values 15% lower than the target. 

 The 95% of the simulation results have precision difference between (-0.038, 
0.048). This indicates that on average the precisions in the training set and in the entire 
collection are very similar.   

From a practical standpoint, we cannot accept a decrease in overall recall and 
precision larger than 15% of the corresponding values in the training set. For instance, 
with 95% of recall retrieved in the training set, the acceptable overall recall should be 
within the interval of [80%, 100%], with very few cases exhibiting recall less than 80%.  
Given this criteria, we determined that a training set of 30% of the entire dataset provides 
a reasonable ratio for IBS. 
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Figure 1: Distribution of recall difference from training set of size 30% to entire IBS 

dataset in 1000 iterations, with target recall 90%. 
 
 

Given the target recall 90% and the optimal training set size of 30%, Figure 1 
depicts the distribution of Dr computed in 1000 iterations. The histogram is right skewed. 
There are a few extreme cases where recall on the training set was more than 10% higher 
than the overall recall on the whole dataset. The histogram shows that in the worst case 
scenario, the threshold value would likely yield 78% overall recall.  

Figure 2 shows the distribution of the difference in precision values computed from 
1000 iterations. The distribution is symmetric and centered around 0. Given the target 
recall of 90%, the actual precision achieved on the entire dataset ranges from 16% to 38%, 
with an average of 21%.  
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Figure 2: Distribution of precision difference from training set of size 30% to entire 

IBS dataset in 1000 iterations, with target recall 90%. 
 

The results on IBS database indicate that if the threshold is learned from a training 
set containing about 30% of the documents, the automatic tracing algorithm performance 
is very good and high values of recall and precision can be achieved.  

 
3.3.2 Results and Analysis on EBT and LC databases  
The same simulation procedure was conducted on EBT and LC databases. Table 2 

and 3 display the simulation results of 1000 iterations on EBT and LC data individually, 
with target recall of 90%. 

 
 
 
 
 
 
 
 
 
 
 



Table 2: Statistical analysis on simulation of EBT with target recall 90% 
 Training set size 

Measure 20% 25% 30% 35% 40% 45% 

Max(Dr) 0.350556 0.32186 0.287138 0.241959 0.227797 0.205556
Min(Dr) -0.15972 -0.375 -0.10859 -0.07054 -0.06143 -0.05665

rD  0.04661 0.03384 0.028322 0.018686 0.021698 0.016127
)( rDs  0.080644 0.070283 0.059799 0.05252 0.046541 0.039303

Max(Dp) 0.306558 0.223684 0.149049 0.124844 0.127473 0.095776
Min(Dp) -0.11173 -0.1177 -0.10523 -0.08141 -0.09072 -0.08773

pD  0.009469 0.007056 0.004632 0.002033 0.004104 0.0034
)( pDs  0.05461 0.046492 0.038621 0.03256 0.030581 0.027698

 
From the results on table 2, we found that when the size of the training set is 30% of 

the entire data, rD =0.028322, )( rDs =0.059799. This indicates that in 95% of the 
simulated runs the difference in recall values between the training set and the entire 
document collection was in (-0.091, 0.148). For the difference in precision, the 95% 
interval is (-0.072, 0.081).  

Given the same acceptable departure of 15%, the results in EBT indicate 30% could 
also be a suitable training set size. 
 

Table 3: Statistical analysis on simulation of LC with target recall 90% 
 Training set size 

Measure 20% 25% 30% 35% 40% 45% 

Max(Dr) 0.41685 0.34777 0.264692 0.348571 0.238761 0.224407
Min(Dr) -0.2674 -0.18482 -0.1453 -0.13936 -0.09032 -0.09196

rD  0.052201 0.036743 0.025078 0.024504 0.016245 0.012874
)( rDs  0.092938 0.073873 0.058479 0.057908 0.043873 0.03913

Max(Dp) 0.396825 0.379683 0.321895 0.314099 0.239146 0.207299
Min(Dp) -0.21522 -0.19164 -0.16488 -0.16278 -0.13233 -0.11009

pD  0.029133 0.021228 0.020395 0.017038 0.011278 0.008241
)( pDs  0.110705 0.090345 0.077402 0.072696 0.059367 0.050239

 
The LC database is significantly smaller with only 850 possible pairs (document, 

query) to be linked. By analyzing table 3 we observed that for a training set containing 
30% of the documents the difference in overall recall and training set recall is small on 
overage. In about 95% of the simulations, the overall recall decreases at most by 15%, 



while the overall precision decreases at most by 17%. 
The analysis above shows that a training set that contains about 30% of the 

document collection can be used to effectively identify a threshold value for the entire 
document collection. When the threshold value for 90% recall is used in the trace 
retrieval algorithm on the entire document collection, the retrieval algorithm performance 
is close to 90% recall, in the worst cases 83% correct links are retrieved in IBS, 76% in 
EBT and LC.  

 
 
4. Confidence Scores  
 

Confidence scores have been defined to measure our degree of belief on the 
correctness of the results returned by the automatic trace retrieval algorithm. Confidence 
scores range from 0 to 100%, and their purpose is to provide a meaningful reference to 
the user when presenting the retrieval results. For retrieved links, confidence values 
suggest how much confidence we have that the links are indeed relevant; while for 
rejected links, they suggest how confident we are that they are truly not related.  

In the requirements traceability domain, tracing tools should favor high recall rather 
than precision in order to retrieve as many true links as possible. This is accomplished 
through setting the threshold at a relatively low value. Previous research in this area 
shows that with approximately 90% recall, precision rages from 10% to 40% [1,2,3,4]. So 
for retrieved links, especially those just slightly above the threshold, we will have lower 
confidence that they are true links. On the other hand, we will have much stronger 
confidence that rejected links are truly irrelevant. 

Candidate links with large probability scores will have higher confidence values. 
This observation is based on our experimental studies that indicate that candidate links 
with large probability scores are more likely to be true links. However, probability scores 
should not be the only criterion for defining confidence levels. During the experiments on 
the three databases, we noticed that the distribution of correct links should be taken into 
account when we compute confidence levels. Figure 3 shows the distribution of the 
probability scores for true-links vs. non-links for the IBS dataset. The graph indicates that 
the majority of non-links are found in the very low probability region, while the majority 
of true Rt links are found in higher probability value regions [6]. Therefore, high 
confidence can be assigned to links with high probability values. Similarly, we can 
assume with high confidence that document-query pairs with very low probability values 
should not be linked.   
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Figure 3: Probability distribution of links and non-links 

 
In the region in between, true-links and non-links are mostly cross-distributed, 

making it difficult to discern true and non-true links. While the increase of probability 
value strengthens confidence level, the link distribution should also be taken into account 
to indicate the degree of change on confidence level in a certain region. Candidate links 
in the region with higher true-links distribution should have confidence values that 
increase at a faster rate than candidate links with higher probability scores but in a region 
with scarce true links. In other words, in a region where most candidate links are true-
links, the confidence levels for candidate links in this region will increase very fast.  

 
4.1 Segmented Confidence Scores 
 

We propose a segmentation method for defining confidence scores based on the 
links distribution on training set.  

Let Pi (0≤ Pi ≤Pmax, i=0,1,…,m) be the probability value for a candidate link in the 
training set. Suppose the training set consists of m documents. The value Pmax represents 
the candidate link that has the highest probability value in the training set.  C(Pi) be the 
confidence score attached to the link with probability value Pi. 

Let Xe be the point with less than 5% confidence level, where C(Xe)<0.05. The 
lowest confidence point Xe needs to be discovered prior to the segmentation on the 
training set. Xe should have very low probability score Pe, so that we have almost very 
high confidence that the number of true links in the area around Pe is very scarce. In our 
experiments, we define C(Xe)=0. 

The 100% confidence score is assigned to the candidate link that has the highest 



probability value Pmax. 
The region between the Pe and Pmax is then divided into K segments (1<K<m) 

according to the probability score distribution of the true links.  
In a segment k (1≤k≤K), the density of true links µ(k) is defined as: 

 
segmentin  links candidate ofnumber 

segment in  links  trueofnumber )( =kµ  

 
The measure µ(k) can be regarded as the local precision metric relative to the 

segment.             
Given a segment k where the average probability value is kP , we define the 

confidence score: C( kP ) = µ(k).  
 

Confidence 
score 

µ(k-1) 

Probability 
score 

µ(k) 

kP1−kP

Figure 4: Confidence definition in two neighboring segments 
 

As showed in figure 4, in two neighboring segments k-1 and k for 1<k<K where 
their average probability values are 1−kP  and kP respectively, a candidate link with  
probability value P ( 1−kP ≤P≤ kP )  has confidence score computed as follows: 
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In the first segment, the confidence score of a candidate link with the probability 

value P (Pe≤P≤ 1P ) is defined as: 
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Accordingly, in the last segment K, the confidence score of a candidate link with the 



probability value P ( kP ≤P≤Pmax) is defined as: 
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For pairs with 0 probability value, the confidence level for the rejected links is set 
equal to 100%, meaning we have 100% confidence they are non-links. In the area where 
probability values are lower than Xe, a pair with the probability value P (0≤ P<Xe) has 
confidence score given by: 
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where µ, the density of non-links in the region, is defined as 

region in the pairs all ofnumber 
region  in the links -non ofnumber 

=µ , and P denotes the average probability 

value in this region. 
 
4.2 Experiments on segmentation methods 
 

4.2.1 Results on IBS databases  
  
The segmentation method was applied to each database to analyze its effectiveness 

in computing meaningful confidence values.  Based on the conclusion drawn from the 
study on training sets, 30% of the entire data set was randomly chosen as the training set.  

In one randomly generated training set of IBS with 4200 pairs of candidate links, we 
found that Pmax = 0.25, so C(0.25) = 100%. The value of 0.003 was chosen as Xe, and 
C(0.003) = 0%. This was based on the observation that almost no true links have 
probability scores lower than 0.003 in the training set. For any candidate links with 
probability values lower than 0.003, we have strong confidence that they are non-links.   

All candidate links were divided into 6 segments according to the links distribution. 
Table 4 displays the segments on this training set, the corresponding true links density µ 
(non-links density in the case of non-link segment 6) and the average probability P . 

 
Table 4: Segmentation on IBS training set 

Segment µ P  
1 >0.08 0.761 0.116 
2 0.05-0.08 0.571 0.063 
3 0.03-0.05 0.453 0.038 
4 0.01-0.03 0.163 0.018 
5 0.003-0.01 0.060 0.006 
6 0-0.003 0.968 0.002 

 
As we defined earlier, C( kP )=µ(k). So in segment 1, C(0.116) = 0.761; in segment 

2, C(0.063) = 0.571, and so on. Table 5 displays the definition of confidence level C(Pi) 
in each segment. 

 



 
 

Table 5: Confidence scores definition in each segment of IBS training set.  
Pi C(Pi) 

≥0.116 [0.761+1.78×(Pi-0.116)] ×100% 
[0.063, 0.116) [0.571+3.58×(Pi-0.063)] ×100% 
[0.038, 0.063) [0.453+4.72 ×(Pi-0.038)] ×100% 
[0.018, 0.138) [0.162+14.5 ×(Pi-0.018)] ×100% 
[0.006, 0.018) [0.060+8.58×(Pi-0.006)] ×100% 
[0.003, 0.006) [20×(Pi-0.003)]×100% 

<0.003 [1-16×Pi] ×100% 
 
Figure 5 illustrates the curve displaying the relationship between the probability 

value of a candidate link and its confidence score. 
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Figure 5: Confidence scores on IBS training set 

 
 4.2.2 Results and Analysis on EBT and LC databases  
 
The same method was also applied to randomly selected training sets of size equal to 

30% for the EBT and LC databases.  
Table 6 illustrates the segmentation on one EBT training set with Pmax=0.054. The 

probability value of 0.0006 was chosen as the 0 confidence point Xe and then all 
candidate links were divided into 5 segments. 

 
 



 
 

Table 6: Segmentation on EBT training set 
Segment µ P  

1 >0.04 0.75 0.047 
2 0.025-0.04 0.4 0.031 
3 0.01-0.025 0.304 0.016 
4 0.0006-0.01 0.112 0.004 
5 0-0.0006 0.996 0.0003 

 
The confidence definition C(Pi) for a candidate link with probability score of Pi was 

given in table 7.  
 
Table 7: Confidence scores definition in each segment of EBT training set 

Pi C(Pi) 
≥0.047 [0.75+35.7(Pi-0.047)] ×100% 

[0.031, 0.047) [0.4+23.3×(Pi-0.031)] ×100% 
[0.016, 0.031) [0.304+6.4×(Pi-0.016)] ×100% 
[0.004, 0.016) [0.112+16×(Pi-0.004)] ×100% 
[0.0006, 0.004) [32.9×(Pi-0.0006)] ×100% 

<0.0006 [1-13.3×Pi] ×100% 
 
Figure 6 depicts how confidence levels change with probability values.  
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Figure 6: Confidence scores on EBT training set 



 
Table 8, table 9 and figure 7 display the results of segmentation method on one LC 

training set with Pmax = 0.25 and probability value of 0.0067 chosen as Xe.  
 

Table 8: Segmentation on LC training set 
Segment µ P  

1 >0.07 0.75 0.162 
2 0.045-0.07 0.615 0.055 
3 0.0067-0.045 0.328 0.018 
4 0-0.0067 0.963 0.0026 

 
Table 9: Confidence scores definition in each segment of LC training set.  

Pi C(Pi) 
≥0.162 [0.75+2.84(Pi-0.162)] ×100% 

[0.055, 0.162) [0.615+1.26×(Pi-0.055)] ×100% 
[0.018, 0.055) [0.328+7.76×(Pi-0.018)] ×100% 
[0.0067, 0.018) [29.0×(Pi-0.0067)] ×100% 

<0.0067 [1-14.2×Pi] ×100% 
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Figure 7: Confidence scores on LC training set 

 
5. Discussion 
 

The experiments on training set identification demonstrate the effectiveness of 
using an appropriate sized training set to identify optimal threshold values. The results of 



our analysis show that 30% of the document collection can be considered a suitable size 
for the training set, as in most cases, the training set is able to capture the characteristic of 
the data in the whole set. For smaller databases, the training set needs to contain more 
data in order to include representative characteristics of the whole set.   

Based on the knowledge learned from a training set, the method for defining  
confidence scores provides the user with a measure of the degree of confidence that an 
automatically retrieved trace is correct or not. This method considers both probability 
scores and link distribution as contributing factors for defining confidence levels. We 
believe this is beneficial for improving the utility of the tracing tools. 

We are planning on conducting more experiments on other databases to verify the 
methods we proposed and the conclusion drawn from our previous study. 
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Appendix 

The following are the results of in IBS database with target recall of 85% and 80% 
respectively.  

Table 10 analyzes the simulation results for training sets of size equal to 20%, 25%, 
30%, 35%, 40% and 45% of the entire IBS dataset with target recall of 85%. In table 11, 
the analysis with target recall of 85% is presented. The results are similar with that of 
target recall of 90% presented in section 3.2.1. 

Figure 8, 9, 10 and 11 illustrate the distribution of the recall/precision difference for 
training set sized at 30% of the entire dataset with two different target recalls. 

 
Table 10: Statistical analysis on simulation of IBS with target recall 85% 
 Training set size 

Measure 20% 25% 30% 35% 40% 45% 
Max(Dr) 0.236607 0.188502 0.144818 0.152232 0.15776 0.14301 
Min(Dr) -0.10069 -0.09539 -0.08246 -0.07718 -0.07712 -0.06133 

rD  0.016731 0.011002 0.0099 0.091769 0.006189 0.005478

)( rDs  0.057853 0.050236 0.0447 -0.06113 0.036909 0.031758
Max(Dp) 0.170368 0.1471 0.094527 0.008123 0.077103 0.079783
Min(Dp) -0.08849 -0.08374 -0.07248 0.039936 -0.05483 -0.05671 

pD  0.00422 0.003006 0.002148 0.00238 0.000824 0.000938

)( pDs  0.035931 0.03 0.026959 0.02217 0.020125 0.018338
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Figure 8: Distribution of recall difference from training set of size 30% to entire IBS 

dataset in 1000 iterations, with target recall 85%. 
 
 

0

20

40

60

80

100

-0.
07

-0.
05

-0.
03

-0.
01

0.01 0.0
4

0.0
6

0.0
8

Fr
eq

ue
nc

y

 
Figure 9: Distribution of precision difference from training set of size 30% to entire 

IBS dataset in 1000 iterations, with target recall 85%. 



 
Table 11: Statistical analysis on simulation of IBS with target recall 80% 
 Training set size 

Measure 20% 25% 30% 35% 40% 45% 

Max(Dr) 0.245387 0.222305 0.15997 0.163089 0.166454 0.11932 
Min(Dr) -0.14356 -0.11674 -0.11346 -0.10466 -0.10057 -0.09966 

rD  0.01626 0.008754 0.00857 0.007093 0.006118 0.003212

)( rDs  0.067186 0.055435 0.049096 0.04572 0.042041 0.035816
Max(Dp) 0.14619 0.153549 0.105772 0.121714 0.120469 0.067764
Min(Dp) -0.12753 -0.09327 -0.08417 -0.08513 -0.05742 -0.06293 

pD  0.005583 0.003623 0.003817 0.002173 0.002411 0.002361

)( pDs  0.044081 0.036363 0.030739 0.027535 0.024761 0.020943
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Figure 10: Distribution of recall difference from training set of size 30% to entire 

IBS dataset in 1000 iterations, with target recall 80%. 
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Figure 11: Distribution of precision difference from training set of size 30% to entire 

IBS dataset in 1000 iterations, with target recall 80% 
 
 
 


